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Abstract: Plant segmentation is a challenging computer vision task due to plant images complexity.
For many practical problems, we have to solve even more difficult tasks. We need to distinguish plant
parts rather than the whole plant. The major complication of multi-part segmentation is the absence
of well-annotated datasets. It is very time-consuming and expensive to annotate datasets manually
on the object parts level. In this article, we propose to use weakly supervised learning for pseudo-
annotation. The goal is to train a plant part segmentation model using only bounding boxes instead
of fine-grained masks. We review the existing weakly supervised learning approaches and propose
an efficient pipeline for agricultural domains. It is designed to resolve tight object overlappings. Our
pipeline beats the baseline solution by 23% for the plant part case and by 40% for the whole plant
case. Furthermore, we apply instance-level augmentation to boost model performance. The idea of
this approach is to obtain a weak segmentation mask and use it for cropping objects from original
images and pasting them to new backgrounds during model training. This method provides us a
55% increase in mAP compared with the baseline on object part and a 72% increase on the whole
plant segmentation tasks.

Keywords: image instance segmentation; weakly supervised segmentation; multi-part segmentation

1. Introduction

Computer vision tasks, such as object detection and segmentation, require large-scale
datasets to train neural network models [1]. An object detection task involves identification
of object boundaries in an image, while a segmentation task assumes pixel classification.
These tasks pose several challenges for researchers. The first one is image collection;
the second issue concerns the preparation of high-quality annotations for the dataset.
Obtaining precise annotations is a time-consuming and costly process, especially for large-
scale datasets [2].

Computer vision tasks in the agriculture domain are even more challenging [3,4].
Plants are very diverse and volatile. For many practical problems, we have to solve even
more difficult tasks. We need to distinguish plant parts rather than the whole plant. These
masks are used to identify different parts of the plant, such as leaves, stems, and fruits. This
information can be used to quantify plant traits such as leaf area, stem diameter, and fruit
size. It can also help in identifying specific plant diseases that affect certain parts of the plant.
The use of computer vision systems in agriculture can help automate many tasks, such as
crop monitoring, weed detection, and yield estimation. Accurate plant segmentation and
part segmentation masks are essential for developing such automated systems. The plant
part segmentation model can be used as a component in a larger pipeline for precision
agriculture. For example, the model can be used to identify and segment different parts of
a plant, such as leaves, stems, and fruits, from images captured by drones or other imaging
devices. This information can then be used to analyze the health and growth of the plant,
optimize irrigation and fertilization, and detect diseases or pests early on. The model
can also be beneficial in reducing manual labor and increasing efficiency in agricultural
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operations. By automating the process of plant part segmentation, farmers can save time
and resources that would otherwise be spent on manual inspection and analysis.

For this task, we usually need fine-grained manual annotations. However, it is not
feasible to collect and annotate plant parts datasets for every plant variety and condition. It
is reasonable to utilize data augmentation techniques in such cases to enlarge the dataset.
In some cases, synthetic data can save us thousands of hours for manual annotation [5].
Besides classical augmentations such as color and geometrical transformations, there are ad-
vanced techniques [6,7]. For instance, one can apply object-based augmentation (OBA) [8,9].
The key idea of the OBA is to crop foreground target objects from the image using their
masks, apply some augmentations to these instances, and then past them onto a new
background. OBA is more flexible than classical image-based augmentation, providing
more ways to handle the target objects [10]. However, to extend the amount of data in
the custom dataset using OBA, masks of the target objects are necessary [11]. Semantic
segmentation annotation requires more time and resources than image-level annotation
because it involves defining per-pixel boundaries of the target objects. One promising
approach to make the pixel-wise annotation process easier is weakly supervised semantic
segmentation (WSSS), which utilizes weak supervision such as image-level labels and
bounding boxes. Implementing WSSS to obtain masks of target objects for OBA tech-
niques significantly accelerates the creation of custom datasets and simplifies the process
of data labeling.

Several approaches have been proposed recently to deal with the task of WSSS. Image-
level labels ascribing is the most convenient and cost-effective type of image annota-
tion. Most recent studies in WSSS that use image-level labels employ a class activation
map (CAM) method to generate pseudo-masks. The CAM is obtained from the classifica-
tion network with a global average pooling (GAP) layer [12]. The classification network
activates specific features of the input image depending on the class label. The CAM
approach highlights the most important parts of the image on which the class prediction is
based. However, WSSS methods based on the CAM have drawbacks such as underactiva-
tion. It means that CAM produces high response only in the most discriminative regions,
but ignores other regions that can be important for segmentation. Therefore, many research
studies are devoted to enlarging region coverage provided by CAM. It is important to
emphasize that OBA employment makes tough demands for CAM quality because too
noisy or corrupted pseudo-masks can ruin OBA as well as the training process.

Typically, WSSS refers to methods for addressing the semantic segmentation task,
which is an important computer vision task that is applied in critical systems such as aerial
image analysis [13], unmanned aerial vehicles (UAVs) [14], autonomous vehicles (AVs) [15],
robotics [16], and environmental analysis [17]. However, the high cost of pixel-wise annota-
tions limits progress in these research fields. Combining OBA and WSSS can significantly
improve progress and increase the size of annotated datasets, which in turn can have a
positive impact on neural network training in general. This work aims to obtain a seg-
mentation mask using only a limited amount of weak supervision labels, such as class
labels and bounding boxes. All experiments in this work were performed on agricultural
images, which present several challenges for computer vision tasks. Firstly, plants exhibit a
wide range of morphological variations and can vary in appearance at different stages of
growth, making accurate recognition difficult. Secondly, the appearance of plants can be
significantly influenced by environmental factors and imaging properties, such as lighting
conditions, background clutter, and occlusion, which can further complicate the recognition
process. Thirdly, plants can share similar visual characteristics with each other, making
it challenging to distinguish between different species or varieties of plants. Addition-
ally, acquiring large amounts of high-quality labeled data for training models in plant
segmentation can be difficult and costly, especially for rare or exotic plant species. Lastly,
the computational complexity of plant segmentation tasks can be high, particularly when
dealing with large-scale datasets requiring significant amounts of computational resources
and specialized hardware.
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The novelty of this paper is in the exploration of weakly-supervised approaches for
object parts segmentation.

The main contributions of the work are the following:

• We collect and annotate a dataset of images in agricultural domain. The dataset covers
multiple subdomains, and has segmentation masks for each plant part.

• We commit a detailed review of weakly supervised and unsupervised images segmen-
tation methods.

• We present a new robust weakly supervised algorithm that allows training instance
segmentation models having only bounding box annotations.

• We present a pipeline with instance-level augmentation based on weakly supervised
segmentation and prove its efficiency.

The remainder of the paper is organized as follows: Section 2 describes the literature
devoted to the recent WSSS methods; Section 3 describes experiment methodology and
methods used; Sections 4 and 5 report on the results and include discussion.

2. Literature Review

This section introduces recent works on weakly supervised or unsupervised methods.
These methods have general applications that include not only segmentation but also object
detection and saliency detection tasks. One of the simplest forms of weak supervision in
weakly supervised semantic segmentation (WSSS) is through the use of image-level labels.

2.1. Weakly Supervised Methods

The approaches below generate class activation maps (CAMs) by constructing graphs.
In A2GNN [18], images are transformed into weighted graphs, where each node represents
a super-pixel. To provide additional supervision from bounding box information, the au-
thors introduce the multi-point (MP) loss specifically designed for the A2GNN method.
For this work, image-level labels are used to generate the foreground using CAM inference,
while bounding box labels are used to generate the background. In [19], a network is
designed to produce CAMs and online accumulated class attention maps (OA-CAMs). In
the OA-CAMs approach, the different parts of the target object from attention map are
combined to improve poor CAM quality. However, in this solution, most of the attention
is focused on enlarging salient regions around the target object while objects outside the
salient region do not gather enough attention. To activate objects outside of the salient
region, a graph-based global reasoning unit is integrated into the classification branch of the
network. Furthermore, to enhance the quality of pseudo-labels, a potential object mining
module (POM) and a nonsalient region masking module (NSRM) are employed. These
modules combine semantic information of the target object and can generate pseudo-labels
for the complex scenes in images.

Self-supervised equivariant attention mechanism (SEAM) [20], embedded discrimi-
native attention mechanism (EDAM) [21], and image segmentation with iterative mask-
ing (ISIM) [22] are methods used for self-improvement in computer vision. SEAM uses
a Siamese network that takes both original and augmented images as input to produce
a CAM (class activation map) at the output. Each Siamese branch includes a pixel corre-
lation module (PCM) that refines the CAM. The PCM module proposed by the authors
is used to include low-level features in the CAM. The CAM and PCM module activation
maps from the Siamese branches are regularized to ensure consistency. EDAM includes a
discriminative activation layer (DA) after the backbone, as well as a collaborative multi-
attention module (CMA). The DA layer predicts a class-specific mask for each category.
Each mask is then multiplied with a feature map. The CMA module, which is located
after the DA layer, applies a self-attention mechanism to explore activation maps of each
category and extract common category-specific information from the images in the batch.
These modules work together to improve the network’s ability to discriminate between
classes and attend to important features in the input. In the ISIM model, an input image
and its corresponding image-level label are passed through an encoder network to extract a



Information 2023, 14, 380 4 of 22

CAM. Then, pseudo-segmentation labels are generated using the dense conditional random
field (dCRF) algorithm, which is used to refine CAM quality. The model is retrained using
these pseudo-segmentation labels as ground truth. A pixel-level loss function is used to
activate less discriminative areas in the CAM inference. An iterative process is performed
with a pixel-level loss, and a CAM threshold is set to optimize the final CAM result.

Another approach is to divide images into patches. In [23], the authors propose a
complementary patch network (CPN). A CPN is formed by a triplet network with three
branches. In the CPN, the original image is split into pairs of images with hidden parts,
and the CAM is defined as the sum of the pair. To refine CAM results, the proposed pixel-
region correlation module (PRCM) is used. This module finds semantic relations between
regions or pixels and uses information with the help of the PCM module proposed in the
ISIM work [22]. In the PPL [24] method, the image is split into patches. Each patch is fed to
subsequent convolutional layers separately. In this case, the neural network has access only
to the local features. It pushes the neural network to focus more attention on local features.
The patch learning processing performs from low-level layers of the network to high-level
layers. It allows focusing on low-level as well as high-level discriminative regions.

Several approaches to weakly supervised semantic segmentation (WSSS) utilize bound-
ing boxes as annotations. In [25], foreground and background regions are extracted from the
bounding boxes, and segmentation labels are obtained using CAM from the classification
network, using background-aware pooling (BAP). CAM is applied for each bounding box.
Finally, CNN is trained for semantic segmentation using noise-aware loss (NAL) to reduce
the influence of noisy labels. In [26], foreground and background objects are considered
as positive and negative instances, respectively. The multiple instances learning (MIL)
loss is applied to the bounding boxes. Since bounding boxes usually include multiple
foreground objects, it leads to classification problems. Therefore, the labeling-balance loss is
used to overcome this drawback. Recent and most promising work describes the Segment
Anything Model (SAM) developed [27] by Facebook. Images on the SAM input are fed to
the image encoder that is based on the pretrained vision transformer and produces image
embedding. Then, different kind of the prompts are used to map image embeddings into
a mask. There are a few types of the prompts: points, boxes, and text. In the cases when
prompt is quite ambiguous, SAM produces multiple masks with different confidence scores.

Other papers consist of different approaches to solving the WSSS task. The ACFN [28]
model is based on atrous (dilated) convolution and includes two modules: the cascade
module and the pyramid module. The cascade module is composed of three atrous
convolutional layers inserted in the middle of the backbone network. The pyramid module
is composed of four parallel atrous convolutional layers with different atrous rates, allowing
it to learn different scales of context information. After the pyramid module, the image
information of different scales is fused. The SLAM [29] framework contains two training
stages. In the first stage, the semantic encoder is trained to learn the features of each
category. In the second stage, the segmentation neural network is trained using the learned
features of the semantic encoder. The AuxSegNet [30] is based on the cross-talk module that
consists of three task-specific branches after the backbone. Since each branch is responsible
for the specific type of learning (classification, saliency detection, semantic segmentation),
the cross-talk affinity learning module learns task-specific affinities and features, which
are used to enlarge the feature map produced by CAM for the saliency detection and
semantic segmentation tasks. Then, these two task-specific affinity maps are used to
produce a global cross-task affinity map. This affinity map is used to refine both saliency
and segmentation predictions. In the CODNet [31] model, a pair of images is used as
inputs, and common semantic features are extracted. For each location in the target images,
features from a similar region in the reference images are extracted and concatenated.
In [32], authors propose to erase misclassified regions of the CAM and then enlarge them
properly. The contextual information captured by the semantic segmentation network is
used as a guide to accurately erase the misclassified area in the CAM. Then, hierarchical
deep seeded region growing (H-DSRG) is performed, accurately growing the semantic
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regions by taking into account the spatial distance between regions. The HSPP [33] model
consists of parallel branches of global average pooling and max pooling with different
scales. Inferences from each branch are averaged. In addition, a visual word encoder (VWE)
module is used to encode local visual words and improve CAM inference. TransCAM
authors decided to use the Conformer network as a backbone. Conformer consists of two
branches: transform and CNN. The CNN branch generates CAM, and the transform branch
generates the attention map. Combining the attention map and CAM inference allows
significant improvement of the quality of the CAM result. The solution demonstrated in
the paper [34] is based on the antiadversarial method called AdvCAM. It manipulates
an attention map of an image to improve the classification task inference. In the classic
adversarial attack method, pixel-level perturbations are used to change the network output.
AdvCAM allows for the involvement of more regions in an attention map and improves
the CAM result.

2.2. Unsupervised Methods

In the LOST model [35], features are obtained from the visual transformer. The image
is divided into patches and fed into the DINO model [36], which uses the visual transformer
mechanism. Similarities among patches are computed, and by selecting a patch with the
fewest similarities (seed), object parts are localized. Then, seed expansion is performed,
which involves adding correlated patches to the initial seed. However, authors of the [37]
paper claim that the attention map provided by LOST is noisy and have proposed a
method called TokenCut to eliminate this issue. TokenCut is based on a graph where
edges represent similarities between graph nodes. Segmentation of the foreground and
background objects is performed by the normalized cut (Ncut) approach, which performs
eigendecomposition. To select the foreground object, an assumption is utilized that the
eigenvector of the foreground object is less than the background eigenvector. Another
graph-based approach was proposed in [38] and utilizes eigenvalues. First, a weighted
graph over image patches is constructed, where the graph edge weights show the affinity of
the pair patches. This is the process of constructing a semantic affinity matrix for the image.
The Laplacian eigenvectors of this matrix are calculated, and these eigenvectors can be used
to produce a segmentation mask or bounding box. In the [39] paper, as well as in the LOST
and TokenCut works, they introduced a network for the object detection task. The network
consists of foreground and background models. In the foreground model, the feature map
generator produces a feature map and scalar attention map. These maps are used to predict
object scales and positions. The background model is an autoencoder that tries to learn
the image background. In the CCAM paper [40], a model is proposed to produce cues
that can be used by other models to improve results. In the CCAM model, images are fed
to the autoencoder, and features are extracted to produce a class-agnostic activation map.
Then, contrast learning is applied to distinguish foreground and background. CCAM only
predicts one activation map to indicate foreground and background regions in an image.
In the case where the background or foreground has complex colors or texture, the rank
weighting is designed to reduce the influence of dissimilarities. CCAM can be used to
improve CAM or object localization.

2.3. Few-Shots Methods

Segmentation tasks are not able to tackle the new and unseen during training classes.
In order to eliminate this issue, the few-shot learning was introduced. It can be used to
construct class-agnostic segmentation models that adjust to the new classes. In few-shot
learning, support datasets are used to assist the model in learning and generalizing to new
tasks or data. The support dataset contains an extremely small number of labeled examples
for each specific task or class of interest. Besides support images, there is query image term
that refers to the image for which the model needs to generate segmentation masks.

One of the promising frameworks [41] utilizes singular value decomposition (SVD)
matrices. Since the amount of the support data is too small, the model can experience
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overfitting. However, an unfreezed backbone with fine-tuning of a small amount of
the backbone parameters helps to avoid the overfitting issue. To define these tunable
parameters, all of the pretrained parameter are decomposed by the SVD. When only the
singular matrix is fine-tuned, the other matrix values remain frozen. This approach is called
singular value fine-tuning (SVF).

Another idea is demonstrated in the Multi-Similarity and Attention Network (MSANet) [42].
The pretrained backbone is used to extract features both query and support images. Then,
these features are fed to the attention and multisimilarity modules where attention maps
are produced and visual affinities are found in both of the images that are used in the
process of obtaining final mask prediction.

In [43], foreground as well as background information in the support image is fully
exploited. For this purpose, they proposed a dense pixel-wise cross-query-and-support
attention-weighted mask aggregation (DCAMA) approach. Similarities and dissimilarities
between query and support images are given different weight. Semantically similar pixels
are given more weight than unlike pixels.

In [44], authors were faced with the issue that novel classes obtain lower activation
than known ones. They proposed a hierarchically decoupled matching network (HDM-
Net). In this model, they used an extended transformer architecture. In this architecture,
embedded correlation mechanism and correlation map distillation are used to extract more
semantic information and eliminate the overfitting problem.

The most recent and high-performance approach [45] is based on the generative
pretrained transformer (GPT) language model. The proposed segmentation GPT (SegGPT)
framework can be applied to the various spectrum of the computer vision tasks such as
video object segmentation, semantic segmentation, panoptic segmentation, and few-shot
segmentation. The key feature of this model is that it does not require additional fine-tuning
and still can show superior performance on the listed range of tasks.

The discussed papers are the most recent and provide some of the best results. They
are focused on the semantic segmentation, object detection, and saliency detection tasks.
Since in WSSS bounding boxes can be used as a labels, such techniques as object detection
and saliency detection can be applied to the WSSS task. Table 1 summarizes the results
provided by the literature overview of the methods where validation was performed on
the PASCAL VOC 2012 dataset, and the key metric is mIoU. All of the papers in Table 1 are
devoted to the semantic segmentation task.

Table 1. Results provided by weakly supervised studies on the validation PASCAL VOC 2012 dataset
in terms of the mIoU.

Name Type of the Annotations mIoU, %

Weakly Supervised Semantic Segmentation via Progressive Patch Learning [24] Image-level labels 67.8

SLAM: Semantic Learning based Activation Map for Weakly Supervised Semantic
Segmentation [29] Image-level labels 70.8

Co-attention dictionary network for weakly-supervised semantic segmentation [31] Image-level labels 64.5

Erase then grow: Generating correct class activation maps for weakly-supervised semantic
segmentation [32] Image-level labels 66.8

Atrous convolutional feature network for weakly supervised semantic segmentation [28] Image-level labels 66.0

Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised Semantic
Segmentation [30] Image-level labels 69.0
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Table 1. Cont.

Name Type of the Annotations mIoU, %

Embedded Discriminative Attention Mechanism for Weakly Supervised
Semantic Segmentation [21] Image-level labels 70.6

Learning Visual Words for Weakly-Supervised Semantic Segmentation [33] Image-level labels 67.2

Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised
Semantic Segmentation [25] Bounding box labels 78.7

Affinity Attention Graph Neural Network for Weakly Supervised Semantic
Segmentation [18] Bounding box and Image-level labels 76.6

Delving Deeper into Pixel Prior for Box-Supervised Semantic
Segmentation [26] Bounding box labels 75.8

TransCAM: Transformer Attention-based CAM Refinement for Weakly
Supervised Semantic Segmentation [46] Image-level labels 69.3

Complementary Patch for Weakly Supervised Semantic Segmentation [23] Image-level labels 67.8

Non-Salient Region Object Mining for Weakly Supervised Semantic
Segmentation [19] Image-level labels 70.4

Self-supervised Equivariant Attention Mechanism for Weakly Supervised
Semantic Segmentation [20] Image-level labels 64.5

Anti-Adversarially Manipulated Attributions for Weakly and
Semi-Supervised Semantic Segmentation [34] Image-level labels 68.0

ISIM: Iterative Self-Improved Model for Weakly Supervised Segmentation [22] Image-level labels 70.38

3. Materials and Methods
3.1. Dataset Overview

For this research we have collected a dataset. This dataset contains the following
category types of the plants:

• Cassava leaf disease (8 test and 17 train images);
• Corn leaves pathology (23 test and 52 train images);
• Fruit plants (12 test and 24 train images);
• Herbarium (24 test and 56 train images);
• Plant pathology (24 test and 56 train images);
• Tomato plants (24 test and 56 train images);
• Wild edible plants (25 test and 59 train images);
• Flowers (16 test and 39 train images).

In addition to these categories, each plant in the dataset is divided into individual
parts (subcategories):

• Stem;
• Leaf;
• Fruit;
• Flower;
• Root.

Figure 1 shows an example of the instance masks in the dataset images, where each
plant object has a mask, a bounding box, and an ID. These properties enable obtaining a
mask and a bounding box of a whole plant from several parts. Moreover, each category in
the dataset is already partitioned into train and test folders. This structured organization
facilitates the utilization of the dataset for various tasks ranging from classification to part
co-segmentation, i.e., the segmentation of individual parts of an object.
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Figure 1. Example of the dataset annotations.

The primary challenge in working with the provided images is the large number of
intersecting objects such as stems and leaves. This is a common scenario in real-world
data, particularly for plants. As a result, one object may consist of multiple masks, which
complicates the training process of neural networks and adds to the difficulty of the WSSS
task, in addition to the reasons mentioned in the Introduction.

3.2. Methods

In order to obtain pseudo-instance masks, two approaches were used. The first
approach involved a combination of two methods: TransCAM [46] and MiDaS [47]. Tran-
sCAM is a vision Transformer method used to obtain pseudo-semantic masks from image-
level labels by thresholding the class attention map (CAM) using Otsu. The TransCAM
network is a deep learning architecture for image classification. It combines the strengths of
CNNs and vision transformer models. The architecture of TransCAM involves integrating
CNN-based feature extraction with transformer-based attention mechanisms. It utilizes
a CNN conformer backbone to extract image features. These features are then fed into
a transformer encoder–decoder architecture. The transformer encoder–decoder enables
capturing global context and long-range dependencies in the image. TransCAM introduces
the concept of CAM into transformers to generate attention maps specific to each class. This
allows the network to focus on discriminative regions during classification. The attention
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maps are used to weight the CNN features, enabling the network to attend to relevant
image regions.

MiDaS (monocular depth estimation) is a depth estimation method used to generate
depth maps from 2D images. It is based on a deep neural network architecture that can
estimate depth information by analyzing the visual cues in a single image. MiDaS uses a
multiscale feature pyramid network to capture information at different levels of detail. It
leverages a combination of low-level image features and high-level semantic information
to estimate depth. MiDaS takes advantage of both monocular and stereo depth cues to
improve the accuracy of depth estimation. It can handle challenging scenarios such as
occlusions and textureless regions by incorporating contextual information. The output
of MiDaS is a dense depth map, where each pixel represents the estimated depth value.
The depth map in this work is used for depth-aware pseudo-semantic masks editing.

Utilizing image depth to obtain pseudo-masks is not a novel approach. In [48],
image depth was used for the hand part segmentation purpose. Individual hand parts
were distinguished based on its depth level. In [49], an image depth also was used in
combination with CAM. However, in this paper, an image depth was incorporated into
the segmentation loss function, rather than being utilized for converting pseudo-semantic
masks into pseudo-instance masks.

Figure 2 presents a visualization of the CAM for different classes provided by TransCAM.

Figure 2. Examples of attention maps for different classes.

Since MiDaS computes relative depth in an image, it can be used to estimate depth
in each bounding box. Based on the calculated depth, the TransCAM pseudo-semantic
mask is transformed into a pseudo-instance mask. Figure 3 demonstrates the process of
obtaining pseudo-instance masks.



Information 2023, 14, 380 10 of 22

Figure 3. Visualization of the proposed approach.

To generate the pseudo-semantic mask, the original image (a) is used with TransCAM
to generate the mask (b). The bounding boxes are used to discard wrong activations that are
placed outside the box boundaries and divide the semantic mask into individual instances.
However, the issue of box intersections arises. To address this issue, the decision algorithm
was used. MiDaS is applied to the image (c) to obtain an image depth map. The mean depth
value in the intersected area is compared to the mean depth value in both boxes. In this
example, the depth in the left box is closer to the depth in the intersected area, indicating
that the intersection area belongs to the left bounding box (d). To better understand the pro-
cedure of obtaining pseudo-instance masks, Figure 4 shows the algorithm procedure step
by step.

Figure 4. Algorithm for transforming pseudo-semantic mask to the pseudo-instance mask.

The second approach in this study utilizes the zero-shot method Segment-Anything
(SAM) [27] from Meta, which can take a batch of bounding boxes and predict masks.
For each image, the bounding boxes corresponding to the presented categories are extracted
from annotations, and a batch of boxes for each category is used to obtain segmentation
masks. This process is illustrated in Figure 5. In this work, the SAM method was used in
the zero-shot mode.
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Figure 5. Illustration of the process for obtaining pseudo-masks using SAM.

The segmentation is applied to both subcategories (individual plant parts) and cate-
gories (full plants). In both cases, segmentation is performed using bounding box, pseudo-
instance, and ground truth masks. The use of bounding boxes serves as a baseline [50]
for comparison to other solutions. In this approach, the whole area inside each bound-
ing box is considered as a mask of the corresponding object. The aim of this study is
to determine the feasibility of using weak supervision. The pseudo-instance masks are
considered qualitatively better if they yield higher metrics compared to the bounding
boxes baseline. The closer the metrics obtained from pseudo-labels are to the ground truth
metrics, the better the final result.

In addition to these results, the pseudo-instance masks combined with the OBA are
used. This approach aims to prove that the weak supervision techniques can be improved
and provide sufficient result with cost reduction of the dataset annotation.

3.3. Evaluation Metrics

To estimate performance of weak supervision, the mean average precision (mAP) will
be calculated on the test part of the dataset as the evaluation metric (1):

mAP =
1
C

C

∑
c

APc (1)

where
C—number of the classes;
APc —averaged precision for the c-th class.
The AP for each object class was computed using the formula shown in Equation (2).

APc =
1

Nc
∑[TP(i)/(TP(i) + FP(i))] (2)

where
i—intersection-over-union threshold;
TP—the number of true positives for the i-th threshold value;
FP—the number of false positives for the i-th threshold value;
Nc—the total number of class objects in the dataset.
In the computer vision tasks, the mAP is dependent on the intersection-over-union

(IoU) metric.
As a loss function in TransCAM, weemployed multi-label soft margin loss (3).

loss(x, y) = − 1
C ∑

i
y[i] log

(
1

1 + exp(−x[i])

)
+ (1 − y[i]) log

(
exp(−x[i])

1 + exp(−x[i])

)
(3)

where
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C—number of the classes;
y—target value;
x—input value.

3.4. Experiment Settings

In this study, a YOLOv8 instance segmentation network is utilized, which is known for
its fast one-shot learning capabilities. YOLOv8 stands for “You Only Look Once version 8”.
It is an improved version of the YOLO (You Only Look Once) family of models. YOLOv8’s
architecture is based on a deep convolutional neural network. This model uses a single neu-
ral network to predict bounding boxes and class probabilities simultaneously. The network
architecture consists of multiple convolutional layers, followed by fully connected layers.
YOLOv8 utilizes anchor boxes to improve the accuracy of object detection. It uses a feature
pyramid network to detect objects at different scales. YOLOv8 incorporates Darknet-53 as
its backbone network. It achieves real-time object detection by dividing the input image
into a grid and making predictions for each grid cell. YOLOv8 employs nonmaximum
suppression to remove duplicate detections. Besides object detection, YOLOv8 can be used
for the instance segmentation purpose. One of the interesting features of the YOLO family
is the ability to calculate metrics such as mAP@0.5 and mAP@0.5:0.95 for both bounding
boxes and segmentation masks. The hyperparameters for TransCAM and YOLOv8 are
provided in Table 2 and Table 3, respectively. To account for the wide range of resolutions
in the dataset, all images were resized to 640 × 640 resolution. The MiDaS architecture used
in this work is MiDaS v2.1-small. The choice of the pretrained weights for the TransCAM
and YOLOv8 models, as well as choice of the MiDaS architecture, was driven by limited
computational resources at our disposal. The learning rate was tuned to provide smooth
calculation of the loss function. Batch size choice was also driven by limited resources.
Other parameters values were set by default.

Table 2. TransCAM parameters.

Parameter Name Parameter Value

Batch size 8

Epochs 80

Optimizer AdamW

Learning rate 2 × 10−6

Weight decay 5 × 10−4

Epsilon 1 × 10−8

Image size 640 × 640

Pretrained model Conformer-small-patch16

Table 3. YOLOv8 parameters.

Parameter Name Parameter Value

Batch size 6

Epochs 80

Optimizer Adam

Learning rate 4 × 10−3

Image size 640 × 640

Pretrained model yolov8n-seg
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4. Results

Tables 4 and 5 compare the mAP@0.5 and mAP@0.5:0.95 of the predictions provided by
YOLOv8 trained on different types of labels for the instance segmentation task. The results
of both tables show the relative percentage gain in metrics. The gray color in these tables
represents the baseline case where the bounding box is used as the segmentation mask.

Table 4. Instance segmentation metrics for object parts case with using different types of segmenta-
tion masks.

Object Parts

Annotation Source
Bounding-Box-Based TransCAM+MiDaS-Based SAM-Based Ground Truth

mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95

All 13 ± 0.3 4.5 ± 0.2 13.6 ± 0.7
(+4%)

5.4 ± 0.13
(+20%)

16 ± 0.4
(+23%)

7.5 ±
0.2 (+66%)

16.7 ± 1
(+28%)

8.4 ± 0.4
(+86%)

Stem 0.08 ± 0.014 0.02 ± 0.004 0.05 ± 0.008
(−33%)

0.01 ± 0.01
(-26%)

2 ±
0.5 (+2630%)

0.55 ±
0.15 (+2821%)

1.6 ± 0.1
(+1914%)

0.4 ± 0.02
(+2199%)

Leaf 11 ± 0.7 2.6 ± 0.2 7.4 ± 2
(−33%)

2 ± 0.4
(−24%)

20 ±
1.6 (+73%)

8 ±
0.6 (+190%) 19 ± 2 (+75%) 8 ± 0.8

(+205%)

Fruit 47 ± 4 19.4 ± 2 49 ± 2.6 (+5%) 23 ± 1 (+18%) 49.5 ±
1.5 (+5.5%)

26 ±
1.5 (+36%)

50 ± 2.3
(+10%)

29 ± 1.3
(+53%)

Flower 19 ± 1.6 4.8 ± 0.6 24 ± 1.5
(+24%) 8 ± 0.6 (+60%) 24 ±

2.2 (+28%)
10 ±

1 (+110%)
25.4 ± 4
(+33%)

11.4 ± 2.5
(+136%)

Root 2.8 ± 1.7 0.8 ± 0.5 3 ± 2.4 (+11%) 0.7 ± 0.4
(−19%)

2 ± 1.6
(−22%)

0.4 ± 0.7
(+20%)

11 ± 6
(+308%) 5 ± 3 (+490%)

Note: Gray color in the table emphasizes the baseline case. Bold numbers demonstrate the best result.

Table 5. Instance segmentation metrics for full objects with using different types of segmenta-
tion mask.

Dataset

Annotation Source
Bounding-Box-Based TransCAM+MiDaS-Based SAM-Based Ground Truth

mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95

All 12 ± 0.7 5 ± 0.5 16.8 ± 1.3
(+40%)

8.1 ± 0.75
(+59%)

12.1 ± 2.3
(+0.5%)

4.8 ± 1.3
(−4%)

24 ± 4
(+103%)

12.4 ± 2.5
(+144%)

Cassava
plants 0.2 ± 0.17 0.07 ± 0.08 0.1 ± 0.1

(−43%)
0.05 ± 0.07

(−27%)
1.2 ± 1.6
(+608%)

0.2 ± 0.2
(+148%)

0.2 ± 0.16
(+4%)

0.06 ± 0.07
(−8%)

Corn leaves 49.7 ± 1.3 28.8 ± 7 41.6 ± 11.6
(−16%) 23 ± 9 (−18%) 44.8 ± 15

(−10%)
22 ± 10
(−23%)

59 ± 10
(+19%) 39 ± 9 (+37%)

Fruit Plants 0.06 ± 0.07 0.01 ± 0.01 0.03 ± 0.016
(−57%)

0.01 ± 0.005
(−10%)

0.1 ± 0.1
(+42%)

0.02 ± 0.02
(+128%)

0.02 ± 0.01
(−61%)

0.01 ± 0.007
(+29%)

Herbarium
plants 0.22 ± 0.1 0.04 ± 0.03 0.66 ± 0.17

(+202%)
0.15 ± 0.05

(+317)
6.8 ± 2.6
(+3068%)

2 ± 1.1
(+5414%)

22 ± 6
(+10089%)

8 ± 2
(+21976%)

Leaves with
pathology 27.7 ± 9 7 ± 4 48 ± 5 (+73%) 27 ± 7

(+292%)
22.5 ± 3.6
(−18%) 9 ± 2.2 (+38%) 52 ± 10

(+90%)
31 ± 6

(+355%)

Tomato plants 2.1 ± 0.6 0.3 ± 0.1 1.7 ± 0.4
(−17%)

0.3 ± 0.07
(+9%) 3.9 ± 4 (+90%) 1.1 ± 1

(+314%)
14.6 ± 1.8
(+603%)

3.9 ± 0.49
(+1289%)

Wild Edible
Plants 0.88 ± 0.8 0.12 ± 0.1 7.8 ± 4.9

(+789%)
1.45 ± 0.8
(+1074%) 4 ± 1 (+361%) 0.8 ± 0.2

(+561%)
14.7 ± 6

(+1582%)
4.3 ± 1.9
(+3361%)

Flower plants 14.96 ± 12 4.15 ± 2.7 34.3 ± 8
(+129%)

13.6 ± 3
(+229%) 13 ± 4 (−12%) 3.2 ± 1

(−22%)
31 ± 14
(+106%)

12 ± 4.8
(+186%)

Note: Gray color in the table emphasizes the baseline case. Bold numbers demonstrate the best result.
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Table 4 shows that for plant part segmentation, SAM-based annotations work better
for the most of the tasks. This approach increases mAP from 13 to 16 compared with the
baseline. This is close to the result of a model, trained on the real part segmentation masks.
However, we must note that for very thin objects such as plant roots, the SAM-based
approach is weaker than the baseline. Therefore, for this class it is more suitable to use
TransCAM with MiDaS masks.

We can also observe that metrics for the stem category provided by the SAM method
outperform the ground truth result. Figure 6 shows SAM pseudo-masks for the stem category.

Figure 6. Pseudo-masks for the stem category provided by SAM.

Figure 6 reveals that, apart from the target objects, SAM also detects tomato stalks
placed near to the stem due to their similar semantic structure to the stems. Consequently,
the SAM pseudo-masks provide additional information about the target category by high-
lighting semantically similar objects within the image.

Table 5 shows the results of full plant segmentation. With this objective, a model
trained with masks, obtained with TransCAM and MiDaS, generally works better. On
average, it provides a 40% relative increase in mAP. This approach significantly beats
SAM-based masks because MiDaS depth masks allow us to distinguish the borders of
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overlapping objects better. The only exception here is the result on the Herbarium plants
dataset. The reason for this is the simplicity of this dataset. It has a single plant on each
image, and the background is always uniform.

Tables 6 and 7 display the results of combinations of object-based augmentation and
SAM techniques applied to the object parts and full plants. In the brackets are shown gains
in metrics related to the original SAM results from Tables 4 and 5.

Table 6. Instance segmentation metrics for object parts case using the OBA and SAM approach.

Object Parts

Annotation SOURCE

SAM without Object-Based Augmentation SAM with Object-Based Augmentation
mAP@50 mAP@50:95 mAP@50 mAP@50:95

All 16 ± 0.4 7.5 ± 0.2 20.24 ± 1.26 (+26%) 10.1 ± 0.7 (+34%)

Stem 2 ± 0.5 0.55 ± 0.15 3.85 ± 0.32 (+81%) 1.14 ± 0.09 (+107%)

Leaf 20 ± 1.6 8 ± 0.6 24.1 ± 1.7 (+25%) 10 ± 0.9 (+32%)

Fruit 49 ± 1.5 26 ± 1.5 57 ± 1.6 (+17%) 33.3 ± 0.8 (+26%)

Flower 24 ± 2.2 10 ± 1 28.1 ± 3.5 (+15%) 11.8 ± 2.2 (+16%)

Root 2 ± 1.6 0.4 ± 0.7 7.8 ± 4.9 (+809%) 4.3 ± 4.4 (+976%)

Note: Percentage gain in the table is related to the SAM approach without augmentation.

Table 7. Instance segmentation metrics for the full plants in the case when using OBA and SAM ap-
proach.

Dataset

Annotation Source

SAM without Object-Based Augmentation SAM with Object-Based Augmentation
mAP@50 mAP@50:95 mAP@50 mAP@50:95

All 12.8 ± 2.3 4.8 ± 1.3 20.7 ± 2.4 (+72%) 10.6 ± 2.1 (+117%)

Cassava plants 1.2 ± 1.6 0.2 ± 0.2 0.98 ± 0.76 (−18%) 0.47 ± 0.29 (+179%)

Corn leaves 44.8 ± 15 22 ± 10 62.5 ± 6.26 (+39%) 47 ± 6.4 (+115%)

Fruit Plants 0.1 ± 0.1 0.02 ± 0.02 0.34 ± 0.15 (+285%) 0.1 ± 0.05 (+360%)

Herbarium plants 6.8 ± 2.6 2 ± 1.1 12.5 ± 2.3 (+82%) 4.3 ± 0.7 (+112%)

Leaves with pathology 22.5 ± 3.6 9 ± 2.2 41.8 ± 12.9 (+85%) 9.5 ± 6 (+95%)

Tomato plants 3.9 ± 4 1.1 ± 1 7.6 ± 3.7 (+92%) 1.9 ± 0.9 (+63%)

Wild Edible Plants 4 ± 1 0.8 ± 0.2 8.7 ± 2.6 (+116%) 2.2 ± 0.87 (+168%)

Flower plants 13 ± 4 3.2 ± 1 31.1 ± 7.8 (+137%) 9.9 ± 4.2 (+207%)

Note: Percentage gain in the table is related to the SAM approach without augmentation.

In Tables 6 and 7 one can see that object-based augmentation boosts the performance
of weakly supervised solutions even further. In these results, a 26% increase in mAP for
the object part case and a 72% increase for the full plant case are observed. Obtained
metrics verify that the OBA approach significantly improves the performance on instance
segmentation task when using pseudo-masks and a small-sized dataset. However, it should
be noted that for the plants with rich morphological structure and overlapping objects,
such as plants from the Cassava plants dataset, the given approach is faced with challenges
and provides lower metrics than the original approach.

The following dependencies were observed: TransCAM and MiDaS exhibit superior
results for the whole plant case, while SAM performs well for the part plant case. These ap-
proaches have different strengths and weaknesses. Consequently, we decided to construct
a meta-algorithm combining TransCAM and MiDaS with SAM to complement mutual
weaknesses and achieve improved performance.
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The core of the meta-model is the Passive Aggressive Classifier (PAC) from the Scikit-
Learn package. We utilized SAM pseudo-instance masks and TransCAM heatmaps as input
for PAC, with ground truth masks as the desired output.

For the dataset, we selected 50 images on which we conducted PAC training, using the
hinge loss function. The proposed meta-algorithm was employed to generate annotations
for the dataset. Subsequently, YOLOv8 was trained on the obtained annotations. The results
of comparing the quality of the meta-algorithm with the TransCAM and MiDaS approach
are presented in Table 8. The experiment was conducted on the full plant case, where the
TransCAM with MiDaS approach demonstrated the best results.

Table 8. Metrics for the full plants segmentation using meta-model.

Dataset

Annotation Source

TransCAM and MiDaS Meta-Model
mAP@50 mAP@50:95 mAP@50 mAP@50:95

All 16.8 ± 1.3 8.1 ± 0.75 17.76 ± 1.5 (+5.5%) 8.58 ± 1.2 (+6%)

Cassava plants 0.1 ± 0.1 0.05 ± 0.07 0.05 ± 0.04 (−48.6%) 0.04 ± 0.04 (−16.6%)

Corn leaves 41.6 ± 11.6 23 ± 9 42.4 ± 22 (+2%) 39.1 ± 16 (+66%)

Fruit Plants 0.03 ± 0.016 0.01 ± 0.005 0.02 ± 0.03 (−20%) 0.016 ± 0.03 (+98%)

Herbarium plants 0.66 ± 0.17 0.15 ± 0.05 5.3 ± 3 (+709%) 3.5 ± 3 (+3.5%)

Leaves with pathology 48 ± 5 27 ± 7 42.6 ± 5 (−11%) 30 ± 13 (+10%)

Tomato plants 1.7 ± 0.4 0.3 ± 0.07 6.7 ± 2.2 (+287%) 3 ± 2 (+907%)

Wild Edible Plants 7.8 ± 4.9 1.45 ± 0.8 5.5 ± 2.8 (−29%) 2.6 ± 2.6 (+85%)

Flower plants 34.3 ± 8 13.6 ± 3 31.4 ± 6 (−8.6%) 21.2 ± 13 (+55%)

Note: Percentage gain in the table is related to the TransCAM and MiDaS approach.

In Table 8, one can see that the meta-algorithm outperforms the TransCAM and MiDaS
approach for the full plant case by 5%. Combining two algorithms to eliminate their
weaknesses can be a promising approach. By leveraging the strengths of each algorithm
and compensating for their limitations, the resulting combination has the potential to
achieve improved performance and robustness. The proposed approach allows for a more
comprehensive solution that addresses multiple aspects of the observed problems.

In order to prove statistical significance of the obtained metrics, we used the Kruskal–
Wallis test [51]. This method is used to determine if there are significant differences in the
medians of three or more independent groups. In our experiment, we divided our data
into five folds and performed the training process five times in a row for every type of the
mask, creating tables with metrics and averaged metrics value over five experiments.First
of all, we calculated gain in mAP related to the bounding-box-based masks (baseline case)
in every experiment. Then, we calculated p-value using Kruskal–Wallis test for these
metrics gains for the following types of masks: TransCAM and MiDaS pseudo-masks, SAM
pseudo-masks, and meta-model pseudo-masks. We wanted to prove that improvements
in the metrics provided by the proposed and considered methods were not a coincidence.
We set a significance level, also known as alpha, to the 0.05 value. It is a threshold used
to reject the null hypothesis that considered data groups have the same median value. It
represents the maximum acceptable probability of observing a result as extreme as, or more
extreme than, the observed result, assuming the null hypothesis is true. The obtained
p-value from the Kruskal–Wallis test is equal to 0.017 and it is lower than the significance
level of 0.05. In the conditions of a small amount of statistical data, it is sufficient evidence
that our results have different statistical parameters and the obtained metrics values for the
considered methods relative to the baseline case are not a coincidence.

Figure 7 gives the comparative qualitative results obtained with different kinds of
masks used.
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Figure 7. Predictions of the instance segmentation model trained on the different types of labels.

5. Discussion

In this paper, we show that one can segment plants and even plant parts without
plant segmentation masks. The results obtained in this study demonstrate the effectiveness
of pseudo-instance masks compared to bounding boxes. Almost all categories showed
positive gains in the mAP metric when pseudo-instance masks were used. The results
provided in Tables 6 and 7 exhibit an opportunity to use pseudo-masks and OBA to improve
the quality of the training process in the conditions of a limited amount of annotations and
a small-sized dataset.

However, some results also point to significant drawbacks of weak supervision. Ac-
cording to Tables 4 and 5, the most dramatic results are observed in the stems and cassava
plants categories, which have extremely small mAP values. One of the reasons is that
images related to the cassava plants category consist mainly of tiny and thin stems, which
are challenging category objects. Weak supervision attention is focused on the most dis-
criminative regions, such as fruits, and the thin stem is a less noticeable object. Furthermore,
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cassava plant images have the largest amount of intersected masks, which significantly
increases the complexity of this category.

It is also noticeable that not only stems and leaves have lower activation than fruits.
In the case of fruits or flowers, the attention is mainly focused on more colorful instances,
where red tomatoes, for example, receive more activation than pale ones. Additionally,
in some images, stems are located very close to fruits or leaves, making them difficult to
distinguish from other objects, leading to misclassifications.

Besides cases where the model recognizes an object from a different category, predic-
tions can be completely wrong. As previously mentioned, weak supervision networks
prefer discriminative regions with similar shapes, which can lead to attention being focused
on repeated background patterns. This can degrade the quality of the predictions and even
corrupt the pseudo-mask.

We want to note that segmentation and image processing [52–54], as well as signal
processing [55,56], are important research areas that must receive enough attention in the
current studies. These papers demonstrate the importance of further innovation in these
areas in order to help in the development of artificial intelligence. By understanding these
trends we plan to continue our research. In future study, the proposed approach can
be combined with advanced techniques to retrieve and select more suitable background
images for OBA. For instance, in [57], the authors suggested using the CLIP model or a
diffusion model to retrieve and generate images that represent various backgrounds with
changing surrounding conditions. Moreover, robust semantic segmentation models for
plant monitoring can be further integrated into intelligent systems to predict and analyze
plant growth [58].

Object detection annotation is more commonly available than semantic segmenta-
tion in many computer vision tasks. Therefore, the developed approach can be imple-
mented in other specific domains of computer vision, such as remote sensing [59] or
manufacturing [60], to simplify the data preparation process and improve model perfor-
mance. Weak annotation improvement is another challenging task that can be addressed
through the proposed approach and applied for environmental analysis [61].

6. Conclusions

In this paper, we showed how to train plant part segmentation models without given
mask annotations. The findings of this study indicate that the utilization of weakly super-
vised segmentation methods can lead to a noteworthy enhancement in the performance of
instance segmentation models, as opposed to relying solely on bounding box annotations.
The suggested weak supervision framework exhibits a substantial improvement over the
previously established baseline. By leveraging both the spatial information found in bound-
ing boxes and the semantic information of pseudo-masks, the model is able to acquire a
robust understanding of the underlying structures and patterns of objects, even in complex
scenes. Moreover, SAM proves that with the use of only weak labels, the models can effec-
tively tackle the segmentation task and, in terms of metrics quality, can approach the ideal
scenario and even outperform it in certain cases. The provided approach demonstrates
good quality for the full plants case compared to the SAM, and it can operate better with
complex morphological plant structures and extract semantic information. Furthermore, we
show that instance-level augmentation can utilize pseudo-masks to boost the performance
of segmentation models.

In future work, one can use specialized multi-part augmentations to surpass current results.
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A2GNN Affinity Attention Graph Neural Network
ACFN Atrous Convolutional Feature Network
AdvCAM Adversarial Class Activation Map
AV Autonomous Vehicle
AP Average Precision
AuxSegNet Auxiliary Segmentation Network
BAP Background Average Pooling
CCAM Class-Agnostic Activation Map
CLIP Contrastive Language–Image Pretraining
CMA Collaborative Multi-Attention
CODNet Co-attention Dictionary Network
CAM Class Activation Map
CPN Complementary Patch Network
DCAMA Dense Pixel-Wise Cross-Query-and-Support Attention-Weighted Mask Aggregation
DINO Self-DIstillatiON Loss
DA Discriminative Activation
dCRF Dense Conditional Random Field
EDAM Embedded Discriminative Attention Mechanism
FP False Positive
GPT Generative Pretrained Transformer
GT Ground Truth
GAP Global Average Pooling
HDMNet Hierarchically Decoupled Matching Network
HSSP Hybrid Spatial Pyramid Pooling
H-DSRG Hierarchical Deep Seeded Region Growing
ISIM Image Segmentation with Iterative Masking
LOST Localizing Objects with Self-Supervised Transformers
MSANet Multi-Similarity and Attention Network
MiDaS Monocular Depth Estimation
MIL Multiple Instance Learning
MP Multiple Point
mIoU Mean Intersection Over Union
mAP Mean Average Precision
NAL Noise-Aware Loss
NSRM Nonsalient Region Masking
PAC Passive Aggressive Classifier
PPL Progressive Patch Learning
POM Potential Object Mining
PCM Pixel Correlation Module
PRCM Pixel-Region Correlation Module
OA-CAM Online Accumulated Class Attention Map
OBA Object-Based Augmentation
SVD Singular Value Decomposition
SVF Singular Value Fine-tuning
SegGPT Segmentation Generative Pretrained Transformer
SLAM Semantic Learning-Based Activation Map
SEAM Self-Supervised Equivariant Attention Mechanism
SAM Segment Anything from Meta
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TransCAM Transformer Class Activation Map
TP True Positive
UAV Unmanned Aerial Vehicle
VWE Visual Word Encoder
WSSS Weakly-Supervised Semantic Segmentation
WSIS Weakly-Supervised Instance Segmentation
YOLO You Only Look Once
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