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Abstract: Android platform security is an active area of research where malware detection techniques
continuously evolve to identify novel malware and improve the timely and accurate detection of
existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid
or prolong malware detection effectively. Past studies have shown that malware detection systems
are susceptible to evasion attacks where adversaries can successfully bypass the existing security
defenses and deliver the malware to the target system without being detected. The evolution of
escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and
evaluation of Android-based malware evasion techniques deployed to circumvent malware detection.
The study characterizes such evasion techniques into two broad categories, polymorphism and
metamorphism, and analyses techniques used for stealth malware detection based on the malware’s
unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison
of evasion detection frameworks and their detection methodologies for Android-based malware.
Finally, the survey discusses open-ended questions and potential future directions for continued
research in mobile malware detection.

Keywords: android malware; evasion techniques; code obfuscation; code transformation; reflection;
dynamic code loading; mobile security; machine learning

1. Introduction

Smart-device security and privacy are essential since adversarial attacks have in-
creasingly stolen and misused confidential user information via stealth apps; the existing
anti-malware solutions deploy advanced techniques for detecting evasive malware [1].
However, spyware [2], botnets, premium-rate SMS Trojans, banking Trojans, aggressive
advertising [3], and privilege escalation techniques have successfully attacked the official
market Google Play and other third-party app stores at regular intervals. Furthermore,
malware variants increased by 54% from 2017 to 2018, triggered by the emergence of novel
techniques [4].

The adversaries employ clever techniques and steal confidential user information. For
example, malware authors use privileged ways and gain access to smartphone apps. This
includes stealing mobile contacts and text messages, recording calls, and dialing premium-
rate numbers, thus incurring a monetary loss; further, attackers gain root privileges, steal
confidential banking details and track user locations via GPS through advanced attack
techniques. Java language is used for Android app development, with the capability
to protect commercial software from piracy. However, cybercriminals deploy persistent
attacks via anti-malware evasion tools, including code obfuscation, polymorphism, and
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Java reflections; some techniques are popular for genuine software protection. These attacks
are mainly aimed at thwarting stealth attack detection.

Evasion techniques are aimed at encryption, polymorphism, code transformation or
code-obfuscation, and package renaming that are a part of attacks [5]. In addition, obfus-
cation methods transform the existing malware and recreate variants to avoid detection.
Cyber-criminals deploy malicious anti-malware tools to propagate persistent threats [6];
thus, the accuracy and performance of malware detection frameworks deteriorate. Various
studies have identified relations between evasion techniques that undermine machine
learning-based anti-malware approaches [7–15]. For example, Drebin [16] obtained a
detection accuracy of 94% and noted that dynamic code loading is one of the critical causes
of failure. On the other hand, Elish et al. [7] claimed that malware families containing
reflection API and code obfuscation could evade anti-malware and remain undetected.
Similarly, Chen et al. [15] used code graph similarity to identify repackaged apps in ten
seconds but could not investigate the injection of intrusive code. Thus, this increases the
curiosity to explore and analyze evasion techniques to improve the malware detection and
analysis approaches.

The following studies listed in Table 1 reveal that adversaries use dominant tech-
niques such as packing, encryption, code transformation via metamorphism or polymor-
phism, and virtual environment detection to camouflage from antimalware. The studies
of [17–20] performed an evasion techniques review; however, they did not provide a
comprehensive review and robust conclusions. For example, Rastogi et al. [21] developed
DroidChameleon a code transformation framework to dodge the commercial anti-malware
solutions. Sufatrio et al. [19] investigated malware analysis techniques and similar strate-
gies for eluding literary and commercial anti-malware techniques. However, they failed
to mention the taxonomy of the evasion methods and evasion detection techniques. The
following study fills this literature gap by presenting a systematic taxonomy of the evasion
techniques and their impact that hinders anti-malware solutions [22]. Another goal is to
emphasize the significance of evasion tools, techniques, impact, countermeasures, and
open questions and address possible obstacles for upcoming research. The indications “

√
”,

“×”, or an empty cell intersecting the framework row with the evasion column identify
researchers who tested their framework against certain evasions. “

√
” indicates that the

study either tested or assumed it could detect the evasion tactic. At the same time, “×”
means the researcher assumed that the evasion technique bypassed their Android malware
detection framework. Incomplete reports of framework evaluation studies on evasion
tactics or assumptions are shown by an empty cell.

Table 1 emphasizes the contribution of this study by filling the literature gap in evasive
techniques, their detection, and analysis. Here, the types of evasion techniques are abbrevi-
ated as code encryption (CE), code transformation (CT), code obfuscation (CO), package
transformation (PT), and anti-emulation (AE). The table clearly shows other techniques
that focus on, at most, one or two types of evasion, whereas this study tries to cover all five
types mentioned above. Moreover, existing literature compared studies that only included
commercial anti-malware tools, whereas this survey covers commercial and important
academic contributions.

Table 1. Contributions and Comparison.

Related Study Year

Types of Evasion Techniques Covered Type of Evasion Tool Included

Code
Encryption

Code Trans-
formation

Code Ob-
fuscation

Package Trans-
formation

Enti-
Emulation Commercial Academic

This study 2023
√ √ √ √ √ √ √

Faghihi et al. [6] 2022
√ √ √

Sihag et al. [23] 2021
√ √ √

Jusoh et al. [24] 2021
√ √ √ √ √ √ √
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Table 1. Cont.

Related Study Year

Types of Evasion Techniques Covered Type of Evasion Tool Included

Code
Encryption

Code Trans-
formation

Code Ob-
fuscation

Package Trans-
formation

Enti-
Emulation Commercial Academic

Aslan et al. [25] 2020
√ √

Razgallah et al. [26] 2020
√ √ √ √

Chen et al. [27] 2019
√ √ √ √

Parnika et al. [28] 2019
√ √

Sen et al. [29] 2018
√ √ √ √

Dai et al. [30] 2018
√ √ √

Xue et al. [31] 2017
√ √

Tam et al. [32] 2017
√ √

Nguyen-Vu et al. [33] 2017
√

Preda et al. [34] 2016
√ √

Hoffmann et al. [35] 2016
√ √

Kim et al. [36] 2016
√

Sufatrio et al. [19] 2015
√

Faruki et al. [37] 2014
√ √ √

Rastogi et al. [38] 2013
√ √

Selection Criteria

The retrieved articles based on a search query (SQ) would not fit the paper’s scope, so
we needed to filter them by applying inclusion–exclusion criteria.

Inclusion criteria: The survey’s scope extends over the intersection of four identified
research domains (RDs).

Inclusion Criteria: The scope of the survey extends over the intersection of four
identified Research Domain (RD).

1. Apps Analysis RD encompasses all the approaches for identifying smartphone app
models for Android platform.

2. Security Analysis RD encompasses all approaches for detecting security flaws in
extracted models.

3. Anti-emulation transformation RD includes the techniques involved in Anti-emulation
transformation explained in Table 2.

4. Evasion Techniques RD covers various Evasion Techniques for Android Malware
Detection shown in Figure 1.

Table 2. Anti-emulation transformation.

S.No Anti-Emulation
Approaches Technique Description Reported

Malware

1

V
M

A
te

ch
ni

qu
e

Checking telephony
services

Android.os.TelephonyManager class is used to determine
telephony services such as device ID, IMEI, phone number, etc.

Andr/RuSmsAT,
Android.hehe

Checking build info
Multiple malware families determine the build information to
check whether execute on an emulator,
e.g.,Build.MODEL.contains(“Emulator”).

Pincer

Checking system
properties

The malware checks the system properties such as hardware,
sensors, brand name, model to determine whether its real
device or a virtual machine environment.

Obad, Pincer,
DenDroid

Checking emulator
related files Malware checks if QEMU or other emulated file exists. Andr/Pornclk

variant

Time bomb Malware after successful installation waits for a specific time
to get activated. BrainTest
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Table 2. Cont.

S.No Anti-Emulation
Approaches Technique Description Reported

Malware

2

PI
D

Fuzzing-based
Exploration

Malware checks if input data is fuzzed, e.g., read/-write files,
fields of user input , exported APIs, and communication
network

Drebin and Ma-
MaDroid

Model-based
Exploration

It aims at injecting events aligning with a certain pattern
derived by examine the app’s code. DroidBot

Programmed
Interaction

It uses the programmed interactions to evade automated
runtime analysis. Diao et al. [39]

3

C
SB

D

Granularity to translate
and execute apps code

Apps code running in the emulated environment (QEMU),
context switching does not occur, but such behavior is not seen
in the actual CPU environment.

VECG [40] and
Jang et al. [41]

Process an external
interrupt

App code runs in the emulated environment (QEMU) and
never handles an external interrupt, while actual CPU
environments support both kinds of Interrupt.

MALT [42]

4

TC
BD Cache coherence

Generate a considerable timing difference for self-modifying
code that overwrites itself as it runs due to an extra layer of the
caching mechanism.

EmuID [43] and
Jang et al. [41]

5

U
V

BD Access cache with byte
granularity

The problem with memory access alignment results from
earlier (and contemporary) CPUs’ inability to access the cache
with byte-level granularity.

UltraSPARC [44]
and Jang et al. [41]

VMA: Virtual machine aware; PID: Programmed interaction detection; CSBD: Context switch-based detection;
TCBD: Translation cache-based detection; UVBD: Unaligned vectorization-based detection.
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Figure 1. Taxonomy of evasion techniques for Android malware detection

Exclusion Criteria: We cannot choose all publications that match the inclusion criteria
and RDs. As a result, we established specific exclusion criteria:

1. Exclude research articles not written for Android platforms such as iOS, Windows
Mobile, BlackBerry, and Symbian to prevent border issues. However, these articles
are applicable across all smartphone platforms, especially Android.

2. Remove papers focused on approaches that help minimize security risks rather than
assessment approaches linked to malware evasion techniques. However, all the
publications included that offer both prevention and detection methods of malware
evasion techniques are kept.

3. Remove analysis methodologies that fail at a different level of a security evaluation,
such as specific algorithms that work on app code but not on opcodes.

4. Exclude articles solely on prevention and detection methods of malware evasion tech-
niques at the programming language level, such as C, Java (for Android), Objective-C,
and Swift (for iOS), based on the dynamic, static, and hybrid framework. However,
research papers that discuss security analysis methodologies in general, regardless of
programming language are included.
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5. Omit several research publications that focused on a specific type of attack rather than
describing the prevention and detection methods of malware evasion techniques.

The proposed survey evaluates evasion techniques via a comprehensive review of
Android malware detection frameworks. Unlike previous studies [17,45,46], this survey
focuses on mobile malware evasion techniques. Furthermore, this investigation identified
author contributions from top companies, such as S&P, IEEE Transactions on Mobile
Computing, Elsevier Computers and Security, Digital Investigation, IEEE TIFS, Elsevier
Future Generation Computer Systems, and ACM Computing Surveys. We present the
following key contributions in light of the facts mentioned earlier.

• The proposed survey presents an evasion techniques taxonomy for the Android
platform. The taxonomy systematizes and illustrates popular evasion tactics in the
attacker community, their influence on novel malware that evades anti-malware, and
malware evasion’s impact on the analytical techniques.

• While much of the prior work has focused on the commercial anti-malware compari-
son, we examine academic and commercial frameworks for Android. The following
study reveals the most recent Android malware analyses and challenges that restrict
the identification of evasion tactics, their impact on anti-malware tools, and detec-
tion accuracy. The proposed study thoroughly investigates evasion techniques, their
impact on anti-malware research, and solutions to detect persistent threats.

• The proposed survey identifies the malware evasion techniques and their detection
method research gaps via a thorough comparison of various studies and frameworks
through SLR (SLR is short for systematic literature review). As a result, we identified
research gaps, allowing for the introduction of a comprehensive list of recommenda-
tions and a sizeable number of suggestions for future research directions.

• Finally, the survey not only tries to cover all possible advanced methods of poly-
morphism, metamorphism, and code transformation techniques but also provides
a comparative explanation of the possible solutions or frameworks that occurred
over one decade (2012–2022) by multiple tables and pie charts, which is essential to
understand the important objective of our study and motivate new researchers to
provide a robust future research direction.

The remaining sections of the paper are arranged in the subsequent order: Section 2
offers the required context for this research; evasion techniques and their detection on
the Android smartphone platform. Section 3 covers smartphone malware identification
techniques. The taxonomy of evasion techniques is presented in Section 4. Section 5
explores detection and assesses the present state-of-the-art in evasion techniques, test-bed
tools, and detection frameworks. Sections 6 and 7 address the knowledge gained and future
research directions. In Section 8, the article concludes the paper with important directions
for further research.

2. Background

Android app components are presented in Section 2.1, and their weaknesses in
Section 2.2. We highlight the importance of a few weaknesses to support this survey’s ne-
cessity and clarify critical terms for the readers’ benefit. Additionally, we have incorporated
Android security vulnerabilities, existing obfuscation techniques, and security challenges
in Sections 2.3 and 2.4. Section 2.5 briefly explains the limitations of existing anti-malware
solutions.

2.1. Android Application

The phrases an application, APK file or an app are interchangeably used throughout
this article, which refers to the Android app. Figure 2 illustrates an archive, where the
unzip tool extracts the source code and associated permissions, images, and other files and
directories from the compressed APK. We clarify the necessity of APK components and
explain some critical terminology in this section. Before Android version 4.4 KitKat, the
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Dalvik Virtual Machine (DVM) served as the virtualized environment in which the apps
are executed. The later app versions use the Android Run-Time (ART); both the execution
environments are analogous to the Java Virtual Machine (JVM). Various files and directories
are compressed, which forms a .apk file. Classes.dex is the primary source file in-housing the
executable bytecode of the Java classes declared in the source code. AndroidManifest.xml is a
specification file containing sensitive device use permission, android component definitions,
and implicit and explicit intent details. The Res folder contains uncompiled resources,
while Resources ‘.arsc’ has compiled resources like images and implicit components. The
user must be installed the Android app to use the app services. Android accepts the
APKs with digital certificate, also known as a developer identification. Neither a Central
Authority (CA) is available to keep the records of all these developers’ keys, nor is a trust
chain between developers and app stores [47]. Hence, the Google Android project enables
a trust chain as default.

assets lib META-INF res Android Menifest.xml class.dex resources.arsc

Figure 2. Android application.

The Android framework executes Android apps in the Android runtime virtual ma-
chine (ARTVM). The user apps have limited access to system resources based on the granted
permissions, whereas service apps operate in the background [48]. Following are the four
key components of a typical Android app:

(a) Activities: The interface with which end-users engage and use intentions to connect
with several additional activities.

(b) Services: The backend component that executes the app in the background.
(c) Content providers: Content providers are intermediary elements that allow apps to

share data.
(d) Broadcast and receiver intents: Distribute messages to all apps or particular apps

using intent broadcast and receivers.

2.2. App Vulnerabilities

Adversarial malware developers identify app vulnerabilities and misuse them. Further,
they exploit archived app components via:

• Device information: Malicious apps compromise app security via device identifiers
such as IMEI, MEID, ESN, or IMSI. The same can be achieved by READ_PHONE_STATE
permission.

• Personal information: Apps can access user contact lists, phone numbers, and calen-
dars that can be compromised through access to contact and message permissions.

• Device/user location: Apps can approximate the user’s location using the WiFi net-
work or the network tower. Hence, location preference is a choice rather than a
compulsion.

• Task monitoring: Apps record mobile and WiFi data usage data that can potentially
compromise user privacy and security [49]. The GET_TASKS permission is responsible
for task monitoring.

• User phone and messages: Some apps can access a user’s SMS/MMS, and disrupt
calls and messages, thus causing distress and misuse of information.
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• User account details: Some applications can access the user’s various accounts, thus
jeopardizing security and putting sensitive data at risk. The GET_ACCOUNTS per-
mission is responsible for this.

• Manipulating device storage: Apps can duplicate or format the data inside the device
storage [50,51].

• Device hardware controls: Without the user’s knowledge/consent, apps can record
audio/video and take pictures. Some applications that ask for permission can track
the mobile network traffic and monitor the background processes [52].

2.3. Android Security Vulnerabilities and Existing Obfuscation Techniques

Android apps are developed in semantically feature-rich Java language; adversaries
such as malware authors, software plagiarists, and cybercriminals misuse reverse engineer-
ing tools to modify apps [53]. Software companies deploy obfuscation techniques to protect
their propriety as the first layer of defense against plagiarism or cyber-attacks [37]. The au-
thors thoroughly investigate the prevalence of obfuscation techniques used by adversaries,
evasion methods that hide the app’s real intent, and some practical app security challenges.
During the development of this survey, we analyzed over 20,000 Google Play apps with
more than ten thousand downloads. Surprisingly, less than a quarter of benign apps use
obfuscation or app protection tools to save their software from cyber criminals. In contrast,
cybercriminals use these encryptions, protection, evasion, and obfuscation techniques to
hide their behavior and circumvent anti-malware.

Android IDE supports the basic version of ProGuard [54], thus assisting the developer
in defending their proprietary code. Further, robust solutions such as DexGuard [55] are
professional. However, ProGuard incurs additional costs. Since Android code is written
in Java, obfuscation techniques are inherited from the parent platform. Basic obfuscation
includes replacing the meaningful package name, class name, method name, or field(s) in
a method with an unrelated character from a set of alphabets [a-zA-Z]. It is also possible
to use ‘NULL,’ ‘AUX,’ or developer-defined strings such as ‘ZERO’. Though Java-based
obfuscation can be deployed in the Android SDK, the situation of deploying them is
different. For example, components of Android such as activity, broadcast receiver, service,
or content provider must remain un-obfuscated for smooth communication with framework
API and callbacks. The same applies to a method invoked via reflection API in the Android
framework. At the same time, we have covered a variety of code-transformation approaches.
Setting Android-based obfuscation tools involves more than selecting features [56,57]. In
addition, many complicated circumstances make obfuscating specific parts of code complex
or impossible to understand, and even if that code is obscured, the app will no longer
operate.

2.4. Android Security Challenges

VirusTotal reports an exponential rise in app submission at its analysis portal [58].
Adversarial malware developers employ stealth techniques, such as code obfuscation [59],
dynamic code loading [60], encryption, and repackaging [61], to dodge commercial anti-
malware [62] including Bouncer, the Google play anti-malware. The persistent malware
accomplishes its goals by employing similar techniques, deceiving the detectors based
on the signature. Improved techniques match the mobile platform and provide a rapid
response for the Android OS. A smartphone can be controlled by exposing the app or OS
vulnerabilities and obtaining sensitive data [61], receiving monetary benefits by adversely
utilizing telephone services, or forming a botnet. In the following, we present some issues
with Android malware investigation and identification:

(a) Automated signature generation: Transformation approaches and code obfuscation
techniques are more common in signature-based recognition procedures. However,
these methods must also regularly keep their databases up to date by adding
malware variants with minor changes. Furthermore, the signatures are manually
analyzed and extracted, which takes time and skill, while creating signatures for
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multiple threats may generate false negatives. The significant increase in malware
variants necessitates the automated generation of malware signatures. It will assist
in reducing the number of misleading malware detection alerts. Offline analysis
approaches are required to comprehend the fundamentals of malware operation.

(b) Smart devices resource constraints: Battery-powered smartphones are constrained
due to the processing speed, memory, battery power, or limited storage capabilities.
Hence, anti-malware techniques suitable for computing devices are unsuitable for
devices with limited battery; thus, there is a need to identify cloud-based analysis
and detection techniques [63,64].

(c) App collusion: Recent studies evaluate a single app, overlooking the impact of
collusion between two or more app attacks. As a result, there is a need for a
paradigm shift in the assessment of smart devices that evaluates the interaction of
numerous apps [65]. Compositional vulnerabilities are revealed by pushing from
analyzing one app to multiple (colluding apps) analyses at the system level. The
malware developers may exploit bugs in various benign apps. Furthermore, much
current research concentrates on a particular application or system element [66].
The adversaries develop fragmented malicious functionality among two or more
apps where anti-malware declares a single app genuine.

(d) Native code: Native and dynamic loading codes can control the hardware due to
their direct execution capabilities, which remains a significant challenge for Android
security [65].

(e) Tools availability: Around 20% of the publications have publicly provided their
research artifacts. To stimulate the research community, researchers could provide
innovative tools and develop libraries [65].

(f) Tools applicability: With resource constraints, the early conventional security mecha-
nisms are no longer relevant as they require more computation power and resources
to be implemented [66,67].

(g) Ransomware attacks: With Android malware evolving, the trend has shifted from
stealing data to hijacking devices, encrypting data, and demanding a ransom in
exchange for punitive damages to a user. Since resetting a device is no longer a
solution against ransomware attacks, robust detection and prevention systems must
be developed to prevent further compromise of data and security [68].

(h) Scalability: Scalability is still an issue when examining many apps. Hence, a scalable
system [69] to identify malware and combat malware attacks is important [69].

(i) Reactive static, dynamic analysis techniques are evaded by persistent attacks [70].
Furthermore, advanced malware employs anti-emulation methods to avoid dynamic
analysis [71,72].

2.5. Anti-Malware Issues

Simple modifications can easily circumvent signature-based anti-malware solutions.
Dynamic code execution facilities are exploited to evade dynamic systems such as Google
Bouncer [73]. The core functions of Google Bouncer and related anti-malware techniques
and technologies are not public. However, researchers have demonstrated ways to analyze
security systems via different methodologies. For example, DroidChameleon [21] proposed
a framework that can automatically submit obfuscated apps to ten prominent antivirus
solutions, bypassing the top commercial anti-malware. More than 86% of reported malware
use repackaging [74] techniques to bypass anti-malware. Therefore, it is critical when
around 43% of malicious app signatures do not rely on code-level artifacts and can be
removed with a few simple APK or manifest modifications.

3. Mobile Malware

Malware invades a smartphone with malicious software without the user’s consent.
Malware is developed by combining malicious code and an application. Malware is a lethal
stealth weapon for any active cyberattack. As more organizations attempt to address this



Information 2023, 14, 374 9 of 38

issue, web-based malware distribution has increased alarmingly. Figure 3 illustrates an
overview of mobile malware.

Figure 3. Types of mobile malware.

3.1. Malware Propagation

Table 3 lists the common techniques deployed by attackers to spread malicious apps.
The goal is to delay or resist malware detection and analysis capabilities.

Table 3. Prominent propagation methods.

Technique Description Reported Malware

Repackaging an
Application

Malware authors injected the malicious code/snippet into the disassembled
app download from popular app stores. It was reassembled and repackaged
with a jar-signer to distribute the app in a lesser monitored store.

Pokemon Go [75]

Drive by Download
Malware developers injected malicious code onto the smartphone using
adversarial URL generation, social engineering, and adverts enticing users to
disclose confidential information.

Android/Not Compatible [21]

Dynamic Payload

Embedded malicious code into an application. For example, using a file or
APK to hide the malicious payload. By distributing a bogus vital update to an
existing app, the virus is launched when the unknowing user clicks "Yes," thus
compromising the smartphone.

BaseBridge [38],
Anserverbot [76],
DroidKungFuUpdate [77]

Stealth Malware
Techniques

Malware developers employed stealth techniques, such as dynamic code
loading, obfuscation, reflection, and native code execution, to avoid detection
by anti-malware tools. For example, code obfuscation seeks to
encrypt/unread the source code, making virus identification more difficult.

DroidDream [78],
Android.Opfake

3.2. Malware Behaviour

Malware writers use intelligent and advanced techniques for their activation and
installation methods. Most importantly, malware writers take good care of its persistence
in the device and its evasion methods. This work thoroughly analyses a few select malware
families’ behaviors and presents them in Table 4.
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Table 4. Prominent Malware Behaviour.

Malware

Activation Persistence Anti-Analysis

Event Host Scheduled Stealthy Prevent
Destroy Renaming String En-

cryption
Dynamic
Loading

Native
Payload

Evade
Dynamic
Analysis

Airpush Y Y Y

AndroRAT Y Y

Aples Y Y LD

BankBot Y Y BL, HI MDA Y Y Y CDI

Bankun Y Y BL, HI CDI

Boxer Y Y Y

Dowgin Y Y Y Y Y EC

DroidKungFu Y Y Y KA Y Y Y

FakeAV Y Y BL

FakeAngry Y Y Y

FakePlayer Y BL Y

FakeTimer Y Y

FakeUpdates Y Y Y Y Y

Fobus [2014] Y BL, HI Y Y EC

GingerMaster Y Y Y Y Y

GoldDream Y

Gorpo Y Y EC

Yisut Y LD

Kemoge Y

Koler Y LD, MDA Y CDI

Ksapp Y Y Y EC

Kuguo Y Y Y

Leech Y Y Y BL MDA Y Y Y EC

Lotoor Y Y Y Y

Obad Y Y BL, HI HA Y Y CDI, EC

Opfake Y Y BL, CL, HI Y

RuMMS Y Y BL, HI Y Y Y

SimpleLocker Y Y HI LD Y

SlemBunk Y Y BL, HI Y Y Y

SmsZombie Y Y BL, CL

SpyBubble Y Y BL, CL

Svpeng Y BL LD CDI

Triada Y Y CL, RK SYS Y Y Y CDI, CIA

UpdtKiller Y Y Y BL KA, MDA Y Y

VikingHorde Y Y RI Y

Vmvol Y BL, CL

Winge Y Y

Youmi Y Y

Zitmo Y Y BL, HI Y

Ztorg Y Y Y Y EC

Stealthy: Block (BL); Clean (CL); Hide Icon (HI); Rootkit (RK). Prevent destroy: Hide Admin (HA); Kill AV (KA);
Lock Device (LD); Monitor Destroy Action (MDA); Reinstall (RI); System App (SYS). Evade Dynamic Analysis:
Check Device Info (CDI); Encrypt Communication (EC); Check Installed App (CIA).
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3.2.1. Activation

The examination of Android malware reveals three activation methods: host-app
activation, scheduling, and event-based activation approaches. The integrated repackaging
approach, in which the adversary inserts malicious code into the apps to activate the
malware with the hosted app, is analogous to the through-host-app activation technique.
The scheduling option is also commonly used to track or collect information regularly.
They usually employ Android’s AlarmManager with pending intent or register a thread
of timer tasks.Ransomware makes extensive utilization of scheduling. Some ransomware
applications work a recurring task at a very short interval, rendering the victim’s device
unresponsive.

3.2.2. Persistence

One of the essential characteristics malware authors consider when developing an app
is persistence. Further, the longer the malware remains in the victim’s device, the more
substantial sales the adversary may be able to generate. Nevertheless, persistence may be
deployed in several ways, such as:

(a) Keeping the malware’s existence as undetectable as possible. We discovered many
stealthy approaches used by malware to hide traces of malicious threats:

(i) Objects such as calls, SMS, notifications, and music can be blocked.
(ii) Cleaning gadgets of devices such as SMS history and name logs are essen-

tial for the infection since automatically dispatched messages or contact
information may potentially warn the victim that something is amiss.

(iii) Even though the background carrier is operating, the malware launcher
symbol is hidden [79–82].

(iv) To conceal its existence, it exploits gadget APIs.

(b) Using strategies such as masking itself from displaying in the list of device adminis-
trators, locking the device, disabling the antivirus process, and so on, prevent itself
from being destroyed by the device, antivirus software, or a human.

3.2.3. Anti-Analysis Techniques

(a) One behavior pattern in each approachis renaming, followed by obfuscation tactics.
First, the important name of the argument, function/methods, classes, and package
are renamed into relatively incomprehensible or meaningless forms. This transition
makes manual assessment much more difficult. On the other hand, renaming does
not affect API calls and static evaluation techniques [83].

(b) String encryption is also commonly found in malicious apps. Researchers and
anti-virus software can identify malware by looking for strings in the source code,
such as the fundamental values of JSON/XML, URL of server URL, rationale action,
reflection, and method invoke strings. Moreover, malware may employ string en-
cryption to exchange plaintext for ciphertext, making it more challenging to analyze
malware behavior. The malware frequently uses some or all of the given string
encryption techniques: one-time pad, byte permutation, DES/AES, and base64
encoding. In order to analyze malware manually, the decryption and decoding
process must be repeated and traced back to a simple textual form [84].

(c) Dynamic loading: The .dex file has recently become increasingly popular. It gener-
ally comprises a small dropper payload that seems benign. However, the resource
directory (such as RuMMS) or valuable assets are loaded into the actual payload
from dropper payloads or downloaded from the web (e.g., SlemBunk). The actual
payload is encrypted to complicate the assessment process further (e.g., Fobus).

(d) Native payload: As a result, the native library is a perfect place to hide malicious
activities. Native payloads are becoming increasingly popular, according to our
research. Malicious apps hide features and sensitive data within the local code, such
as top-class numbers and the server URL.
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(e) Evade Dynamic Analysis: The primary notion behind escaping dynamic analy-
sis is to identify the current execution environment of the malware, e.g., activate
BankBot [85]; this checks the model number, IMEI number, device manufacturer,
brand, and specific fingerprint value. If the executing environment fulfills the crite-
rion, the malware will operate benignly, prevent itself, and stay hidden. Another
complex spyware, Triada, will check whether the IMEI meets particular patterns
and if “com.Qihoo. Androidsandbox” is pre-installed and running; it also behaves
benignly. Some malware encrypts the connection with its command and control
(C&C) servers to avoid dynamic analysis that carefully examines the malware’s
communication channel [85–87].

4. Evasion Techniques

Many approaches and technologies have been made accessible, and Android app
developers have been using them to safeguard their intellectual property. However, it is
worth noting that methods and procedures created to safeguard intellectual property are
routinely exploited and misused by adversaries to deploy stealth malware apps. Malware
writers use evasion techniques to dodge detection and float the malicious modules among
genuine apps after they have been identified in the wild. The research community has wit-
nessed evasion techniques across many Android malware families. The evasion techniques
are rapidly evolving with new features, such as sensing an app’s execution environment
(sensing an emulator or real device to hide the malicious functionality of the app under
observation) to defeat anti-malware apps [12]. Furthermore, malware writers can use
an appropriate evasion technique to change the entire app structure and harden reverse
engineering. Hence, this has become an obstacle for security researchers to understand the
malware functionality.

Since smartphones are battery-constrained, on-device resource-extensive anti-malware
apps are unsuitable [88]. The adversary exploits the misuse of these constraints via code ob-
fuscation to drain the smartphone’s battery. Hence, developing suitable evasion techniques
can be classified as polymorphic and metamorphic.

Figure 1 illustrates a detailed taxonomy of evasion techniques discussed in the subse-
quent sections.

4.1. Polymorphism

Polymorphism is a code evasion technique. A stealth mechanism that uses obfuscation
and encryption to transform malicious apps into different forms (i.e., change the appearance
while keeping their functionality intact). Polymorphism can be further classified into
package and encryption transformation.

4.1.1. Package Transformation

Package transformation concerning modifying the code such that the anti-malware
identifies the modified sample as unseen malware. Repacking (RPK), identifier renaming
(IDR), and package renaming (PKR) are three methods of package transformation.

(a) Repacking (RPK): A popular downloadable app from the official or third-party mar-
ket. Then, it is disassembled using reverse engineering tools, apktool. The malicious
code or payload is subsequently inserted into the benign app and reassembled.
Finally, malware developers use custom keys with jarsigner and release them at
local app stores. The malicious code is encrypted in a ’.dex’ file. The Malgenome
dataset contains more than 80% of repackaged malware variants of apps available
at legitimate third-party stores [89–91]. Glanz et al. [92] reported 15% repacked
apps. Repacking enables unseen samples, causing the anti-malware to fail to de-
tect them [21,37,93]. Pokemon Go [75] and Anserverbot [76] samples are known
repackaged malware.

(b) Identifier renaming (IDR): Dalvik bytecode binds the identifiers such as classes,
methods, and fields. The names of the identifiers are modified, keeping the code
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semantics intact [94,95]. The words are replaced by meaningless or puzzling strings
(e.g., lllloooooo). However, the constructors and methods override the superclass
and cannot be renamed. The identifiers are replaced by either sequentially generated
string laterals, such as a, b, c, d, or progressive numbers, such as 1, 2, 3, 4 [96].
Figure 3 illustrates the renaming of the identifiers of a class called Sum. Plankton,
Geinimi, and BaseBridge malware use the identifier renaming (as shown in Listing 1)
evasion technique.

(c) Package renaming (PKR): The Android ecosystem identifies each app with a unique
package name. In this technique, malware writers rename the app package name
in the AndroidManifest.xml. Some anti-malware identifies the malicious app sig-
natures with simple parameter values, the name of the method, and its class and
imported packages. However, such a vague technique helps adversaries quickly
change the malicious sample signature [97,98].

Listing 1. Identifier Renaming.

publ ic c l a s s a {
p r i v a t e I n t e g e r a ;

p r i v a t e F l o a t = b ;
publ ic void a ( I n t e g e r a , F l o a t b ) {
t h i s . a=a+ I n t e g e r . valueOf ( b ) }

}
}

4.1.2. Encryption Transformation

The encryption techniques are preferred over data, bytecode, or malware payload.
Payload encryption (PEN), data encryption (DEN), and bytecode encryption (BEN) are
three encryption types.

(a) Data encryption (DEN): This is more complicated when compared with identifier
renaming. Dalvik files store data such as strings and arrays in their data structures.
It is noted that string-like messages, network addresses, and shell commands reveal
app information. In an obfuscated app, strings or plain text can be encrypted by
random puzzling strings and harden reverse engineering [99]. These strings can
only be decrypted at the runtime evading static analysis [100]. The DroidDream [78]
and Bgserv [101] malware families extensively employ data encryption.

(b) Bytecode encryption (BEN): Bytecode encryption aims to encrypt the bytecode to
bypass static analysis. The malicious code is encrypted using this technique and
can only be decrypted via a decrypt routine at runtime. In this way, the decryption
routine remains available to signature-based methods. Every malicious code variant
possesses a decrypt routine (obfuscated in different ways).

(c) Payload encryption (PEN): Malware writers let malicious applications carry suspi-
cious encrypted payloads. These additional payloads are installed onto the user’s
device once the system is compromised. Malware such as DroidDream [78] exhibits
this kind of behavior.

4.2. Metamorphism

Metamorphic malware leverages obfuscation techniques at its best to evolve its body
to produce new variants. The code is mutated and no longer looks the same but possesses
the same behavior. Metamorphism techniques do not comprise the encryption part, unlike
polymorphism techniques. Instead, metamorphism techniques employ a mutation engine
to mutate its own body. Every variant has a different code size, structure, and sequence,
resulting in a well-constructed metamorphic variant while preserving the original pro-
gram logic and behavior. Metamorphism can be categorized into code obfuscation, code
transformation, and anti-emulation transformation.
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4.2.1. Code Obfuscation

Code obfuscation or mutation techniques hinder anti-malware detection systems via
code changes from one generation to another. Third-party developers use obfuscation or
sensitive algorithms to protect their intellectual property from plagiarism [102]. In contrast,
cybercriminals employ code obfuscation to protect their malicious behavior and avoid
anti-malware detection. Call indirection (CIN), code reordering (CRE), and dead code
insertion (DCI) are three types of code obfuscation techniques [103].

(a) Call indirection (CIN): The call graph defines the caller–callee relationship between
the different app modules. The call graph creates a semantic signature of a given app.
Call indirection aims to manipulate these call graphs (calling non-existing methods
previously) and prevent or delay detection. This obfuscation can be achieved for all
calls, whether calls are made within the app code or in the framework library. The
foremost aim is to defeat automatic anti-malware analysis.

(b) Code reordering (CRE): Code reordering aims to reorder the set of instructions in
a program [104]. CRE employs ’goto’ statements to preserve the order of instruc-
tions during execution. The code reordering technique can alter the random code
instruction signature reordering and evade detection tools.

(c) Dead code insertion (DCI): DCI transformation injects dead or irrelevant code blocks
into the program. It is intended to increase the app size with its analysis time by
keeping the original app’s semantics (i.e., it does not affect the rest of the code). In
addition, dead code insertion modifies the opcode order, changing the signature of
malicious apps. DCI defeats opcode-based detection systems and signature-based
anti-malware.

4.2.2. Code Transformation

Code transformation techniques hinder disassembly tools [105] and evade commercial
anti-malware [37,106,107]. These techniques obfuscate existing malware samples to gener-
ate unseen malicious files. Native exploits (NEX), reflection API (REF), function inlining
and outlining (FIO), anti-debugging (ADE), and dynamic code loading (DCM/DCL) are
code transformation types.

(a) Native exploits (NEX): App archives combine Java source code, native libraries,
manifest declarations, and resources. The native code uses C or C++ for performance
improvement and portability. Adversaries misuse the native code to hide malicious
behavior. Moreover, they encrypt native code and hide them in non-standardized
places. Therefore, the detection system designed for non-native applications may
not work for native applications.
A packer can convert identified functions into native methods of a ’.dex’ file, which can
be loaded using the JNI (Java native interface) methods dvmLoadNativeCode() [14].
Android allows users to directly execute native code and machine code on a smart-
phone processor. The JNI, a predefined interface for communicating between native
and Java code, is the most widely used method to invoke native code on the Android
platform. Launching native code at the root level implies that DVM or ART imports
a shared object of Linux OS and allows calling the native methods stored within it.
Java and native code share a common sandbox. Therefore, the same permissions are
imposed on Java and native code. Native code on Android is subject to almost the
same privilege constraints as Java code. For instance, an application cannot open an
Internet socket from native code without permission to access the Internet. However,
attackers have one distinctive advantage when running native code: While they go
through a well-defined API to load code into the Java environment, they can quickly
load and execute code from the native executable in various ways. The fundamental
advantage for attackers is that there is no distinction between code and data at the
native level. Java requires an app to load the class file on the processor; hence, an
adversary can execute the native code.
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(b) Function inlining and outlining (FIO): Function inlining and outlining are code
optimization techniques to reduce the overhead of the call. They are also used as
resilient obfuscation techniques. The inlining technique replaces a function call with
the actual function code. Thus, the transformation results in a different app with the
original functionality.
On the other hand, a statement set is put into a function or method in the outlining
technique. Function inlining and outlining, when used together, act as sound obfus-
cators. Reflection is a powerful feature of the Java language that allows developers
to interact with programs at runtime. It accesses the class information to create new
object instances and invokes the runtime method with string literals. Nevertheless,
searching for reflection API is easier once the string literals are encrypted. The
reflection API hides the malicious behavior as it can implicitly transfer control to
the functions. Malware developers create stealth malware via code outlining.
Without explicit Internet connection authorization, the app cannot establish an
Internet socket through native code [108]. Since there is no restriction on native code
execution, the attacker can execute native code on the CPU. Therefore, they must
use predefined APIs to import code into the JRE. However, the native executable
code can be loaded and executed immediately. In addition, at the native level, there
is no separation between data and code, whereas Java needs a program to load a
class file to launch its code manually. These factors significantly reduce native code
protection.

(c) Dynamic code loading/modification (DCL/DCM): Android apps are written in
Java but must be converted into Dalvik bytecode with the .dex tool, executed by
the virtual machine. Adversaries execute native code via the JNI. Hence, they can
exploit dynamic code loading at runtime to execute the exploits.
The malicious dynamic payloads can be hidden inside the app as an external .jar
file [109]. Since the payload is encrypted, it can defeat static analysis techniques.
Malware writers decrypt and load the malware at runtime [110–116]. For instance,
the malicious code prompts the user for a critical update; hence, a novice user may
consent, causing the device to become infected by the malware.
The Android framework has allowed external code loading since its first API ver-
sion. Adversaries execute the code at runtime with the available app permissions.
Google’s content policy [117] also concedes third-party developers’ runtime code
from the installation package only. However, the unwanted apps and malware fetch
undesirable code from remote command and control servers [117].
Qu et al. [117] studied effects such as (i) local or remote code fetching; (ii) secu-
rity implications among off-the-shelf apps; and (iii) integrity verification against
encrypted .dex loading. Poeplau et al. [14] studied 1632 popular apps with over
one million downloads and reported that 10% of the apps were vulnerable to DCL
injection attacks. Apps using DCL are subject to code injection at the update time.
Popular code packers, Ijiami and Bangcle, load encrypted bytecode at runtime and
decrypt the same in memory [117].

(d) Anti-debugging (ADE): Anti-debugging is a popular anti-analysis technique that
identifies being executed in debugging mode. Hence, the attack code remains silent
upon sensing the debugging environment [118–121]. Stealth malware triggers the
desired malicious behavior at the correct instance. Under the unfavorable scenario,
they behave genuinely, suspending the hostile actions and changing the original
code to crash or altering the original execution path. The virtual malware setup fails
to identify such instances, creating an overhead. Anti-debugging techniques based
on the Java debug wire protocol (JDWP) or ptrace are preferred.

4.2.3. Anti-Emulation Transformation

Attackers deploy emulated environments, such as default Android emulators, QEMU,
or Genymotion, to investigate the payload interaction in a virtual environment. If the



Information 2023, 14, 374 16 of 38

sample identifies VMs, the app deactivates malicious payloads and behaves genuinely.
The attack payload is executed if the actual devices are available. The difference between
the environment of an emulator and an actual device can be determined based on their
features [41,122–125]. The emulator detection strategies relying on hardware design and
architecture are:

(a) Virtual machine aware (VMA)-based detection: The typical VMA techniques are
described in Table 2. These techniques assist the attackers in identifying VMs and
evading anti-malware tools and techniques [126].

(b) Programmed interaction detection (PID): Malware researchers analyze suspicious
apps via random input data with the monkey tool. It generates the pseudo-random
series of user events, such as touch and clicks, to cover all execution paths. As
a result, advanced malware can identify the apps using tool-generated inputs.
Furthermore, PID is restricted, especially when interacting with automated samples,
because certain malicious apps disguise their wrongdoings using the user interface
(UI).

(c) Detection based on context switches: The context-switch-based QEMU emulator
exploits the race condition among two threads to identify suitable locking mecha-
nisms. The method neither needs timing disparity nor kernel privileges. Multiple
threads are concurrently executed due to the hardware and OS support for context
switching [127,128]. An involuntary context switch occurs when the CPU is inter-
rupted by an external timer event. The following facts can be seen based on context
switching and the QEMU emulator interrupt handling technique; consequently, we
can build a method to identify the QEMU environment accordingly. First, context
switching seldom occurs in the QEMU scenario when processing a basic block, as
stated in the introduction. Nevertheless, this behavior is not found in actual CPU
execution scenarios. Instead, instructions within a QEMU primary block environ-
ment are processed atomically, although the device does not find atomicity. We can
use this functionality to distinguish between the QEMU emulator and the actual
CPU by executing a multi-threaded application with the problem of race conditions.
In a typical CPU scenario, we can attain the state of the race condition by executing
this code, but in a QEMU emulator environment, the race condition seldom occurs.

(d) Detection based on the TB-cache: DBI (DBI is short for dynamic binary instrumentation)-
based emulators improve efficiency via translation-caching method [129–134]. Al-
though this caching mechanism improves emulation efficiency, it also introduces a
substantial time disparity when executed on a real CPU. The same can be used to
identify an emulated environment [135]. We can determine the virtual environment
based on the execution efficiency of the self-modifying code.

(e) Detection based on unaligned vectorization: The inability of the CPU demand to
access the cache with granularity at the byte level creates memory access problems.
For instance, some 64-bit CPU designs obtain a 60-bit addressing bus for memory
fetching. Because of the missing four bits, one such CPU can now only read memory
if the requested memory address is a factor of sixteen. When the CPU needs to read
a memory address, not a factor of sixteen, it must read the memory multiple times
and reassemble the required data. The feature discriminates between the native
hardware and the operating system-emulated environments without relying on
the kernel. The unaligned vectorization approach beats other emulator detection
techniques in many ways, making it ideal for commercial app developers and
suppliers that want to secure their apps against hostile reverse engineering [136,137].

(f) Virtual machine introspection (VMI): This refers to a set of strategies for reconstruct-
ing a virtual machine monitor (VMM)’s guest context [138,139]. For instance, it is
comprehending the critical kernel data structures (such as task lists) and extracting
meaningful information from them. Unfortunately, having a thorough awareness of
the kernel’s data structures in closed-source operating systems is very challenging.
Dolan-Gavitt et al. [94] developed a method to resolve this issue, automatically
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producing introspection tools involving observing the behavior of similar tools
inside the guest system and then simulating the same processing beyond the guest
system.

(g) The VMI approach is intended to record OS API calls alongside its arguments
and return the result to generate a malware profile [138,139]. VMI-based methods
examine how a system call appears by presuming that the monitored program
implements the invoking pattern given by OS’s binary application interface (ABI).
They can do this while minimizing their visible footprint and reconstructing the
events as if the OS were explicitly instrumented. Consequently, evasion techniques
are not resistant to VMI-based methods.

5. Evaluation of Evasion Detection Frameworks

The authors looked at studies published in the last decade that compared malware
detection frameworks as opposed to the evasion tactics covered in Section 4. From 2011 to
2021, the authors examined Android malware platforms and the robustness of these frame-
works against listed polymorphism evasion techniques, as listed in Table 5 in Appendix 1.
The indications “

√
”, “×”, or an empty cell that intersects the framework row with the eva-

sion column identify researchers who tested their framework against certain evasions [140].
“
√

” indicates that the study either tested or assumed it could detect the evasion tactic. At
the same time, “×” means the researcher assumed that the evasion technique bypassed
their Android malware detection framework. Incomplete reports of framework evaluation
studies on evasion tactics or assumptions are shown by an empty cell. For example, Droid-
Mat [141,142], MAMA [143], QuantDroid [144], DenDroid [145], Sheen et al. [146,147], and
RAPID [148] insufficiently reported the evaluation of their proposed detection framework
against evasion techniques.

Table 5. Evaluation of static, dynamic and hybrid frameworks against polymorphism evasion techniques.

Polymorphism Evasion Techniques

Framework Year
Package Transformation Encryption Analysis Type

RPK PKR IDR DEN BEN PEN ST DY HY

DroidMOSS [142] 2012
√ √

RiskRanker [149] 2012
√ √ √ √

MobSafe [150] 2012
√

DroidOLytics [151] 2013
√ √ √ √

DroidAPIMiner [61] 2013
√ √

QuantDroid [144] 2013
√

Amos et al. [152] 2013
√

AndroTotal [153] 2013
√

Shalaginov et al. [154] 2013
√

ARIGUMA [155] 2013
√

Petsas et al. [115] 2013
√

ViewDroid [156] 2014
√ √

DroidGraph [63] 2014
√ √

MysteryChecker [157] 2014
√ √ √ √ √

ResDroid [158] 2014 × × ×
√

Lee & Kim et al. [124] 2014
√
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Table 5. Cont.

Polymorphism Evasion Techniques

Framework Year
Package Transformation Encryption Analysis Type

RPK PKR IDR DEN BEN PEN ST DY HY

TaintDroid [159] 2014
√

Pektas et al. [160] 2014
√

Soh et al. [161] 2014
√ √ √ √

Shabtai et al. [162] 2014
√

VetDroid [163] 2014
√

DroidBarrier [164] 2014
√

Droid-Sec [165] 2014
√

AMDetector [166] 2014
√

Chen et al. [15] 2015
√ √ √ √

APK Auditor [147] 2015 × × × × × ×
√

Dempster–Shafe [167] 2015
√ √

Dexhunter [70] 2015
√ √ √ √

DroidExec [168] 2015
√ √

AnDarwin [64] 2015
√ √ √

AndroSimilar [169] 2015
√ √ √ √ √

ngrams [170] 2015
√ √ √ √

SeqMalSpec [18] 2015
√ √

DroidEagle [171] 2015
√ √

Sheen et al. [146] 2015
√

Droidkin [172] 2015
√ √ √ √ √ √ √

Shen et al. [173] 2015
√ √ √

SherlockDroid [174] 2015
√ √ √ √

Kuhnel et al. [175] 2015
√ √ √ √ √

APSET [176] 2015
√

Afonso et al. [177] 2015
√

Maier et al. [178] 2015
√

Singh et al. [179] 2015
√

Gheorghe et al. [180] 2015
√

DWroidDump [181] 2015
√ √ √ √

Ng, D. V et al. [182] 2015
√

GroddDroid [183] 2015
√

Wu et al. [184] 2015
√ √

MARVIN [185] 2015
√

Mobile-Sandbox [71] 2015
√ √ √ √

StaDynA [69] 2015
√

Tap-Wave-Rub [186] 2015
√

Gurulian et al. [187] 2016
√ √ √ √

TriggerScope [188] 2016
√
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Table 5. Cont.

Polymorphism Evasion Techniques

Framework Year
Package Transformation Encryption Analysis Type

RPK PKR IDR DEN BEN PEN ST DY HY

Wu et al. 2016 [184] 2016 ×
√

AAMO [34] 2016
√ √ √ √ √ √ √

Wang et al. [68] 2016
√ √

MocDroid [189] 2016
√

Battista et al. [190] 2016
√ √ √

RAPID [148] 2016
√

DynaLog [191] 2016
√

Q-Floid [192] 2016
√

Diao et al. [39] 2016
√

Droiddetector [193] 2016
√

Andro-Dumpsys [194] 2016
√

Droidsieve [195] 2017
√ √ √ √

Ordol et al. [196] 2017
√ √ √ √ √

Hydroid [197] 2017
√ √ √ √ √ √

Ares et al. [198] 2018
√

BACCI [199] 2018
√ √ √ √ √ √ √

Droidcat [200] 2018
√ √ √ √

AndrODet [201] 2019
√ √ √ √ √

Dadidroid [202] 2019
√ √ √ √ √ √ √

Obfusifier [203] 2019
√ √ √ √

Kim et al. [204] 2019
√ √ √ √

Amin et al. [95] 2020
√ √

Alazab et al. [205] 2020
√ √

DAMBA [206] 2020
√ √ √ √ √ √

IMCFN [207] 2020
√ √ √ √ √ √ √

Alrzini et al. [208] 2020
√ √ √ √

Alrzini et al. [208] 2020
√ √ √ √

Karbab et al. [209] 2021
√ √ √ √ √

BLADE [210] 2021
√ √ √

Dharmalingam et al. [211] 2021
√ √ √ √

IntDroid [212] 2021
√ √ √ √

PetaDroid [209] 2021
√ √ √ √ √ √

CamoDroid [6] 2022
√ √ √ √

Molina et al. [213] 2023
√ √ √ √ √ √

RPK: Repacking, PKR: Package Renaming, IDR: Identifier Renaming DEN: Data Encryption, BEN: Bytecode
Encryption, PEN: Payload Encryption ST: Static Analysis, DY: Dynamic Analysis, HY: Hybrid Analysis.

5.1. Polymorphism Evasion Detection

The authors contrast the static, dynamic, and hybrid frameworks against polymor-
phism evasion approaches. Static, dynamic analysis, and their combination, also known
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as hybrid analysis-based malware detection approaches, are shown in Table 5. In the two
areas of encryption and package transformation, we analyze every framework against
polymorphism transformation strategies. Each framework employs different datasets with
a specific count of benign Android and malicious apps in the evaluation process. For illus-
tration, APK Auditor [147] examined its framework with 1853 benign and 6909 malware
apps, totaling 8762 apps downloaded from the Google Play Store and some other datasets
such as Contagio (http://contagiomobile.deependresearch.org/index.html, accessed on
1 March 2023) and Genome Project (malgenomeproject.org, accessed on 1 March 2023).
APK Auditor detected malware with an accuracy of 88%. Many evasion techniques re-
strict the identifying malware apps by the APK Auditor framework, even though it is
signature-based.

5.1.1. Package Transformation

(a) Repacking evasion detection (RPK): Various detection approaches, including static
analysis, can be used to identify repacking evasion. Dempster–Shafe [167] used a
control flow graph (CFG) to explore the repacking features and claimed enhanced
resilience to app obfuscation techniques. Similarly, Droidgraph [63] used the level
of hierarchical class to identify which malicious code was repackaged from the
original APK. This accounts for garbage code, code obfuscation, and API call
requests [205,214]. Compared to the native call graph approaches with polyno-
mial time, the code comparison time decreased. On the other hand, reflection eludes
detection frameworks that use the control flow graph. Some static analysis methods,
such as AnDarwin [64], AndroSimilar [169], ngrams [170], DroidEagle [171], Droid-
Kin [172], DroidOLytics [151], MystryChecker [157], AndroSimilar and AAMO, are
capable of detecting RPK evasions. In contrast, most works on dynamic analysis
give minimal consideration to RPK evasion. Two dynamic analysis frameworks,
developed by Wu et al. ([184]) and Soh et al. ([161]), were compared to RPK evasion
methods in their research articles.

(b) Package renaming detection (PKR): Some frameworks based on static analysis, such
as Droidkin [172] and DroidOLytics [151], were tested for their capacity to identify
PKR evasion techniques. However, other works, including Andro-Tracer [106], APK
Auditor [147], DroidGraph [63], COVERT [215] and Vulhunter [216] inadequately
analyzed their approaches against PKR evasion, as summarized in Table 5. Fur-
thermore, some studies analyzing app frameworks based on dynamic and hybrid
analysis techniques are incompetent to investigate their robustness against PKR
evasion, except for one research study conducted by Shen et al. [173].

(c) Evasion detection (IDR): DroidOLytics [151], AndroSimilar [169], Droidkin [172],
Kuhnel [175], Triggerscope [188], AAMO [34], and Battista et al. [190] claim that
their Android static framework for malware identification can identify IDR evasion,
as shown in Table 5. Unfortunately, several other researchers underestimate its
resistance to IDR evasion [217]. Table 5 illustrates the problem of ensuring the
resilience of Android frameworks for malware identification over IDR evasion
approaches and examines the research’s framework concerning approaches to IDR
evasion.

In conclusion, most static analysis-based Android frameworks for malware analysis
systems can identify package transformation strategies (RPK, IDR, and PKR). On the other
hand, most detection systems relying on dynamic and hybrid analysis do not sufficiently
assess or report their resistance to IDR evasion tactics [218].

5.1.2. Encryption Transformation Evasion Detection

In conclusion, static analysis reveals evasion techniques based on encryption, demon-
strated by DroidKin [172], DexHunter [70], Kuhnel [175], AAMO [34], and Sherlock-
droid [174], are capable of identifying BEN, PEN, and DEN encryption evasions. Mys-
teryChecker [157], AndroSimilar [169], DroidKin [172], AAMO [34], Shen [173], Kuh-

http://contagiomobile.deependresearch.org/index.html
malgenomeproject.org
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nel [175] and SSherlockDroid [174] were able to identify DEN evasions using static analysis-
based detection techniques. Similarly, Q-Floid [192] and Soh [161] reported resistance to
BEN evasions. Some detection techniques are based on dynamic analysis. Instead of using
a de-compilation tool, DWroidDump [181] used executable code by accomplishing code
extraction from the memory of DVM [219], hampered by the three encryption evasion
methodologies listed in Table 5. Despite this, the RiskRanker framework [149] based on hy-
brid analysis techniques reported accurate identification of BEN, PEN, and DEN encryption
evasion. Other hybrid analysis-based frameworks, such as Mobile-Sandbox [71], MAR-
VIN [185], and AMDetector [166], tested their frameworks for BEN and DEN encryption
evasion and claimed accurately identification. Likewise, the framework DWroidDump [181]
also tested for encryption evasion strategies.

5.2. Metamorphism Evasion Detection

The Table 6 show the robustness of the framework used to identify malicious Android
apps using dynamic analysis, static analysis, and their combination, also known as hybrid
analysis. It also considers some advanced detection techniques for metamorphism evasion.

Table 6. Evaluation of static, dynamic and hybrid frameworks against metamorphism evasion techniques.

Metamorphism Evasion Techniques

Framework Year
Code Obfuscation Code Transformation Anti-Emulation Analysis Type

CRE CIN DCI NEX FIO REF DCL ADE VMA PID ST DY HY

Chaugule et al. [220] 2011
√ √

Tao [221] 2012
√ √

DroidScope [114] 2012
√ √

Andromaly [222] 2012
√

RiskRanker [149] 2012
√ √ √ √ √ √ √

MobSafe [150] 2012
√

DroidOLytics [151] 2013
√ √ √ √

DroidAPIMiner [61] 2013
√ √ √ √

Glodek et al. [223] 2013 × × ×
√

Amos et al. [152] 2013
√

AndroTotal [153] 2013
√

Shalaginov et al. [154] 2013
√

ARIGUMA [155] 2013
√ √

Yerima et al. [224] 2014
√ √

DroidGraph [63] 2014
√ √ √ √

MysteryChecker [157] 2014
√ √

AdDetect [225] 2014
√ √ √

×
√

ResDroid [158] 2014
√

× ×
√

DenDroid [145] 2014
√

Lee et al. & Kim [124] 2014
√

TaintDroid [159] 2014
√

Pektas et al. [160] 2014
√ √

Soh et al. [161] 2014
√ √ √
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Table 6. Cont.

Metamorphism Evasion Techniques

Framework Year
Code Obfuscation Code Transformation Anti-Emulation Analysis Type

CRE CIN DCI NEX FIO REF DCL ADE VMA PID ST DY HY

Shabtai et al. [162] 2014
√

VetDroid [163] 2014
√

DroidBarrier [164] 2014
√ √

Petsas et al. [115] 2014
√ √

Droid-Sec [165] 2014
√

AMDetector [166] 2014
√ √ √

× ×
√

Chen et al. [15] 2015
√

APK-Auditor [147] 2015 × × × × × × × × × ×
√

Andro-Tracer [106] 2015 × × × × × × × × × ×
√

Dempster–Shafe [167] 2015
√ √ √ √

Dexhunter [70] 2015
√ √ √ √ √ √ √

DroidExec [168] 2015
√ √ √ √

AnDarwin [64] 2015
√ √ √

AndroSimilar [169] 2015
√ √ √ √

ngrams [170] 2015 × × × × × × × × × ×
√

SeqMalSpec [18] 2015
√ √

DroidEagle [171] 2015
√ √ √ √

VulHunter [216] 2015 ×
√

Droidkin [172] 2015
√

Shen et al. [173] 2015
√ √ √ √

SherlockDroid [174] 2015
√ √

Kuhnel et al. [175] 2015
√ √

Elish et al. [7] 2015 × × × × ×
√

APSET [176] 2015
√

Afonso et al. [177] 2015 ×
√

Maier et al. [178] 2015
√ √ √ √

Singh et al. [179] 2015
√ √ √

Gheorghe et al. [180] 2015
√

DWroidDump [181] 2015
√

Ng, D. V et al. [182] 2015
√

GroddDroid [183] 2015
√ √ √

Wu et al. [184] 2015
√

MARVIN [185] 2015
√ √ √ √

× × ×
√

Mobile-Sandbox [71] 2015
√

× ×
√

StaDynA [69] 2015
√ √ √
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Table 6. Cont.

Metamorphism Evasion Techniques

Framework Year
Code Obfuscation Code Transformation Anti-Emulation Analysis Type

CRE CIN DCI NEX FIO REF DCL ADE VMA PID ST DY HY

Tap-Wave-Rub [186] 2015
√ √ √

Gurulian et al. [187] 2016
√ √ √ √

TriggerScope [188] 2016 × × ×
√

DroidRA [65] 2016
√ √

AAMO [34] 2016
√ √ √ √ √ √

Wang et al. [74] 2016
√ √ √ √

MocDroid [189] 2016
√ √ √ √

Battista et al. [190] 2016
√ √ √ √

RAPID [148] 2016
√

DynaLog [191] 2016
√

Q-Floid [192] 2016
√ √

×
√

Diao et al. [39] 2016
√ √

Droiddetector [193] 2016 ×
√

Andro-Dumpsys [194] 2016 ×
√

DroidSieve [197] 2017
√ √ √ √ √ √

Abaid et al. [10] 2017
√ √

EnDroid [226] 2018
√ √ √

BACCI [199] 2018
√ √ √ √ √ √

Kim et al. [204] 2019
√ √ √

AndrODet [201] 2019
√ √

Dadidroid [202] 2019
√ √

Obfusifier [203] 2019
√ √ √ √

DAMBA [206] 2020
√ √ √ √ √

IMCFN [207] 2020
√ √ √ √ √

Wu et al. [227] 2021
√

Liu et al. [228] 2021
√

PetaDroid [209] 2021
√ √ √ √

BLADE [210] 2021
√ √

S3Feature [229] 2022
√ √ √ √

ROOTECTOR [230] 2023
√ √ √ √

CRE: Code Reordering, CIN: Call Indirection, DCI: Dead Code Insertion, NEX: Native Exploits, FIO: Function
Inlining and Outlining, REF: Reflection API, DCL: Dynamic Code Loading, ADE: Anti-debugging, VMA: Virtual
Machine Aware, PID: Programmed Interaction Detection, ST: Static Analysis, DY: Dynamic Analysis, HY: Hybrid
Analysis.

5.2.1. Code Obfuscation Detection

CRE, CIN, and DCI are the three types of code obfuscation; the following list explains
every evasion detection scheme in detail.

(a) Code reordering evasion detection (CRE): To manage and identify CRE evasions,
based on static analysis are offered by SeqMalSpec [18], AnDarwin [64], and Res-
Droid [158]. Similarly, utilizing the dynamic analysis sandboxing technique, Q-
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Floid [192] identified CRE evasion. Furthermore, CRE evasions are detected using
hybrid analysis frameworks, such as Mobile-Sandbox [71]. Despite this, CRE eludes
static analysis frameworks, such as Elish et al. [7] and ngrams [170], resulting in
numerous false negatives (FN).

(b) Call indirection evasion detection (CIN): The Android malware identification frame-
works based on call graphs [14,216] are effectively evaded by the CIN evasion
approach. Although CIN evasion is identified by some static frameworks, such as
DroidGraph [63], DexHunter [70], MocDroidMartin [189], AndroSimilar [151,169],
AdDetect [225], and Amandroid [231], a few fail, such as APK Andro-Tracer [106],
ngrams [170], Elish et al. [7], and Wu [184]. CIN can be identified using some detec-
tion frameworks based on dynamic analysis, such as Q-Floid [161,192], and some
hybrid analysis frameworks, such as MARVIN [166,185] and RiskRanker [149]. The
obfuscated function call was identified by app topological signature via graphlet
sampling (ACTS) from the malware sample. The ACTS framework was developed
by Tianchong et al. [232].

(c) Dead code insertion evasion detection (DCI): A code similarity-based Android
malware identification framework, AnDarwin [64], reported the detection of dead
code insertion. The code’s similarity technique employs distance vectors; thus,
AnDarwin is less resistant to transforming dead code insertions [64,233].
Changes in the distance–vector code enhances the semantic gap between the code
vector and dead code insertion transformation. The Q-Floid [192] framework ex-
amines the runtime behavior of a suspicious app based on dynamic analysis and
presents the qualitative data flow graph (QDFG). Q-Floid is based on desktop mal-
ware detection approaches and has been reported to be able to identify obfuscated
code. The QDFG [234] identifies the transformation of code obfuscation. Although,
Q-Floid fails to identify Android malware when employing monitoring services.
MysteryChecker [157] provides a novel attestation technique based on software
identifying repackaged malware using randomly generated encryption chains and
code obfuscation. DroidOLytics [151] employs statistical similarities to identify ob-
fuscated code and repackaged apps. It creates a signature repository with dynamic
length modifications to detect code cloning [235]. AndroSimilar [169] employs
signature-based identification approaches, achieving a 76% accuracy. However, it
has low recognition accuracy for repackaged applications and code obfuscation.

5.2.2. Advanced Code Transformation Detection

(a) NEX evasion detection: The static analysis framework DroidAPIMiner [61] reported
accuracy in identifying NEX evasion, illustrated in Table 6; similarly, the hybrid
analysis framework MARVIN [185] and the dynamic analysis framework DroidBar-
rier [164] claim to successfully identify an NEX evasion. Additionally, several static
analysis frameworks come across limitations in detecting NEX evasion tactics, such
as AdDetect [225], APK Auditor [147], Andro-Tracer [106], and ngrams [170].

(b) FIO evasion detection: Anti-virus solutions are compared to functional outlining
and inlining FIO evasions in AAMO [34,116]. On the other hand, dynamic and
hybrid studies need to evaluate the assessment of its framework over FIO evasion
sufficiently.

(c) REF evasion detection: Various frameworks based on static analysis, such as
DroidAPIMiner [61], DexHunter [70], SherLockDroid [174], Kuhnel [175], DroidRA [65],
and AAMO [34], evaluate the performance against REF evasion detection. Similarly,
Maier et al. [178] employed dynamic analysis techniques, while RiskRanker [149],
and StaDynA [69], used hybrid analysis techniques to investigate REF evasion
detection methods.

(d) DCL evasion detection: DroidAPIMiner [61], Poeplau [14], Dexhunter [70], Maier
et al. [178], RiskRanker [149], and StaDynA [69] are among the malware identifi-
cation platforms for Android OS. Other approaches, such as AndroSimilar [169],
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analyze their method inadequately for reflection handling and runtime code loading
approaches.

(e) ADE evasion detection: DexHunter [70] can only consider ADE evasion in the static
analysis framework approach. On the other hand, Q-Floid [192] dynamic analysis
was inadequate to detect ADE evasion.

5.2.3. Anti-emulation Detection

Only the PID and VMA evasion techniques are used in the anti-emulation evasions
explained below.

(a) Researchers combined physical Android devices with an emulator sandbox to dy-
namically execute apps as a defensive measure against VMA evasion [116,236–240].
Gajrani et al. [241], Hu et al. [242]. Dietzel et al. [243] offered a false responder
agent that provides misleading values to the malware regarding the execution en-
vironment. Singh [179] used the detection of user interactions and anti-emulators
to enhance the resilience of identifying dynamic malware [244]. Petsas et al. [115]
suggested several countermeasures for different types of evasion detection, such as
anti-emulation employing IMEI alteration and precise sensor simulation. However,
this countermeasure was not thoroughly evaluated. Dynalog et al. [191] enhanced
the performance of Android malware dynamic analysis; however, they relied on
an emulation tool vulnerable to detecting emulation evasions. Vidas et al. [245]
employed an actual device A5 system to capture system logs and network traffic
rather than utilizing an emulator in testing based on dynamic analysis [115,246]
and masquerade emulator as a legitimate device to combat VMA evasion. Anti-
emulation evasion tactics are the focus of several research works. However, at the
same time, some research raises red flags showing that there are not enough test beds
and malware samples available to explore anti-emulation evasion (e.g., [220,221]).
Nonetheless, Maier et al. [178] investigated VWA evasion and provided a method
based on comparing the APK’s behavior when installed on an emulator versus a
physical device.

(b) The fundamental disparity between the patterns of human interaction and key run-
ners allowed this sort of modification to elude automated dynamic analysis [191,247].
Rather than depending on emulation approaches or outdated virtualization,
Daio et al. [247] monitored the automated gesture and simulated user interactions
to determine if an app was under investigation or functioning normally. Some
sandboxing focused on anti-emulation evasion, occurring throughout the dynamic
analysis [247,248]; the majority of countermeasures have relied on hybrid analysis-
based identification frameworks.

6. Discussion

The possibilities of evasion identification based on static analysis frameworks are
represented in Figure 4. This figure has been utilized to comprehend the frameworks
that rely on a static assessment evaluation table. The pie graph approach depicts the
proliferation of static analysis-based malware analysis frameworks. Each partition describes
the percentage of static analysis-based solutions that have been proven effective against a
specific evasion technique. The data flow can reveal some transformation attacks unaltered
by these attacks. These transformations are detectable by static analysis [115]. Methods
for transformation attacks are renaming static strings (such as the names of methods and
classes), dead code insertion (DCI), code reordering (CRE), changing call directions (CIN),
data encryption (DEN), and encrypting payloads (PEN). For instance, 15 and 14% of static
malware detection frameworks consider CRE and CIN evasion techniques, respectively. The
figure also reveals a specific type of transformation attack undetectable by static analysis.
In Figure 4, evasion strategies such as programmed interaction detection (PID) and virtual
machine awareness (VMA) have 0 %, showing resistance to static analysis. Static code
investigation techniques identified trivial code obfuscation and evasions based on package
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transformation. However, significantly less research is available on anti-emulation and
sophisticated transformation techniques, as shown in Figure 4a.

In the case of dynamic code loading (DCL), Pektas [160] detected anti-emulation
evasion by employing a dynamic analysis technique developed to handle DCL evasion
malware, reaching 92% detection accuracy. However, Evasion detection based on dynamic
analysis approaches is risky and time-consuming, so most researchers avoid it. For exam-
ple, the dynamic analysis procedures in Mobile-Sandbox [71,249] took approximately 18
minutes to complete the analysis, which is more accurately determined by considering the
hardware specs of the server and APK size.
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Code obfuscation can render static analysis methods worthless. The dynamic analysis
technique [250] can be used to circumvent code obfuscation. As a result, sophisticated
malware may be able to identify surveillance and take steps to prevent its destructive
activities from being detected. Figure 4b displays the ability to detect dynamically loaded
code by an app using dynamic analysis, while researchers believe dynamic analysis handles
code transformation and basic obfuscation approaches. Malware samples from diverse
malware families are used to test the performance accuracy of the most recent malware
analysis frameworks. These samples do not reflect the proposed detection framework’s
true resilience against evasion strategies appropriately if the arbitrarily selected malware
categories neglect evasive approaches. This is the fundamental rationale for removing
accuracy from the assessment tables

The third form of evasion detection is based on hybrid analysis, necessitating a sig-
nificant amount of work to gather logs and characteristics of both dynamic and static
analyses. Furthermore, as demonstrated in Figure 4c, very little research has investigated
their frameworks for specific evasion tactics. In 2012, RiskRanker [149] began exposing the
topic of evasion and its impact on the detection accuracy rate. Anti-emulation evasions
were encountered in 2014 and 2015 by Petsas [115] and Tap-Wave-Rub [186], respectively.
They used the proximity sensor on the device to tell the difference between maliciously
induced activities and interactions with the end user.

7. Future Research Directions

New malware variants are spreading faster than their detection and analysis, prompt-
ing efforts and improvements to build a robust malware detection framework. Based on
this study, several insights were drawn and are listed below.

7.1. Metamorphic Evasion Constraints

After deep analysis of detection frameworks, static approaches fail to detect metamor-
phic evasion methods due to their dynamic characteristics. However, there is a need to
build dynamic and hybrid methods to achieve success in metamorphic evasion techniques.
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7.2. Standard Benchmarking

This study recommends improving the quality of Android malware literature by
appending its databases with comprehensive and collaborative benchmarking frameworks.
The benchmark here is a list of malware detection approaches to identify malware evasion
techniques.

7.3. Android Exploits

Android is a Linux-based, open-source OS. Malware authors employ root-level vulner-
abilities [251] to impact all Android versions because of the operating system’s openness.
An example of such an exploit is Dirty Cow CVE-20165195 [252]. Therefore, this study
suggests that future researchers work on the administrative level to identify potential
threats and find ways to fix all open doors for attackers.

7.4. Code Integrity Verification

Attackers use various methods to evade malware detection frameworks, with repack-
aging techniques by third-party authorities being one of the most popular criteria. Vi-
das et al. [253] developed a simple approach to solving the challenge of verifying an app’s
authenticity to safeguard users from malicious code in repackaged apps. Code integrity
should always be maintained. Researchers and app developers should focus on maintaining
the integrity of the code.

7.5. Process Authentication

Many experts utilize the model authorization approach to defend devices against
various vulnerabilities without an additional certification authority (CA) [164]. However,
the model authentication technique cannot locate payloads downloaded to install other
malicious apps. For example, DroidBarrier [164] is meant to save such installs by identifying
the underlying unauthenticated methods to thwart this attack. However, this method
cannot ensure the separation of hijacked processes detailed in subsequent attacks.

As a result, monitoring tactics executed on the device are often beneficial. For example,
suppose an unauthenticated process is initiated. In this case, the application should be
visible to avoid causing damage to the device and analyze and track the malicious program.
If malicious apps bypass all the monitoring barriers and obtain a malicious code, it will be
detected when attempting to execute that code on an unauthenticated device.

7.6. Triggering Malicious Code Assurance

The system ensures that malicious code executes during dynamic analysis sandboxing.
For example, TriggerScope [188] tries to find suspicious triggering by static analysis but can
easily be bypassed with the help of code obfuscation techniques. Similarly, the GroddDroid
framework activates all paths of each feature to verify that the malware is executed. Mean-
while, the GroddDroid [183] framework is intended to enable the execution paths of each
feature to ensure the execution of malicious code. Nevertheless, it needs to recognize the
branches of historical services to maintain the core activity. This is known as code coverage
and is still a problem for researchers. Covering possible extensions inside the app’s source
code of apps is required to solve this challenge.

8. Conclusions

Android malware has become more substantial and complex due to global evasion
techniques, evolving into a prominent incentive. This research exposes critical flaws in
Android malware detection systems, particularly when malware employs various eva-
sion approaches. As a result, this research looked at 88 Android malware identification
frameworks and 18 assessment articles to see how successful the escape detection tactics
are in Android malware identification frameworks. As a result, the study proposed a
taxonomy to categorize the evasion methods into metamorphism and polymorphism. The
polymorphism group includes package transformation and encryption branches, and the
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metamorphism group consists of three categories: anti-emulation, superior transformation,
and code obfuscation.

This research also highlighted the absence of studies comparing malware identifi-
cation against many prominent evasion approaches [254]. Therefore, we examine the
frameworks relying upon different evasion approaches and classified reviews solely on
different malware detection methods. According to the findings, few studies have exam-
ined the resilience of current Android malware identification systems to novel evasion
tactics. According to this research, the detection techniques depend on static analysis,
readily bypassed utilizing simple obfuscation techniques [106]. On the other hand, dy-
namic and hybrid approaches can deal with complex code transformation methods and
cutting-edge evasion detection approaches. Nevertheless, more studies are needed to assess
these frameworks regarding evasion methods.

The absence of complete test-bed tools to analyze the efficacy of existing, projected,
and future frameworks need to include reviews due to a lack of significant benchmarks
for evasion datasets and contemporary trending malware datasets. This work also demon-
strated that detection techniques based on static and dynamic analysis should focus more
on identifying evasion based on anti-emulation. Future goals include creating a uniform
evaluation system that accommodates all sorts of evasion tactics and remembering a future
version of malware that combines numerous evasion techniques.

Author Contributions: Conceptualization, P.F., R.B., N.E.M., and R.P.; methodology, P.F., R.B., V.J.,
S.B., N.E.M., and R.P.; software, P.F., R.B., V.J., S.B., and N.E.M.; validation, P.F., R.B., V.J., S.B., and
N.E.M.; formal analysis, P.F., R.B., V.J., S.B., and N.E.M.; investigation, P.F., R.B., V.J., S.B., and N.E.M.;
resources, P.F., R.B., V.J., S.B., and N.E.M.; data curation, P.F., R.B., V.J., S.B., and N.E.M.; writing—
original draft preparation, P.F., R.B., V.J., S.B., and N.E.M.; writing—review and editing, P.F., R.B., V.J.,
S.B., N.E.M. and R.P.; visualization, P.F., R.B., V.J., S.B., and N.E.M.; supervision, P.F., R.B. and R.P.;
project administration, P.F., R.B. and R.P.; funding acquisition, P.F., R.B., V.J., S.B., N.E.M., and R.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vasudevan, A.; Yerraballi, R. Cobra: Fine-grained malware analysis using stealth localized-executions. In Proceedings of the 2006

IEEE Symposium on Security and Privacy (S&P’06), Berkeley/Oakland, CA, USA, 21–24 May 2006; pp. 15–279.
2. Egele, M.; Kruegel, C.; Kirda, E.; Yin, H.; Song, D. Dynamic spyware analysis. Adv. Comput. Syst. Prof. Tech. Assoc. 2007, 18, 1–14.
3. Palmaro, F.; Franchina, L. Beware of Unknown Areas to Notify Adversaries: Detecting Dynamic Binary Instrumentation Runtimes

with Low-Level Memory Scanning. In Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1003–1019.
4. Brumley, D.; Hartwig, C.; Liang, Z.; Newsome, J.; Song, D.; Yin, H. Automatically identifying trigger-based behavior in malware.

In Botnet Detection; Springer: Berlin/Heidelberg, Germany, 2008; pp. 65–88.
5. Prünster, B.; Palfinger, G.; Kollmann, C. Fides: Unleashing the Full Potential of Remote Attestation. In Proceedings of the

International Conference on E-Business and Telecommunication Networks, Prague, Czech Republic, 26–26 July 2019; pp. 314–321.
6. Faghihi, F.; Zulkernine, M.; Ding, S. CamoDroid: An Android application analysis environment resilient against sandbox evasion.

J. Syst. Archit. 2022, 125, 102452. [CrossRef]
7. Profiling user-trigger dependence for Android malware detection. Comput. Secur. 2015, 49, 255–273. [CrossRef]
8. Singh, J.; Singh, J. A survey on machine learning-based malware detection in executable files. J. Syst. Archit. 2021, 112, 101861.

[CrossRef]
9. Singh, J.; Singh, J. Detection of malicious software by analyzing the behavioral artifacts using machine learning algorithms. Inf.

Softw. Technol. 2020, 121, 106273. [CrossRef]
10. Abaid, Z.; Kaafar, M.A.; Jha, S. Quantifying the impact of adversarial evasion attacks on machine learning based android malware

classifiers. In Proceedings of the 2017 IEEE 16th international symposium on network computing and applications (NCA),
Cambridge, MA, USA, 30 October–1 November 2017; pp. 1–10.

11. Singh, J.; Singh, J. Assessment of supervised machine learning algorithms using dynamic API calls for malware detection. Int. J.
Comput. Appl. 2022, 44, 270–277. [CrossRef]

12. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. EMULATOR vs REAL PHONE: Android Malware Detection Using Machine Learning. In
Proceedings of the IWSPA ’17, 3rd ACM on International Workshop on Security And Privacy Analytics, Scottsdale, AZ, USA,
24 March 2017; pp. 65–72. [CrossRef]

http://doi.org/10.1016/j.sysarc.2022.102452
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1016/j.sysarc.2020.101861
http://dx.doi.org/10.1016/j.infsof.2020.106273
http://dx.doi.org/10.1080/1206212X.2020.1732641
http://dx.doi.org/10.1145/3041008.3041010


Information 2023, 14, 374 29 of 38

13. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. DL-Droid: Deep learning based android malware detection using real devices. Comput.
Secur. 2020, 89, 101663. [CrossRef]

14. Poeplau, S.; Fratantonio, Y.; Bianchi, A.; Kruegel, C.; Vigna, G. Execute This! Analyzing Unsafe and Malicious Dynamic Code
Loading in Android Applications. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA,
USA, 23–26 February 2014; Volume 14, pp. 23–26. [CrossRef]

15. Chen, K.; Wang, P.; Lee, Y.; Wang, X.; Zhang, N.; Huang, H.; Zou, W.; Liu, P. Finding Unknown Malice in 10 Seconds: Mass
Vetting for New Threats at the Google-Play Scale. In Proceedings of the SEC’15, 24th USENIX Conference on Security Symposium,
Washington, DC, USA, 12–14 August 2015; pp. 659–674.

16. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Siemens, C. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the Network and Distributed System Security Symposium, San Diego, CA, USA,
23–26 February 2014; Volume 14, pp. 23–26.

17. You, I.; Yim, K. Malware Obfuscation Techniques: A Brief Survey. In Proceedings of the 2010 International Conference
on Broadband, Wireless Computing, Communication and Applications, Fukuoka, Japan, 4–6 November 2010; pp. 297–300.
[CrossRef]

18. Sufatrio; Chua, T.W.; Tan, D.; Thing, V. Accurate Specification for Robust Detection of Malicious Behavior in Mobile Environments.
In Proceedings of the European Symposium on Research in Computer Security, ESORICS 2015, Vienna, Austria, 21–25 September
2015; pp. 355–375. [CrossRef]

19. Sufatrio; Tan, D.J.J.; Chua, T.W.; Thing, V.L.L. Securing Android: A Survey, Taxonomy, and Challenges. ACM Comput. Surv. 2015,
47, 1–45. [CrossRef]

20. Xu, Z.; Zhang, J.; Gu, G.; Lin, Z. Goldeneye: Efficiently and effectively unveiling malware’s targeted environment. In Proceedings
of the International Workshop on Recent Advances in Intrusion Detection, Gothenburg, Sweden, 17–19 September 2014; pp. 22–45.

21. Rastogi, V.; Chen, Y.; Jiang, X. DroidChameleon: Evaluating Android Anti-Malware against Transformation Attacks. In
Proceedings of the ASIA CCS ’13, 8th ACM SIGSAC Symposium on Information, Computer and Communications Security,
Hangzhou, China, 8–10 May 2013; pp. 329–334. [CrossRef]

22. Galloro, N.; Polino, M.; Carminati, M.; Continella, A.; Zanero, S. A Systematical and longitudinal study of evasive behaviors in
windows malware. Comput. Secur. 2022, 113, 102550. [CrossRef]

23. Sihag, V.; Vardhan, M.; Singh, P. A survey of android application and malware hardening. Comput. Sci. Rev. 2021, 39, 100365.
[CrossRef]

24. Jusoh, R.; Firdaus, A.; Anwar, S.; Osman, M.Z.; Darmawan, M.F.; Ab Razak, M.F. Malware detection using static analysis in
Android: A review of FeCO (features, classification, and obfuscation). PeerJ Comput. Sci. 2021, 7, e522. [CrossRef] [PubMed]

25. Aslan, Ö.A.; Samet, R. A comprehensive review on malware detection approaches. IEEE Access 2020, 8, 6249–6271. [CrossRef]
26. Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey of malware detection in Android apps: Recommendations

and perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358. [CrossRef]
27. Chen, X.; Li, C.; Wang, D.; Wen, S.; Zhang, J.; Nepal, S.; Xiang, Y.; Ren, K. Android HIV: A study of repackaging malware for

evading machine-learning detection. IEEE Trans. Inf. Forensics Secur. 2019, 15, 987–1001. [CrossRef]
28. Bhat, P.; Dutta, K. A Survey on Various Threats and Current State of Security in Android Platform. ACM Comput. Surv. 2019, 52,

21. [CrossRef]
29. Sen, S.; Aydogan, E.; Aysan, A.I. Coevolution of mobile malware and anti-malware. IEEE Trans. Inf. Forensics Secur. 2018,

13, 2563–2574. [CrossRef]
30. Dai, P.; Pan, Z.; Li, Y. A Review of Researching on Dynamic Taint Analysis Technique. In Proceedings of the 2018 3rd Joint

International Information Technology, Mechanical and Electronic Engineering Conference (JIMEC 2018), Chongqing, China,
15–16 December 2018; pp. 118–123.

31. Xue, Y.; Meng, G.; Liu, Y.; Tan, T.H.; Chen, H.; Sun, J.; Zhang, J. Auditing anti-malware tools by evolving android malware and
dynamic loading technique. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1529–1544. [CrossRef]

32. Tam, K.; Feizollah, A.; Anuar, N.B.; Salleh, R.; Cavallaro, L. The Evolution of Android Malware and Android Analysis Techniques.
ACM Comput. Surv. 2017, 49, 76. [CrossRef]

33. Nguyen-Vu, L.; Chau, N.T.; Kang, S.; Jung, S. Android rooting: An arms race between evasion and detection. Secur. Commun.
Netw. 2017, 2017, 4121765. [CrossRef]

34. Preda, M.D.; Maggi, F. Testing android malware detectors against code obfuscation: A systematization of knowledge and unified
methodology. J. Comput. Virol. Hacking Tech. 2017, 13, 209–232. [CrossRef]

35. Hoffmann, J.; Rytilahti, T.; Maiorca, D.; Winandy, M.; Giacinto, G.; Holz, T. Evaluating Analysis Tools for Android Apps: Status
Quo and Robustness Against Obfuscation. In Proceedings of the CODASPY ’16, Sixth ACM Conference on Data and Application
Security and Privacy, Virtual, 26–28 April 2016; pp. 139–141. [CrossRef]

36. Kim, M.; Lee, T.J.; Shin, Y.; Youm, H.Y. A study on behavior-based mobile malware analysis system against evasion techniques.
In Proceedings of the 2016 international conference on information networking (ICOIN), Kota Kinabalu, Malaysia, 13–15 January
2016; pp. 455–457.

37. Faruki, P.; Bharmal, A.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Conti, M.; Rajarajan, M. Android security: A survey of issues,
malware penetration, and defenses. IEEE Commun. Surv. Tutor. 2014, 17, 998–1022. [CrossRef]

http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.14722/ndss.2014.23328
http://dx.doi.org/10.1109/BWCCA.2010.85
http://dx.doi.org/10.1007/978-3-319-24177-7_18
http://dx.doi.org/10.1145/2733306
http://dx.doi.org/10.1145/2484313.2484355
http://dx.doi.org/10.1016/j.cose.2021.102550
http://dx.doi.org/10.1016/j.cosrev.2021.100365
http://dx.doi.org/10.7717/peerj-cs.522
http://www.ncbi.nlm.nih.gov/pubmed/34825052
http://dx.doi.org/10.1109/ACCESS.2019.2963724
http://dx.doi.org/10.1016/j.cosrev.2020.100358
http://dx.doi.org/10.1109/TIFS.2019.2932228
http://dx.doi.org/10.1145/3301285
http://dx.doi.org/10.1109/TIFS.2018.2824250
http://dx.doi.org/10.1109/TIFS.2017.2661723
http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1155/2017/4121765
http://dx.doi.org/10.1007/s11416-016-0282-2
http://dx.doi.org/10.1145/2857705.2857737
http://dx.doi.org/10.1109/COMST.2014.2386139


Information 2023, 14, 374 30 of 38

38. Rastogi, V.; Chen, Y.; Jiang, X. Catch me if you can: Evaluating android anti-malware against transformation attacks. IEEE Trans.
Inf. Forensics Secur. 2013, 9, 99–108. [CrossRef]

39. Diao, W.; Liu, X.; Li, Z.; Zhang, K. Evading android runtime analysis through detecting programmed interactions. In Proceedings
of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Darmstadt Germany, 18–20 July 2016;
pp. 159–164.

40. Alaeiyan, M.; Parsa, S.; Conti, M. Analysis and classification of context-based malware behavior. Comput. Commun. 2019,
136, 76–90. [CrossRef]

41. Jang, D.; Jeong, Y.; Lee, S.; Park, M.; Kwak, K.; Kim, D.; Kang, B.B. Rethinking anti-emulation techniques for large-scale software
deployment. Comput. Secur. 2019, 83, 182–200. [CrossRef]

42. Zhang, F.; Leach, K.; Stavrou, A.; Wang, H.; Sun, K. Using hardware features for increased debugging transparency. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–20 May 2015; pp. 55–69.

43. Choi, Y.; Jeong, Y.; Jang, D.; Kang, B.B.; Lee, H. EmuID: Detecting presence of emulation through microarchitectural characteristic
on ARM. Comput. Secur. 2022, 113, 102569. [CrossRef]

44. Chen, K.H.; Shen, B.Y.; Yang, W. An automatic superword vectorization in LLVM. In Proceedings of the 16th Workshop on
Compiler Techniques for High-Performance and Embedded Computing, Taipei, Taiwan, 27–28 May 2010; pp. 19–27.

45. Mayrhofer, R.; Stoep, J.V.; Brubaker, C.; Kralevich, N. The android platform security model. ACM Trans. Priv. Secur. (TOPS) 2021,
24, 1–35. [CrossRef]

46. Kirat, D.; Vigna, G.; Kruegel, C. {BareCloud}: Bare-metal Analysis-based Evasive Malware Detection. In Proceedings of the 23rd
USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 287–301.

47. Gründling, B. App-Based (Im) plausible Deniability for Android. Ph.D. Thesis, Johannes Kepler University Linz, Linz,
Austria, 2020.

48. Arora, A.; Peddoju, S.K.; Conti, M. Permpair: Android malware detection using permission pairs. IEEE Trans. Inf. Forensics Secur.
2019, 15, 1968–1982. [CrossRef]

49. Lyvas, C. Security and Privacy Enhancing Mechanisms for the Android Operating System. Ph.D. Thesis, University of Piraeus,
Pireas, Greece, 2021.

50. Lee, Y.T.; Chen, H.; Jaeger, T. Demystifying Android’s Scoped Storage Defense. IEEE Secur. Priv. 2021, 19, 16–25. [CrossRef]
51. Heid, K.; Tefke, T.; Heider, J.; Staudemeyer, R.C. Android Data Storage Locations and What App Developers Do with It from

a Security and Privacy Perspective. In Proceedings of the 8th International Conference on Information Systems Security and
Privacy (ICISSP 2022), Online, 9–11 February 2022; pp. 378–387.

52. Abuthawabeh, M.K.A.; Mahmoud, K.W. Android malware detection and categorization based on conversation-level network
traffic features. In Proceedings of the 2019 International Arab Conference on Information Technology (ACIT), Al Ain, United
Arab Emirates, 3–5 December 2019; pp. 42–47.

53. Talos, C. PyREBox: Python scriptable reverse engineering sandbox. Retrieved Aug 2017, 12, 2018.
54. Zhou, Y.; Kim, D.W.; Zhang, J.; Liu, L.; Jin, H.; Jin, H.; Liu, T. Proguard: Detecting malicious accounts in social-network-based

online promotions. IEEE Access 2017, 5, 1990–1999. [CrossRef]
55. Piao, Y.; Jung, J.H.; Yi, J.H. Server-based code obfuscation scheme for APK tamper detection. Secur. Commun. Netw. 2016,

9, 457–467. [CrossRef]
56. Palmaro, F. Evaluating Dynamic Binary Instrumentation Systems for Conspicuous Features and Artifacts. In Digital Threats:

Research and Practice; Association for Computing Machinery: New York, NY, USA, 2022.
57. Li, X.; Li, K. Defeating the Transparency Features of Dynamic Binary Instrumentation. BlackHat USA. 2014. Available online:

https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf (accessed on
1 December 2022).

58. VirusTotal: An Alphabet Product That Analyzes Suspicious Files, URLs, Domains and IP Addresses. Available online:
https://www.virustotal.com/gui/home (accessed on 1 December 2022).

59. Stolfo, S.; Wang, K.; Li, W.J. Towards Stealthy Malware Detection. In Malware Detection; Advances in Information Security;
Springer: Boston, MA, USA, 2007; Volume 27, pp. 231–249.

60. Bunino, M. Reinforcement Learning-aided Dynamic Analysis of Evasive Malware. Master’s Thesis, Politecnico di Torino, Torino,
Italy, 2022.

61. Aafer, Y.; Du, W.; Yin, H. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android. In Proceedings
of the SecureComm 2013, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, Sydney, Australia, 25–27 September 2013; Volume 127, pp. 86–103. [CrossRef]

62. Apostolopoulos, T.; Katos, V.; Choo, K.K.R.; Patsakis, C. Resurrecting anti-virtualization and anti-debugging: Unhooking your
hooks. Future Gener. Comput. Syst. 2021, 116, 393–405. [CrossRef]

63. Kwon, J.; Jeong, J.; Lee, J.; Lee, H. DroidGraph: Discovering Android Malware by Analyzing Semantic Behavior. In Proceedings
of the IEEE Conference on Communications and Network Security (CNS) 2014, San Francisco, CA, USA, 29–31 October 2014.

64. Crussell, J.; Gibler, C.; Chen, H. AnDarwin: Scalable Detection of Android Application Clones Based on Semantics. IEEE Trans.
Mob. Comput. 2015, 14, 2007–2019. [CrossRef]

http://dx.doi.org/10.1109/TIFS.2013.2290431
http://dx.doi.org/10.1016/j.comcom.2019.01.003
http://dx.doi.org/10.1016/j.cose.2019.02.005
http://dx.doi.org/10.1016/j.cose.2021.102569
http://dx.doi.org/10.1145/3448609
http://dx.doi.org/10.1109/TIFS.2019.2950134
http://dx.doi.org/10.1109/MSEC.2021.3090564
http://dx.doi.org/10.1109/ACCESS.2017.2654272
http://dx.doi.org/10.1002/sec.936
https://www.blackhat.com/docs/us-14/materials/us-14-Li-Defeating-The-Transparency-Feature-Of-DBI.pdf
https://www.virustotal.com/gui/home
http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://dx.doi.org/10.1016/j.future.2020.11.004
http://dx.doi.org/10.1109/TMC.2014.2381212


Information 2023, 14, 374 31 of 38

65. Li, L.; Bissyandé, T.F.; Octeau, D.; Klein, J. DroidRA: Taming Reflection to Support Whole-Program Analysis of Android Apps. In
Proceedings of the ISSTA 2016, 25th International Symposium on Software Testing and Analysis, Saarbrucken, Germany, 18–20
July 2016; pp. 318–329. [CrossRef]

66. Zhang, F.; Leach, K.; Sun, K.; Stavrou, A. Spectre: A dependable introspection framework via system management mode. In
Proceedings of the 2013 43rd Annual IEEE/IFIP international conference on dependable systems and networks (DSN), Budapest,
Hungary, 24–27 June 2013; pp. 1–12.

67. Zhang, X.; Zhang, Y. ReACt: A Resource-centric Access Control System for Web-app Interactions on Android. In Proceedings of
the Web Conference 2021, Online, 12–23 April 2021; pp. 1459–1470.

68. Chen, J.; Wang, C.; Zhao, Z.; Chen, K.; Du, R.; Ahn, G.J. Uncovering the face of android ransomware: Characterization and
real-time detection. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1286–1300. [CrossRef]

69. Zhauniarovich, Y.; Ahmad, M.; Gadyatskaya, O.; Crispo, B.; Massacci, F. StaDynA: Addressing the Problem of Dynamic Code
Updates in the Security Analysis of Android Applications. In Proceedings of the CODASPY ’15, 5th ACM Conference on Data
and Application Security and Privacy, San Antonio, TX, USA, 2–4 March 2015; pp. 37–48. [CrossRef]

70. Zhang, Y.; Luo, X.; Yin, H. DexHunter: Toward Extracting Hidden Code from Packed Android Applications. In Proceedings of the
20th European Symposium on Research in Computer Security, Vienna, Austria, 21–25 September 2015; pp. 293–311. [CrossRef]

71. Spreitzenbarth, M.; Freiling, F.; Echtler, F.; Schreck, T.; Hoffmann, J. Mobile-Sandbox: Having a Deeper Look into Android
Applications. In Proceedings of the SAC ’13, 28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22
March 2013; pp. 1808–1815. [CrossRef]

72. Jiang, M.; Xu, T.; Zhou, Y.; Hu, Y.; Zhong, M.; Wu, L.; Luo, X.; Ren, K. EXAMINER: Automatically locating inconsistent
instructions between real devices and CPU emulators for ARM. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Lausanne, Switzerland, 22 February 2022; pp.
846–858.

73. Oberheide, J.; Miller, C. Dissecting the android bouncer. SummerCon2012 2012, 95, 110.
74. Ma, H.; Li, S.; Gao, D.; Wu, D.; Jia, Q.; Jia, C. Active warden attack: On the (in) effectiveness of Android app repackage-proofing.

IEEE Trans. Dependable Secur. Comput. 2021, 19, 3508–3520. [CrossRef]
75. VieiraB, B.; Rothermel, G.R.; Silva, E.; Bagheri, H.J. SEMEO: A Semantic Equivalence Analysis Framework for Obfuscated

Android Applications. In Proceedings of the Mobile and Ubiquitous Systems: Computing, Networking and Services: 18th EAI
International Conference, MobiQuitous 2021, Virtual Event, 8–11 November 2021; Volume 419, p. 322.

76. Wu, Y.; Dou, S.; Zou, D.; Yang, W.; Qiang, W.; Jin, H. Obfuscation-resilient Android malware analysis based on contrastive
learning. arXiv 2021, arXiv:2107.03799.

77. Cho, T.; Seo, S.H. A strengthened android signature management method. KSII Trans. Internet Inf. Syst. (TIIS) 2015, 9, 1210–1230.
78. Kim, Y.; Liszka, K.J.; Chan, C.C. Using DroidDream Android Malware Behavior for Identification of Other Android Malware

Families. In Proceedings of the International Conference on Security and Management (SAM), Las Vegas, NV, USA, 25–28 July
2016; p. 286.

79. Baldoni, R.; Coppa, E.; D’Elia, D.C.; Demetrescu, C. Assisting malware analysis with symbolic execution: A case study. In
Proceedings of the International Conference on Cyber Security Cryptography and Machine Learning, Beer-Sheva, Israel, 29–30
June 2017; pp. 171–188.

80. Schwartz, E.J.; Avgerinos, T.; Brumley, D. All you ever wanted to know about dynamic taint analysis and forward symbolic execu-
tion (but might have been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berleley/Oakland,
CA, USA, 16–19 May 2010; pp. 317–331.

81. Baldoni, R.; Coppa, E.; D’elia, D.C.; Demetrescu, C.; Finocchi, I. A survey of symbolic execution techniques. ACM Comput. Surv.
(CSUR) 2018, 51, 1–39. [CrossRef]

82. Borzacchiello, L.; Coppa, E.; D’Elia, D.C.; Demetrescu, C. Reconstructing C2 servers for remote access trojans with symbolic
execution. In Proceedings of the International Symposium on Cyber Security Cryptography and Machine Learning, Beer-Sheva,
Israel, 27–28 June 2019; pp. 121–140.

83. D’Onghia, M.; Salvadore, M.; Nespoli, B.M.; Carminati, M.; Polino, M.; Zanero, S. Apícula: Static Detection of API Calls in
Generic Streams of Bytes. Comput. Secur. 2022, 2022, 102775. [CrossRef]

84. Yakdan, K.; Dechand, S.; Gerhards-Padilla, E.; Smith, M. Helping johnny to analyze malware: A usability-optimized decompiler
and malware analysis user study. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
21–24 March 2016; pp. 158–177.

85. Wei, F.; Li, Y.; Roy, S.; Ou, X.; Zhou, W. Deep Ground Truth Analysis of Current Android Malware. In Detection of Intrusions and
Malware, and Vulnerability Assessment; Polychronakis, M., Meier, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 252–276.

86. Palfinger, G.; Prünster, B.; Ziegler, D.J. AndroTIME: Identifying Timing Side Channels in the Android API. In Proceedings of
the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
Guangzhou, China, 10–13 November 2020; pp. 1849–1856.

87. Santos Filho, A.; Rodríguez, R.J.; Feitosa, E.L. Evasion and Countermeasures Techniques to Detect Dynamic Binary Instru-
mentation Frameworks. In Digital Threats: Research and Practice; Association for Computing Machinery: New York, NY, USA,
2022.

http://dx.doi.org/10.1145/2931037.2931044
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://dx.doi.org/10.1145/2699026.2699105
http://dx.doi.org/10.1007/978-3-319-24177-7_15
http://dx.doi.org/10.1145/2480362.2480701
http://dx.doi.org/10.1109/TDSC.2021.3100877
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1016/j.cose.2022.102775


Information 2023, 14, 374 32 of 38

88. Bhan, R.; Pamula, R.; Faruki, P.; Gajrani, J. Blockchain-enabled secure and efficient data sharing scheme for trust management in
healthcare smartphone network. J. Supercomput. 2023, in press. [CrossRef]

89. Zhou, Y.; Jiang, X. Dissecting Android Malware: Characterization and Evolution. In Proceedings of the 2012 IEEE Symposium on
Security and Privacy, San Francisco, CA, USA, 20–23 May 2012; pp. 95–109. [CrossRef]

90. Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. Androzoo: Collecting millions of android apps for the research community. In
Proceedings of the 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), Austin, TX, USA, 14–15
May 2016; pp. 468–471.

91. Alahy, Q.E.; Chowdhury, M.; Soliman, H.; Chaity, M.S.; Haque, A.Android malware detection in large dataset: Smart approach. In
Proceedings of the Future of Information and Communication Conference, San Francisco, CA, USA, 5–6 March 2020; pp. 800–814.

92. Glanz, L.; Amann, S.; Eichberg, M.; Reif, M.; Hermann, B.; Lerch, J.; Mezini, M. CodeMatch: Obfuscation Won’T Conceal Your
Repackaged App. In Proceedings of the ESEC/FSE 2017, 2017 11th Joint Meeting on Foundations of Software Engineering,
Paderborn, Germany, 4–8 September 2017; pp. 638–648. [CrossRef]

93. Canfora, G.; Medvet, E.; Mercaldo, F.; Visaggio, C.A. Acquiring and Analyzing App Metrics for Effective Mobile Malware
Detection. In Proceedings of the IWSPA ’16, 2016 ACM on International Workshop on Security And Privacy Analytics, New
Orleans, LA, USA, 11 March 2016; pp. 50–57. [CrossRef]

94. Dolan-Gavitt, B.; Leek, T.; Zhivich, M.; Giffin, J.; Lee, W. Virtuoso: Narrowing the semantic gap in virtual machine introspection.
In Proceedings of the 2011 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 22–25 May 2011; pp. 297–312.

95. Amin, M.; Tanveer, T.A.; Tehseen, M.; Khan, M.; Khan, F.A.; Anwar, S. Static malware detection and attribution in android
byte-code through an end-to-end deep system. Future Gener. Comput. Syst. 2020, 102, 112–126. [CrossRef]

96. Cimato, S.; De Santis, A.; Ferraro Petrillo, U. Overcoming the obfuscation of Java programs by identifier renaming. J. Syst.
Software 2005, 78, 60–72. [CrossRef]

97. Kirat, D.; Vigna, G. Malgene: Automatic extraction of malware analysis evasion signature. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 769–780.

98. Miramirkhani, N.; Appini, M.P.; Nikiforakis, N.; Polychronakis, M. Spotless sandboxes: Evading malware analysis systems using
wear-and-tear artifacts. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May
2017; pp. 1009–1024.

99. Oltrogge, M. TLS on Android–Evolution over the Last Decade. Saarländische Universitäts-und Landesbibliothek. 2021. Avail-
able online: https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/32875/1/thesis_final_Oltrogge.pdf (accessed
on 1 December 2022).

100. Afifi, F.; Anuar, N.B.; Shamshirband, S.; Choo, K.K.R. DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile
Malware. PLoS ONE 2016, 11, e0162627. [CrossRef]

101. Rafiq, H.; Aleem, M.; Islam, M.A. On the Evaluation of Android Malware Detectors: Evaluating Malware Detectors. Sukkur IBA J.
Comput. Math. Sci. 2018, 2, 20–28.

102. Kalysch, A. Android Application Hardening: Attack Surface Reduction and IP Protection Mechanisms; Friedrich-Alexander-Universitaet
Erlangen-Nuernberg: Erlangen, Germany, 2020.

103. Aonzo, S.; Georgiu, G.C.; Verderame, L.; Merlo, A. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
SoftwareX 2020, 11, 100403. [CrossRef]

104. Franke, B. Fast Cycle-Approximate Instruction Set Simulation. In Proceedings of the SCOPES ’08, 11th International Workshop
on Software & Compilers for Embedded Systems, Munich Germany, 13–14 March 2008; pp. 69–78. [CrossRef]

105. Alrabaee, S.; Debbabi, M.; Wang, L. A Survey of Binary Code Fingerprinting Approaches: Taxonomy, Methodologies, and
Features. ACM Comput. Surv. (CSUR) 2022, 55, 1–41. [CrossRef]

106. Elsersy, W.F.; Feizollah, A.; Anuar, N.B. The rise of obfuscated Android malware and impacts on detection methods. PeerJ Comput.
Sci. 2022, 8, e907. [CrossRef]

107. Muralidharan, T.; Cohen, A.; Gerson, N.; Nissim, N. File Packing from the Malware Perspective: Techniques, Analysis Approaches,
and Directions for Enhancements. ACM Comput. Surv. 2022, 55, 108. [CrossRef]

108. Elgharabawy, M. Cross-vendor Security Analysis of Android Unix Domain Sockets. Ph.D. Thesis, Concordia University, Montréal,
QC, Canada, 2021.

109. Filho, A.S.; Rodríguez, R.J.; Feitosa, E.L. Evasion and Countermeasures Techniques to Detect Dynamic Binary Instrumentation
Frameworks. Digit. Threat. Res. Pract.e (DTRAP) 2022, 3, 1–28. [CrossRef]

110. Lau, B.; Svajcer, V. Measuring virtual machine detection in malware using DSD tracer. J. Comput. Virol. 2010, 6, 181–195.
[CrossRef]

111. Omella, A. Methods for Virtual Machine Detection. Grupo S21sec Gestión SA. 2006. Available online: https://www.s21sec.com/
(accessed on 1 December 2022).

112. Wang, J.B.; Lian, Y.F.; Chen, K. Virtualization detection based on data fusion. In Proceedings of the 2012 International Conference
on Computer Science and Information Processing (CSIP), Xi’an, China, 24–26 August 2012; pp. 393–396. [CrossRef]

113. Agman, Y.; Hendler, D. BPFroid: Robust Real Time Android Malware Detection Framework. arXiv 2021, arXiv:2105.14344.
114. Yan, L.K.; Yin, H. {DroidScope}: Seamlessly Reconstructing the {OS} and Dalvik Semantic Views for Dynamic Android Malware

Analysis. In Proceedings of the 21st USENIX Security Symposium (USENIX Security 12), Bellevue, WA, USA, 8–10 August 2012;
pp. 569–584.

http://dx.doi.org/10.1007/s11227-023-05272-6
http://dx.doi.org/10.1109/SP.2012.16
http://dx.doi.org/10.1145/3106237.3106305
http://dx.doi.org/10.1145/2875475.2875481
http://dx.doi.org/10.1016/j.future.2019.07.070
http://dx.doi.org/10.1016/j.jss.2004.11.019
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/32875/1/thesis_final_Oltrogge.pdf
http://dx.doi.org/10.1371/journal.pone.0162627
http://dx.doi.org/10.1016/j.softx.2020.100403
http://dx.doi.org/10.1145/1361096.1361109
http://dx.doi.org/10.1145/3486860
http://dx.doi.org/10.7717/peerj-cs.907
http://dx.doi.org/10.1145/3530810
http://dx.doi.org/10.1145/3480463
http://dx.doi.org/10.1007/s11416-008-0096-y
https://www.s21sec.com/
http://dx.doi.org/10.1109/CSIP.2012.6308876


Information 2023, 14, 374 33 of 38

115. Petsas, T.; Voyatzis, G.; Athanasopoulos, E.; Polychronakis, M.; Ioannidis, S. Rage against the virtual machine: Hindering
dynamic analysis of android malware. In Proceedings of the Seventh European Workshop on System Security, Amsterdam, The
Netherlands, 13–16 April 2014; pp. 1–6.

116. Sharma, A.; Gupta, B.B.; Singh, A.K.; Saraswat, V. Orchestration of APT malware evasive manoeuvers employed for eluding
anti-virus and sandbox defense. Comput. Secur. 2022, 115, 102627. [CrossRef]

117. Qu, Z.; Alam, S.; Chen, Y.; Zhou, X.; Hong, W.; Riley, R. DyDroid: Measuring Dynamic Code Loading and Its Security Implications
in Android Applications. In Proceedings of the 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), Denver, CO, USA, 26–29 June 2017; pp. 415–426. [CrossRef]

118. Zhang, F.; Leach, K.; Stavrou, A.; Wang, H. Towards transparent debugging. IEEE Trans. Dependable Secur. Comput. 2016,
15, 321–335. [CrossRef]

119. Shi, H.; Mirkovic, J. Hiding debuggers from malware with apate. In Proceedings of the Symposium on Applied Computing,
Marrakech, Morocco, 4–6 April 2017; pp. 1703–1710.

120. Lindorfer, M.; Kolbitsch, C.; Milani Comparetti, P. Detecting environment-sensitive malware. In Proceedings of the International
Workshop on Recent Advances in Intrusion Detection, Menlo Park, CA, USA, 20–21 September 2011; pp. 338–357.

121. Ferrie, P. The Ultimate Anti-Debugging Reference. Available online: https://www.anti-reversing.com/ (accessed on 1 December
2022).

122. Sinha, A.; Di Troia, F.; Heller, P.; Stamp, M. Emulation Versus Instrumentation for Android Malware Detection. In Digital Forensic
Investigation of Internet of Things (IoT) Devices; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–20.

123. Conley, J.; Andros, E.; Chinai, P.; Lipkowitz, E. Use of a game over: Emulation and the video game industry, a white paper. Nw. J.
Tech. Intell. Prop. 2003, 2, 261.

124. Lee, S. A study on android emulator detection for mobile game security. J. Korea Inst. Inf. Secur. Cryptol. 2014, 25, 1067–1075.
125. Jing, Y.; Zhao, Z.; Ahn, G.J.; Hu, H. Morpheus: Automatically Generating Heuristics to Detect Android Emulators. In Proceedings

of the ACSAC ’14, 30th Annual Computer Security Applications Conference, New Orleans, LA, USA, 8–12 December 2014;
pp. 216–225. [CrossRef]

126. Shi, H.; Mirkovic, J.; Alwabel, A. Handling anti-virtual machine techniques in malicious software. ACM Trans. Priv. Secur. (TOPS)
2017, 21, 1–31. [CrossRef]

127. Brengel, M.; Backes, M.; Rossow, C. Detecting hardware-assisted virtualization. In Proceedings of the International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, San Sebastian, Spain, 7–8 July 2016; pp. 207–227.

128. Oyama, Y. How does malware use RDTSC? A study on operations executed by malware with CPU cycle measurement. In
Proceedings of the International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Gothenburg,
Sweden, 19–20 June 2019; pp. 197–218.

129. D’Elia, D.C.; Coppa, E.; Nicchi, S.; Palmaro, F.; Cavallaro, L. SoK: Using dynamic binary instrumentation for security (and how
you may get caught red handed). In Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security,
Auckland, New Zealand, 9–12 July 2019; pp. 15–27.

130. Peng, F.; Deng, Z.; Zhang, X.; Xu, D.; Lin, Z.; Su, Z. {X-Force}:{Force-Executing} Binary Programs for Security Applications.
In Proceedings of the 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014;
pp. 829–844.

131. Sun, K.; Li, X.; Ou, Y. Break Out of the Truman Show: Active Detection and Escape of Dynamic Binary Instrumentation. Black
Hat Asia. 2016. Available online: https://www.blackhat.com/us-16/briefings/schedule/ (accessed on 1 December 2022).

132. Kirsch, J.; Zhechev, Z.; Bierbaumer, B.; Kittel, T. PwIN–Pwning Intel piN: Why DBI is unsuitable for security applications. In
Proceedings of the European Symposium on Research in Computer Security, Copenhagen, Denmark, 26–30 September 2018;
pp. 363–382.

133. Lee, Y.B.; Suk, J.H.; Lee, D.H. Bypassing Anti-Analysis of Commercial Protector Methods Using DBI Tools. IEEE Access 2021,
9, 7655–7673. [CrossRef]

134. Nethercote, N.; Seward, J. Valgrind: A framework for heavyweight dynamic binary instrumentation. ACM Sigplan Not. 2007,
42, 89–100. [CrossRef]

135. Paleari, R.; Martignoni, L.; Roglia, G.F.; Bruschi, D. A fistful of red-pills: How to automatically generate procedures to detect CPU
emulators. In Proceedings of the USENIX Workshop on Offensive Technologies (WOOT), Montreal, QC Canada, 10 August 2009;
Volume 41, p. 86.

136. Jiang, M.; Xu, T.; Zhou, Y.; Hu, Y.; Zhong, M.; Wu, L.; Luo, X.; Ren, K. Automatically Locating ARM Instructions Deviation
between Real Devices and CPU Emulators. arXiv 2021, arXiv:2105.14273.

137. Dinaburg, A.; Royal, P.; Sharif, M.; Lee, W. Ether: Malware Analysis via Hardware Virtualization Extensions. In Proceedings
of the CCS ’08, 15th ACM conference on Computer and Communications Security, Alexandria, VA, USA, 27–31 October 2008;
pp. 51–62. [CrossRef]

138. Liu, W.; Liu, X.; Li, Z.; Liu, B.; Yu, R.; Wang, L. Retrofitting LBR Profiling to Enhance Virtual Machine Introspection. IEEE Trans.
Inf. Forensics Secur. 2022, 17, 2311–2323. [CrossRef]

139. Melvin, A.A.R.; Kathrine, G.J.W.; Ilango, S.S.; Vimal, S.; Rho, S.; Xiong, N.N.; Nam, Y. Dynamic malware attack dataset leveraging
virtual machine monitor audit data for the detection of intrusions in cloud. Trans. Emerg. Telecommun. Technol. 2022, 33, e4287.
[CrossRef]

http://dx.doi.org/10.1016/j.cose.2022.102627
http://dx.doi.org/10.1109/DSN.2017.14
http://dx.doi.org/10.1109/TDSC.2016.2545671
https://www.anti-reversing.com/
http://dx.doi.org/10.1145/2664243.2664250
http://dx.doi.org/10.1145/3139292
https://www.blackhat.com/us-16/briefings/schedule/
http://dx.doi.org/10.1109/ACCESS.2020.3048848
http://dx.doi.org/10.1145/1273442.1250746
http://dx.doi.org/10.1145/1455770.1455779
http://dx.doi.org/10.1109/TIFS.2022.3183409
http://dx.doi.org/10.1002/ett.4287


Information 2023, 14, 374 34 of 38

140. D’Elia, D.C.; Coppa, E.; Palmaro, F.; Cavallaro, L. On the dissection of evasive malware. IEEE Trans. Inf. Forensics Secur. 2020,
15, 2750–2765. [CrossRef]

141. Wu, D.J.; Mao, C.H.; Wei, T.E.; Lee, H.M.; Wu, K.P. DroidMat: Android Malware Detection through Manifest and API Calls
Tracing. In Proceedings of the 2012 Seventh Asia Joint Conference on Information Security, Tokyo, Japan, 9–10 August 2012;
pp. 62–69. [CrossRef]

142. Zhou, W.; Zhou, Y.; Jiang, X.; Ning, P. Detecting Repackaged Smartphone Applications in Third-Party Android Marketplaces. In
Proceedings of the CODASPY ’12, Second ACM Conference on Data and Application Security and Privacy, San Antonio, TX,
USA, 7–9 February 2012; pp. 317–326. [CrossRef]

143. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Nieves, J.; Bringas, P.G.; Álvarez Marañón, G. MAMA: Manifest Analysis for
Malware Detection in Android. Cybern. Syst. 2013, 44, 469–488. [CrossRef]

144. Markmann, T.; Gessner, D.; Westhoff, D. QuantDroid: Quantitative approach towards mitigating privilege escalation on Android.
In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp.
2144–2149. [CrossRef]

145. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Blasco, J. Dendroid: A text mining approach to analyzing and classifying code
structures in Android malware families. Expert Syst. Appl. 2014, 41, 1104–1117. [CrossRef]

146. Sheen, S.; Ramalingam, A. Malware detection in Android files based on multiple levels of learning and diverse data sources. In
Proceedings of the Third International Symposium on Women in Computing and Informatics, Kerala, India, 10–13 August 2015;
pp. 553–559.

147. Talha, K.A.; Alper, D.I.; Aydin, C. APK Auditor: Permission-based Android malware detection system. Digit. Investig. 2015,
13, 1–14. [CrossRef]

148. Zhang, X.; Breitinger, F.; Baggili, I. Rapid Android Parser for Investigating DEX files (RAPID). Digit. Investig. 2016, 17, 28–39.
[CrossRef]

149. Grace, M.; Zhou, Y.; Zhang, Q.; Zou, S.; Jiang, X. RiskRanker: Scalable and Accurate Zero-Day Android Malware Detection. In
Proceedings of the MobiSys ’12, 10th International Conference on Mobile Systems, Applications, and Services, Ambleside, UK,
25–29 June 2012; pp. 281–294. [CrossRef]

150. Xu, J.; Yu, Y.; Chen, Z.; Cao, B.; Dong, W.; Guo, Y.; Cao, J. MobSafe: Cloud computing based forensic analysis for massive mobile
applications using data mining. Tsinghua Sci. Technol. 2013, 18, 418–427. [CrossRef]

151. Faruki, P.; Laxmi, V.; Ganmoor, V.; Gaur, M.S.; Bharmal, A. DroidOLytics: Robust Feature Signature for Repackaged Android
Apps on Official and Third Party Android Markets. In Proceedings of the 2013 2nd International Conference on Advanced
Computing, Networking and Security, Mangalore, India, 15–17 December 2013; pp. 247–252. [CrossRef]

152. Amos, B.; Turner, H.; White, J. Applying machine learning classifiers to dynamic Android malware detection at scale. In
Proceedings of the 2013 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy,
1–5 July 2013; pp. 1666–1671.

153. Maggi, F.; Valdi, A.; Zanero, S. AndroTotal: A Flexible, Scalable Toolbox and Service for Testing Mobile Malware Detectors. In
Proceedings of the SPSM ’13, Third ACM Workshop on Security and Privacy in Smartphones & Mobile Devices, Berlin, Germany,
8 November 2013; pp. 49–54. [CrossRef]

154. Shalaginov, A.; Franke, K. Automatic rule-mining for malware detection employing neuro-fuzzy approach. In Proceedings of the
Norsk Informasjonssikkerhetskonferanse (NISK), Stavanger, Norway, 18–20 November 2013.

155. Zhong, Y.; Yamaki, H.; Yamaguchi, Y.; Takakura, H. ARIGUMA Code Analyzer: Efficient Variant Detection by Identifying
Common Instruction Sequences in Malware Families. In Proceedings of the 2013 IEEE 37th Annual Computer Software and
Applications Conference (COMPSAC), Kyoto, Japan, 22–26 July 2013; pp. 11–20. [CrossRef]

156. Zhang, F.; Huang, H.; Zhu, S.; Wu, D.; Liu, P. ViewDroid: Towards Obfuscation-Resilient Mobile Application Repackaging
Detection. In Proceedings of the WiSec ’14, 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks,
Oxford, UK, 23–25 July 2014; pp. 25–36. [CrossRef]

157. Jeong, J.; Seo, D.; Lee, C.; Kwon, J.; Lee, H.; Milburn, J. MysteryChecker: Unpredictable attestation to detect repackaged malicious
applications in Android. In Proceedings of the 2014 9th International Conference on Malicious and Unwanted Software: The
Americas (MALWARE), Fajardo, PR, USA, 28–30 October 2014; pp. 50–57. [CrossRef]

158. Shao, Y.; Luo, X.; Qian, C.; Zhu, P.; Zhang, L. Towards a Scalable Resource-Driven Approach for Detecting Repackaged Android
Applications. In Proceedings of the ACSAC ’14, 30th Annual Computer Security Applications Conference, New Orleans, LA,
USA, 8–12 December 2014; pp. 56–65. [CrossRef]

159. Enck, W.; Gilbert, P.; Han, S.; Tendulkar, V.; Chun, B.G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An Information-
Flow Tracking System for Realtime Privacy Monitoring on Smartphones. ACM Trans. Comput. Syst. 2014, 32, 1–29. [CrossRef]
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