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Abstract: This work explores the use of infrared low-cost cameras for monitoring peripheral oxygen
saturation (SpO2), a vital sign that is particularly important for individuals with fragile health,
such as the elderly. The development of contactless SpO2 monitoring utilizing RGB cameras has
already proven successful. This study utilizes the Eulerian Video Magnification (EVM) technique to
enhance minor variations in skin pixel intensity in particular facial regions. More specifically, the
emphasis in this study is in the utilization of infrared cameras, in order to explore the possibility
of contactless SpO2 monitoring under low-light or night-time conditions. Many different methods
were employed for regression. A study of machine learning regression methods was performed,
including a Generalized Additive Model (GAM) and an Extra Trees Regressor, based on 12 novel
features extracted from the extracted amplified photoplethysmography (PPG) signal. Deep learning
methods were also explored, including a 3D Convolution Neural Network (CNN) and a Video Vision
Transformer (ViViT) architecture on the amplified forehead/cheeks video. The estimated SpO2 values
of the best performing method reach a low root mean squared error of 1.331 and an R2 score of 0.465
that fall within the acceptable range for these applications.

Keywords: peripheral oxygen saturation (SpO2); machine learning regression; extra trees regression;
deep learning; Video Vision Transformer

1. Introduction

Tracking vital signals, such as SpO2, which measure the level of oxygen in the blood, is
important in countries with a large geriatric population for several reasons. First and fore-
most, older adults are more susceptible to chronic health conditions, such as cardiovascular
disease [1], chronic obstructive pulmonary disease (COPD) [2], and sleep apnea [3], all of
which can affect oxygen saturation levels. Monitoring SpO2 can help identify early warning
signs of these conditions, allowing for timely intervention and management. For example,
low oxygen saturation levels can indicate that an individual is not getting enough oxygen to
their body, which can be a sign of a serious condition, such as COPD [4] or sleep apnea [5].
Secondly, changes in oxygen saturation levels can also indicate the presence of other health
issues, including infections, anemia, and even cancer [6]. Monitoring these signals can help
detect these issues early on, when they are more treatable and provide a more holistic view
of the individual’s health. Lastly, in countries with a large geriatric population, there is
a growing need for remote monitoring solutions to help manage the healthcare of older
adults. In this paper, the focus is on exploring the potential of non-contact methods to
estimate peripheral oxygen saturation (SpO2) utilizing data retrieved from an infrared
camera. As far as our knowledge and research shows, there have not been any previous
attempts or studies aimed at estimating SpO2 without physical contact using an infrared
camera, lacking an external infrared light source. The motivation behind using infrared
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cameras is that there might be cases during the evening or night-time, where common RGB
cameras cannot offer any significant image quality due to low light levels. Using infrared
cameras, systems can continue monitoring people’s vital signs remotely during their sleep,
without the need to attach monitoring sensors to patients.

Peripheral oxygen saturation (SpO2) refers to the percentage of oxygenated hemoglobin
in the blood, compared to the total amount of hemoglobin present [7,8]. It is an important
clinical measurement used to evaluate a person’s oxygenation status, which is a crucial
factor in many physiological processes and can impact overall health. A normal SpO2
reading is typically between 96 and 100% [7], with lower values indicating a lack of ad-
equate oxygen delivery to the body’s tissues. Peripheral oxygen saturation (SpO2) is
mathematically defined as [8]

SpO2 =
HbO2

HbO2 + Hb
× 100% (1)

where Hb is the de-oxygenated hemoglobin and HbO2 is the oxygenated hemoglobin. The
measurement is typically taken using a pulse oximeter. This device works by shining two
different wavelengths of light, usually red and infrared [9], through the skin and into the
blood vessels of a peripheral body part, such as a finger or earlobe. The light passing
through the blood absorbs and scatters differently, based on the presence of oxygenated
and deoxygenated hemoglobin. The pulse oximeter measures the amount of light absorbed
at each wavelength and calculates the SpO2 value based on the ratio of the absorbed light.

Unfortunately, direct skin contact with the patient is necessary for pulse oximetry
measurement, and this is not always possible due to their relatively invasive nature, time-
consuming procedures, sources of error, and high costs. These factors render oximeters less
desirable options for monitoring SpO2. Non-contact techniques for measuring vital signs
effectively address the previously mentioned challenges [10–12]. These studies opened up
opportunities for new advancements, such as image photoplethysmography (iPPG) and
remote photoplethysmography (rPPG), i.e., contactless techniques for monitoring blood
volume changes in the microvascular bed of human tissue. Image photoplethysmography
involves the use of cameras and imaging systems, such as Laser Speckle Contrast Imaging
(LSCI) [13]. The camera works by shining a laser onto a sample and measuring the intensity
fluctuations, caused by red blood cells moving through the tissue [14,15]. Later, it sends
the data off for offline processing, which can be analyzed to determine the blood volume
changes. Remote photoplethysmography, on the other hand, involves the use of light-
emitting diodes (LEDs) or other light sources that are placed at a distance from the tissue,
and the changes in light reflection or transmission are measured by a remote photodetector.
The data collected by the photodetector is then used to calculate the changes in blood
volume [16]. In [17], Akamatsu et al. use RGB camera inputs to predict the heart rate and
SpO2 levels using motion amplification and a deep-learning approach.

Eulerian Video Magnification (EVM) is a technique, proposed by Wu et al. [18], in order
to amplify and thus make visible very small motions, captured by current RGB cameras, that
are normally invisible to the human eye. When applied to image photoplethysmography,
Eulerian Video Magnification (EVM) can enhance the accuracy and sensitivity of the
measurement of oxygen saturation (SpO2) levels. This is due to the fact that the EVM
technique can detect even the slightest changes in skin blood flow [18], providing a more
detailed and precise measurement of oxygen saturation, or the patient’s physiological
state in general, allowing for better monitoring and treatment of medical conditions. Thus,
in this paper, we propose the use of EVM, as a preprocessing step to enhance the video
content captured by the infrared camera. Recent research has explored and demonstrated
various methods for estimating oxygen saturation levels using facial video with multimodal
physiological data generation [19] or via DC and AC component extraction of a spatio-
temporal map using facial videos [17].

The aim of this work is to evaluate the feasibility of using infrared single-channel
videos for the accurate and efficient estimation of SpO2. The motivation behind this
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investigation is the potential advantages of using single-channel infrared videos, including
reduced computational complexity and lower hardware requirements that can be used
to inform the design and development of future SpO2 estimation systems. Additionally,
our study shows that the proposed SpO2 estimation methodology using feature extraction
performs better than the state-of-the-art SpO2 estimation methods previously established
by Akamatsu et al. [17].

2. Dataset Protocol and Equipment

In order to assess the performance of the proposed method for estimating peripheral
oxygen saturation (SpO2), a dataset of infrared facial videos with SpO2 measurements was
created. Twenty one (21) participants took part in two experiments each. To ensure a relaxed
and calm state, it was decided that each subject would be monitored for two (2) minutes.
The reference point for each participant’s oxygen saturation was a commercial pulse
oximeter (JPD-500D ControlBios Oxicore Pulse Oximeter) that tracked the SpO2 levels
continuously during the 2 min trials. Some of the subjects were recorded in a dark room,
while the rest were filmed in a room with natural sunlight using an infrared camera. The
participants were instructed to remain as still as possible for 2 min during each recording.
During the first video recording, they were asked to breathe normally and during the
second recording, they were asked to hold their breath as much and as long as they felt
comfortable, in order to capture lower SpO2 levels. To avoid potential registration issues,
the participants were seated at a fixed distance from the camera.

The authors used a wired Google Nest Cam to capture the videos of the participants.
The camera was set to “Infrared Always” mode and had a resolution of 1920× 1080 Full HD.
The frame rate of the camera was 30 fps. The camera was placed at eye level, 75 cm away
from the participants, to minimize any distortion that might have been caused by the wide-
angle lenses of the camera. The video clips were processed from the surveillance stream
by first downloading them from Google’s Cloud service, where they were uploaded. It is
crucial to keep in mind that the video clips contained a significant amount of compression
noise, which had the potential to affect the accuracy of the facial feature extraction process.
Thus, we had to work with the compressed video clips that were available through the
Google Cloud service, since direct extraction of the raw sensor data was not possible with
the current software provided by Google. The main aim of this practice was to demonstrate
the feasibility of the proposed approach, even with lower-end commercial equipment, as
opposed to more high-end cameras with higher resolution or frame rate that would not be
easily available to an average home user. Despite the considerable amount of compression
noise, the proposed approach managed to produce satisfactory results that can validate our
proof of concept.

3. Proposed Methodology

The proposed methodology consists of mainly four steps. Figure 1 depicts a flowchart
of the proposed system. The first step entails the detection of the face and extracts the
desired facial areas for the procedure. The second step includes the motion magnification
step. During the third step, we extract the proposed features from the desired facial regions.
In the final step, the extracted features or the extracted regions are presented to a traditional
machine learning or a deep learning regression system that predicts the SpO2 index. In the
following sections, these steps will be analysed in more detail.
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Figure 1. A flowchart of the proposed SpO2 estimation methodology. In terms of regression, the
flowchart mainly demonstrates that in our experiments, both traditional machine learning and deep
learning regression algorithms were tested but not used simultaneously.

The proposed methodology consists of four steps:

1. Detect the face and extract the desired facial areas for the procedure.
2. Apply motion magnification.
3. Extract the proposed features from the desired facial regions.
4. The extracted features or the extracted regions are presented to a traditional machine

learning or a deep learning regression system that predicts the SpO2 index.

In order to provide a clear and concise representation of our methodology, we have created
a flowchart in Figure 1 that summarizes the various steps involved in our SpO2 estimation
approach. In the following sections, these steps will be analysed in more detail. It should
be stressed that Figure 1 outlines the conducted experiments, which implies that both
traditional machine learning and deep learning methods were tested for regression. The
system does not use both machine and deep learning regression algorithms simultaneously.

3.1. Facial Segmentation

The facial area was deliberately selected for the estimation of SpO2, with a focus on
the forehead and the left and right cheek regions. The high levels of blood flow in the
facial regions would provide more accurate and reliable SpO2 readings. Additionally,
the forehead and cheeks are easily accessible for both men and women. One should also
consider the fact that the jaw, lips and chin areas may be covered with facial hair in men,
rendering them difficult to use for monitoring purposes. The method employed in this
research involves utilizing 2 min video clips recorded from an infrared camera as input. At
first, the Viola–Jones algorithm [20] is employed to detect the face in the 2 min video clip
and then, the next step is to isolate and identify the specific regions of the forehead and the
left/right cheek in the detected face. This is accomplished employing some standard ratios
between standard face landmarks in the average human face, as discussed in more detail
in [21–23].

Figure 2 depicts the required information about the average human face, in order to
estimate the coordinates of three rectangular regions containing the forehead, and the left
and right cheek. In the most likely scenario, the bounding box, generated by the Viola–Jones
algorithm, would encompass a rectangular region extending from one ear to the other, and
from the forehead to the chin, encapsulating the entire face. Assuming that the identified
rectangular area is actually a square, this simplifies the calculations involved in determining
the accurate coordinates of the desired regions of interest. This simplification also reduces
the computational cost during the ROI video frame sequence extraction process. Let X
and Y represent the distances from the chin to the top of the head and the chin to the
forehead respectively, constant φ is the golden ratio, and W represents the width of the
facial segments that needs to be subtracted in order to eliminate extraneous features, such
as the eyebrows and eyes. Following Figure 2, it is straightforward to derive the following
two equations:

2Y
3

=
X
2
+ W (2)

X
2

=
2Y
9
(1 + φ) (3)
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The value of W can then be determined, as follows:

W =
2Y
9
(2− φ) =

2Y
9
(2− 1

2
−
√

5
2

) = Y(
1
3
−
√

5
9

) (4)

Since the value of Y will be known from the bounding box, determined by the Viola–Jones
algorithm, the desired regions of interest can now be accurately cropped. This allows for
successful isolation of these regions and subsequent analysis of their photoplethysmo-
graphic signals.

Figure 2. The proportion analysis of the human face involves focusing on specific regions of interest,
such as the forehead and the left/right cheek, which are highlighted.

It should be noted that the Viola–Jones algorithm may be sensitive to factors such
as camera angle and position of the head with respect to the camera. However, we make
the assumption that the participant’s head is facing the camera straight at their eye level,
75 cm away, as this was the setup during the experiment. This assumption is made in
order to simplify the facial segmentation process and avoid dealing with the complexities
that may arise from varying camera angles and head positions. Figure 3 depicts the
experimental setup that was used during data acquisition. This setup was fixed for all
subjects, therefore, minimising the risk of face identification and registration errors. The
examination of the signal processing techniques used in this study will be presented in
depth in the following section.
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Figure 3. The experimental setup that was used during our experiment. The subject is seated at a
fixed distance from the camera and instructed to stay still and look at the camera. The right arm of
the subject is placed on the table and a commercial oximeter measures the real SpO2 values from the
index finger of the right hand.

3.2. Motion Magnification

The subsequent step involves the application of the Eulerian Video Magnification
method, as proposed by Wu et al. [18], with the purpose of enhancing the signals of the
blood flow in the facial regions, as captured by the infrared camera. This was achieved by
magnifying the subtle variations in the intensity of the infrared light, due to the changing
blood flow, by setting the amplification factor to α = 120. Assuming a small invisible
movement δ(t) at pixel r = (x, y) of the original video sequence V(x, y, t), the motion
magnification approach attempts to magnify the movement and produce the magnified
video sequence I(x, y, t), as follows:

I(r, t) = V(r, t) + αB(r, t) ≈ f (r + (1 + α)δ(t)) (5)

Wu et al. [18] perform a Laplacian pyramid decomposition for each frame and the
motion amplification is performed along the time axis t. The concept can be extended
for multiple frequencies, where we can select a range of motion frequencies that can be
amplified by the framework. The frequency range of amplification for this application
was carefully chosen to be between 0.4 and 4 Hz. This frequency range encompasses the
typical human heart rate range, even in instances where the heart rate can increase to an
extremely high rate (supraventricular tachycardia—SVT), reaching a peak of 240 beats per
minute (bpm), according to Garratt et al. [24]. In their study, Kong et al. [8] employed
a frequency range that was similar to the one used in the present work, to amplify the
blood flow signals in their experiments. In order to decrease the computational cost of the
proposed approach, motion magnification is performed only to the three extracted facial
areas and not to the whole face.

Eulerian Video Magnification (EVM) is a powerful tool for visualizing subtle temporal
variations in videos that are difficult or impossible to perceive with the naked eye. EVM has
been successfully used in a variety of applications, including extracting vital physiological
information from videos of human faces [10,25] and animals [26].
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3.3. Feature Extraction

Several unique features that are inherently associated with the statistical characteristics
of the iPPG signal can be derived from the three targeted areas of interest. These features
could provide valuable insights and contribute to a better understanding of the iPPG signal.
Some basic statistical measurements for this task were proposed in [8,10]. More specifically,
in [8,10] the mean value and standard deviation of two color channels were employed as
features from one facial region. In our case, we use a single IR channel and three facial
regions. Due to the limited information provided by the single channel, we investigated
the use of combinations of spatial and temporal statistics (mean and standard deviation)
from all three regions. In essence, we concentrate our analysis on four distinct features that
can be derived from the intensity values of the single-channel video frames. Assume that a
sequence of motion-magnified frame sequence Ii(x, y, t), where i = 1, 2, 3 represents each
of the three facial areas, x, y are the spatial coordinates and t the frame index. The proposed
features F i

j are given by the following:

1. The mean of the average intensity of all frames:

F i
1 = meant{meanx,y{Ii(x, y, t)}} (6)

2. The standard deviation of the average intensity of all frames:

F i
2 = stdt{meanx,y{Ii(x, y, t)}} (7)

3. The mean of the standard deviation of the intensity of all frames:

F i
3 = meant{stdx,y{Ii(x, y, t)}} (8)

4. The standard deviation of the standard deviation of the intensity of all frames:

F i
4 = stdt{stdx,y{Ii(x, y, t)}} (9)

In summary, we estimate four different combinations of mean values and standard
deviation over spatial or temporal axes. In total, the extraction of four features for each of
the three regions of interest results in a total of twelve features. These extracted features,
which have been proposed in this work, will be utilized as inputs for traditional machine
learning regression algorithms in the upcoming section.

4. Machine Learning Regression

Previous studies [8,10,25] have utilized multiple colour channels and traditional
methodologies, which enabled them to fine-tune their models by performing simple linear
regression. However, our study differs in that we utilized a single colour channel and con-
cluded that linear regression was insufficient for accurately modeling our data. Therefore,
we had to explore additional regression algorithms, including Neural Networks, to achieve
an acceptable level of accuracy in our model. This highlights the importance of carefully
selecting appropriate methodologies based on the specific characteristics of the dataset
and the research question at hand, rather than relying on standard approaches used in
previous studies.

4.1. Traditional Techniques

Machine learning techniques have also sought to perform regression, i.e., prediction
of an output value, based on a set of input values. Therefore, many techniques have been
proposed in the past. In this study, we tested a number of these techniques that were
included in the popular scikit-learn Python library. We used the twelve proposed features
as input to the these regression techniques and the output value was the measured SpO2.
The techniques that were used were the following: Linear regression, Ridge regression,
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SGD Regressor, ElasticNet, Lars, Lasso, LassoLars, Huber Regressor, Quantile Regressor,
RANSAC Regressor, Theilsen Regressor, Poisson Regressor, Tweedie Regressor, Gamma
Regressor, AdaBoost Regressor, Bagging Regressor, Extra Trees Regressor, HistGradient
Boosting Regressor, Gradient Boosting Regressor, and Random Forest Regressor. The full
list of regression models that were used in the present study is presented in detail in Table 1,
where the parameters for each technique are depicted.

Table 1. A collective performance overview of the algorithms used. RMSE and absolute error scores
are expressed in percentage terms (best performance in bold).

Regression Algorithm Average RMSE Minimum RMSE MAE MAPE R2 Score No. Features

Linear Regression 1.565 1.481 1.206 0.012 0.155 5
Ridge 1.599 1.582 1.304 0.013 0.024 11
SGD Regressor 1.919 1.863 1.651 0.017 −0.424 3
ElasticNet 1.615 1.612 1.318 0.014 −0.009 5
Lars 1.574 1.483 1.213 0.013 0.126 4
Lasso (alpha = 10−4) 1.612 1.604 1.316 0.014 0.000 7
LassoLars (alpha = 10−4) 1.565 1.523 1.260 0.014 0.000 7
Huber Regressor 1.581 1.498 1.179 0.012 0.149 6
Quantile Regressor 1.753 1.730 1.272 0.013 −0.158 3
RANSAC Regressor 1.880 1.840 1.279 0.013 −0.198 5
Theilsen Regressor 1.674 1.512 1.268 0.013 0.106 4
Poisson Regressor 1.615 1.612 1.318 0.014 0.000 6
Tweedie Regressor 1.615 1.612 1.318 0.014 0.000 8
Gamma Regressor 1.615 1.612 1.318 0.014 0.000 11
AdaBoost Regressor (5, 50, 0.1) 1 1.352 1.235 0.956 0.010 0.386 5
AdaBoost Regressor (5, 100, 0.1) 1 1.343 1.226 0.957 0.010 0.411 5
AdaBoost Regressor (10, 50, 0.1) 1 1.410 1.245 0.927 0.010 0.428 7
AdaBoost Regressor (10, 100, 0.1) 1 1.401 1.246 0.923 0.010 0.398 6
Bagging Regressor (5, 50) 2 1.355 1.230 0.980 0.010 0.374 5
Bagging Regressor (10, 50) 2 1.391 1.189 0.927 0.010 0.427 8
Bagging Regressor (5, 100) 2 1.346 1.212 0.975 0.010 0.393 9
Bagging Regressor (10, 100) 2 1.379 1.202 0.920 0.010 0.406 6
Extra Trees Regressor (50) 3 1.337 1.184 0.964 0.010 0.465 6
Extra Trees Regressor (100) 3 1.331 1.171 0.960 0.010 0.465 5
HistGradientBoosting Regressor 1.386 1.234 1.019 0.011 0.410 5
Gradient Boosting Regressor (100, 0.01, 3) 4 1.412 1.339 1.097 0.011 0.315 6
Gradient Boosting Regressor (100, 0.01, 5) 4 1.401 1.277 1.063 0.011 0.375 10
Gradient Boosting Regressor (100, 0.1, 3) 4 1.424 1.243 1.038 0.011 0.378 8
Gradient Boosting Regressor (100, 0.1, 5) 4 1.444 1.256 1.033 0.011 0.372 8
Gradient Boosting Regressor (500, 0.01, 3) 4 1.391 1.258 1.023 0.011 0.393 5
Gradient Boosting Regressor (500, 0.01, 5) 4 1.422 1.248 1.019 0.010 0.383 7
Gradient Boosting Regressor (500, 0.1, 3) 4 1.469 1.272 1.073 0.011 0.362 8
Gradient Boosting Regressor (500, 0.1, 5) 4 1.448 1.265 1.037 0.011 0.395 10
Random Forest Regressor (100, 3) 5 1.380 1.292 1.044 0.011 0.345 8
Random Forest Regressor (100, 5) 5 1.355 1.254 0.997 0.010 0.412 4
OxygeNN 1.711 1.532 1.356 0.014 0.006 6
Generalized Additive Model (4 splines) 1.573 1.526 1.170 0.012 −0.008 12
Generalized Additive Model (6 splines) 1.464 1.413 1.071 0.011 0.120 12
Generalized Additive Model (8 splines) 1.513 1.407 1.092 0.011 0.061 12
Generalized Additive Model (10 splines) 1.534 1.383 1.093 0.011 0.118 12
Generalized Additive Model (12 splines) 1.491 1.435 1.085 0.011 0.043 12
Generalized Additive Model (14 splines) 1.491 1.427 1.079 0.011 0.118 12

3D-CNN (single-source model) 1.592 1.570 1.296 0.013 0.000 -
3D-CNN (multi-source model) 1.594 1.564 1.298 0.013 −0.002 -
ViViT 1.685 1.615 1.330 0.013 −0.040 -

1 (max depth, estimators, learning rate) 2 (max depth, estimators) 3 (estimators) 4 (estimators, learning rate, max
depth) 5 (estimators, max depth).
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4.2. Generalized Additive Model

Generalized Additive Models (GAMs) are a type of regression model that allow for
the modeling of non-linear relationships between a response variable and one or more
predictor variables [27]. They are well suited for regression tasks, because they are able to
capture more complex relationships in the data compared to traditional linear regression
models, such as Generalized Linear Models (GLMs). GLMs are used to model linear
relationships between a response variable and one or more predictor variables, but they
have limitations in capturing non-linear relationships in the data. GLMs also assume a
specific distribution for the response variable, such as a normal or Poisson distribution,
which may not always be appropriate for the data [28]. To overcome these limitations,
Additive Models were introduced, which allow for the modeling of non-linear relationships
by summing up multiple functions of the predictor variables (basis functions). In addition,
they do not make assumptions about the distribution of the response variable and can
handle a wider range of response variable distributions. A GAM can mathematically
represent the relationship between a random variable Y and a series of predictor random
variables X1, X2, . . . , Xp through their summation, as follows:

E{Y|X1, X2, . . . , Xp} = f0 +
p

∑
j=1

f j(Xj) (10)

where f j(·) are smooth nonparametric standardized functions, so that E{ f j(Xj)} = 0 [27]
and E{·} refers to the expectation operator. Overall, Generalized Additive Models are a
more flexible and powerful tool for regression tasks, compared to Generalized Linear Mod-
els, especially when dealing with complex, non-linear relationships in the data. Figure 4 is
an illustration of a Generalized Additive Model (GAM).

Figure 4. (Above) A family of b-spline basis functions. (below) Penalized B-splines allow us to
automatically model non-linear relationships [29].

The choice of the number of splines in a GAM is typically determined by a trade-off
between model complexity and goodness of fit. A smaller number of splines can lead to a



Information 2023, 14, 301 10 of 21

more parsimonious model, but may result in underfitting, while a larger number of splines
can increase the model’s complexity and may result in overfitting. In this study, the number
of splines in the linear GAM model was chosen, based on prior knowledge and assumptions
about the complexity of the underlying relationships between the predictor variables and
the response variable, as well as on the available sample size and computational resources.
In this study, to determine the optimal number of splines for the Generalized Additive
Models, we conducted multiple experiments with varying numbers of splines. This was
carried out to evaluate the impact of the number of splines on the accuracy of the models.

4.3. Extremely Randomized Trees

The Extra Trees Regressor (ETR) is a type of ensemble-based machine learning algo-
rithm that can be used for both classification and regression tasks [30]. The ETR is based on
the decision tree algorithm, but it combines multiple decision trees to improve prediction
accuracy. The “Extra” in the Extra Trees Regressor refers to the fact that this algorithm
uses an extra layer of randomness, compared to other decision tree-based algorithms.
Specifically, the ETR randomly selects a subset of features for each split in the decision tree,
and it also randomly selects the threshold for each feature. This randomness helps to create
a more diverse set of decision trees and reduce overfitting, which can improve prediction
accuracy. The ETR is also an example of a bagging ensemble method, which means that it
trains multiple models on different subsets of the training data and combines their predic-
tions to make a final prediction [30]. In the case of the ETR, the algorithm trains multiple
decision trees on different subsets of the training data and combines their predictions by
taking the average of the predicted values. Another advantage of the ETR is its relatively
low variance, compared to other ensemble-based methods, such as Random Forest. This
means that the ETR is less sensitive to changes in the training data and can often achieve
better performance and higher accuracy than other ensemble-based methods. The ETR has
several tunable hyperparameters that can be optimized to improve performance, including
the number of trees, the maximum depth of the decision trees, and the number of features
to consider for each split. The ETR can also be trained faster than other ensemble-based
methods due to its simpler decision tree construction and feature selection process [30].
Overall, The Extra Trees Regressor is a powerful machine learning algorithm that can
achieve high accuracy in a variety of regression and classification tasks, particularly when
the training data is limited or noisy.

5. Deep Learning Regression
5.1. Multilayer Perceptron

For the purposes of this paper, we used a type of Artificial Neural Network, known
as a multilayer perceptron. This type of network is characterized by its ability to learn
complex non-linear relationships between inputs and outputs, making it well-suited for a
variety of regression and classification tasks. Table 2 provides a detailed representation of
the architecture for a relatively simple Artificial Neural Network (ANN). The architecture
outlines the specific design and configuration of the network, including the number of lay-
ers, number of nodes, activation functions, dropout rates, and other important components.
Although, it is a fully connected network, it is considered a deep learning network, since it
features four (more than two) hidden layers. This architecture is the proposed design for the
ANN that will be used in the experimental section, and it has been carefully selected after
extended experimentation. The objective is to create an ANN that is capable of accurately
modeling the relationship between the input variables and the target variable. The loss
function used in this model was the mean squared error, which was optimised using the
Adam Optimizer [31] with a learning rate of η = 0.001, batch size = 5, and 40 epochs. The
weights were initialized using He uniform initialization [32]. The name for the proposed
ANN architecture is OxygeNN.
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Table 2. The Proposed ANN architecture called “OxygeNN”.

Layer/Stride Contents Output Size

Input Features 12× 1 -

FC1


Dense(128)

Activation = ReLU
Dropout(p = 0.2)

initializer = he_uni f orm

 128

FC2


Dense(256)

Activation = ReLU
Dropout(p = 0.2)

initializer = he_uni f orm

 256

FC3


Dense(128)

Activation = ReLU
Dropout(p = 0.2)

initializer = he_uni f orm

 128

FC4
 Dense(64)

Activation = ReLU
initializer = he_uni f orm

 64

Output
[

Dense(1)
Activation = Linear

]
1

5.2. Spatial 3D Convolutional Neural Network

3D-CNNs have been widely used by the vision community for video classification [33],
as well for super-resolution scaling in videos [34]. Thus, they have been a popular choice
for video classification and regression. In this application, we propose to use a 3D-CNN
architecture for predicting the SpO2 level based on the forehead motion-magnified video.

The proposed architecture for the 3D-CNN is presented in Table 3. The depth of this
architecture is intentionally kept shallow with the aim of avoiding overfitting and retaining
accuracy. By keeping the depth of the 3D-CNN shallow, the model is less likely to overfit,
resulting in a more accurate representation of the data patterns. Additionally, a shallower
architecture also results in faster training, and prediction, rendering the approach more
computationally efficient [35]. It is worth mentioning that in this case, we did not use
the proposed 12 features, as previously, but the magnified video I1(x, y, t) of the forehead
as input. There was also a variation of the 3D-CNN developed by incorporating feature
fusion. Feature fusion is a technique that combines features from multiple sources, in this
case, the magnified videos I1(x, y, t), I2(x, y, t), I3(x, y, t) of all regions of interest (ROIs)
as inputs for the 3D-CNN. The fusion of features from multiple sources can improve the
performance of the model by providing additional information and reducing the impact of
noise and irrelevant features [36]. In the application of a Convolutional Neural Network
(CNN), the network is able to determine, through the learning process, which features are
more significant in order to infer the value of the SpO2. This process of feature selection
is carried out through the utilization of filters and weights, which are optimized during
the training process, allowing the network to identify relevant patterns and relationships
between the input features and the target variable. Allowing the network to perform feature
extraction in this manner helps to reduce the dependence on prior knowledge or man-made
feature selection, thus exploring new solutions and maybe improving performance in the
estimation of SpO2. The loss function used in this model was the mean squared error, which
was optimised using the Adam Optimizer [31] with a learning rate of η = 0.001, batch
size= 5 and 100 epochs. The weights were initialized using He uniform initialization [32].



Information 2023, 14, 301 12 of 21

Table 3. The proposed single-source 3D-CNN architecture for video sequences.

Layer/Stride Contents Output Size (H × W × D × C)

Input Clip - 64 × 128 × 300 × 1

Conv3D


Conv3D(16, kernel = (5, 5, 5))

MaxPooling3D(pool = (3, 3, 3))
Dropout(p = 0.5)

Activation = ReLU
initializer = he_uni f orm


20 × 41 × 98 × 16

Conv3D


Conv3D(32, kernel = (5, 5, 5))

MaxPooling3D(pool = (3, 3, 3))
Dropout(p = 0.5)

Activation = ReLU
initializer = he_uni f orm


5 × 12 × 31 × 32

Flatten - 59,520

FC1
 Dense(128)

Activation = ReLU
initializer = he_uni f orm

 128

FC2
 Dense(128)

Activation = ReLU
initializer = he_uni f orm

 128

Output
[

Dense(1)
Activation = Linear

]
1

5.3. Video Vision Transformer—ViViT

The Video Vision Transformer (ViViT) is a type of Deep Neural Network architecture
that is specifically designed for video-related tasks, such as classification [37]. It is inspired
by the Vision Transformer (ViT) architecture that was originally developed for image and
vision-related tasks [38], but it has been adapted to work with video data as input. It
extends the original Transformer architecture by incorporating spatio-temporal attention,
which allows the network to attend to both spatial and temporal aspects of the input.
The input is typically first transformed into a set of embedding tokens. These tokens are
vectors that represent the input in a high-dimensional feature space, and they are used
as the input to the self-attention mechanism. The self-attention mechanism allows the
network to attend to different regions of each frame and to different frames in the sequence,
enabling it to capture both spatial and temporal relationships between the regions. In
order to achieve this, Arnab et al. [37] performed “Uniform Frame Sampling”, using the
same method as ViT, and “Tubelet Embedding”, an additional method to extract non-
overlapping, spatio-temporal “tubes” from the video volume. The use of smaller tubelets
in the tokenization process results in an increase in the number of tokens, which in turn
leads to a higher computational cost [37]. This approach of tokenization fuses the spatio-
temporal information during the tokenization step. In this work, we utilized a previous
implementation of ViViT, developed by Gosthipaty and Thakur [39], for video classification
as a starting point for our study. The modification were firstly aimed at changing the loss
function in order to transform the original classification architecture to an architecture that
can perform regression. Again, in this case, we used the magnified video I1(x, y, t) of the
forehead, instead of the proposed 12 features. More specifically, the current model employs
the mean squared error as loss function, optimised using the Adam Optimizer [31] with a
learning rate of η = 10−4 , 40 epochs, and a weight decay of λ = 10−5.

6. Results
6.1. Implementation

Face detection, facial areas extraction and motion magnification were performed in
MATLAB R2018b, mainly because the original motion magnification code by Wu et al. [18]
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was written in MATLAB. The proposed machine learning regression approaches were
implemented in Python v3.8.10 using the scikit-learn package. The deep architectures
were developed in Python v3.8.10 and Tensorflow v2.10.0. For the experiments, we used
an Ubuntu 22.04 PC with 64 GB RAM, an Intel i9 2.5 GHz 16-Core CPU and an NVIDIA
GeForce RTX 3090 GPU with 24 GB of RAM.

6.2. Accuracy

The accuracy of pulse oximeters is an important aspect that has been rigorously defined
by international organizations, such as the International Organization for Standardization
(ISO) and the Food and Drug Administration (FDA) [40,41]. These guidelines and standards
specify the acceptable error limits, and they are used by manufacturers, medical facilities,
and healthcare providers to ensure that pulse oximeters perform within acceptable limits.
The BS EN ISO 80601-2-61:2019 standard states that the root mean square accuracy, which
represents the deviation of the measurement from the true value, must not exceed 2% of
the SpO2 range [40]. Alternatively, the mean square error, which measures the average
difference between the estimated and actual values, must not exceed 4% for a set of testing
pair values. The accuracy is defined as the root mean square difference between the
estimated values SpO2i and reference values SRi and is given by

Arms =
√

MSE =

√
∑n

i=1(SpO2i − SRi)2

n
(11)

where n is the number of samples, SpO2i is the calculated value of the i-th sample, and SRi
is the reference value for the i-th sample. The threshold of accuracy specified by BS EN
ISO 80601-2-61:2019 with regard to the root mean square accuracy not exceeding 2% of
SpO2 range, is also recognized and agreed upon by the U.S. Food and Drug Administration
(FDA) [41].

While international organizations neither require nor specify additional accuracy
criteria for these types of studies, we included additional metrics such as mean absolute
error, mean absolute percentage error, and R2 to provide a more complete picture of our
model’s accuracy and to allow for comparison with other similar studies.

6.3. Model Comparison and Selection

In this work, we leveraged the versatility and predictive power of the multilayer
perceptron to gain insights into our data and to make informed predictions about our target
variable, which was the SpO2 level recorded by the oximeter. To achieve this, the input
to the machine learning model were the twelve previously discussed features that were
extracted from the iPPG signal in the three regions of interest. These features were used
to predict the SpO2 value and were considered as the predictor variables in the regression
analysis. In our experiments, we considered all possible combinations of the 12 iPPG-based
features, the total number of feature combinations that utilized two or more features per
combination being 4083. This is because not all features may have the same influence on
the final outcome for our predictive model. It is important to identify the most effective
combination that has the highest impact on the prediction accuracy, by testing multiple
combinations at a time. This can also help us understand which features are essential for
our prediction and which are not, which can inform future studies and improvements to
the model. Thus, for each machine learning approach, we tested all 4083 combinations
of features and the best performance is depicted in Table 1. Algorithm 1 outlines the
whole procedure.
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Algorithm 1 Selection algorithm

1: Find all possible feature combinations
2: for each feature combination do
3: for 20 Iterations do
4: Fit data using an algorithm from Table 1
5: Calculate MAE, RMSE, MAPE, R2 Score
6: end for
7: Save average values for MAE, MAPE
8: Save minimum value for RMSE, R2 Score
9: end for

10: Fetch top 10 feature combinations in terms of RMSE accuracy
11: Compute ranking histogram for all variables in the feature set

It is expected that some combinations may not meet the international standards for
accuracy in SpO2 measurement, as these standards are stringent and require high precision
and reliability in the measurement process. It is worth highlighting that of the twelve total
features available, the model with the lowest root mean squared error (RMSE) score only
utilized five of them. Additionally, the majority of the models have achieved their lowest
RMSE score with less than 12 features. This indicates that a smaller number of features can
still result in accurate predictions.

Regarding the performance of Generalized Additive Models, as previously stated,
multiple models have been tested for their performance on our dataset. The results showed
that the number of splines used plays a critical role in determining the model’s accuracy.
Specifically, the accuracy was found to drop significantly if the number of splines was lower
than a certain threshold, while using a very high number of splines led to overfitting of
the model. As the dataset size increases, it is likely that the complexity of the relationships
between the predictors and the response variable will also increase. Therefore, the optimal
number of splines used may need to be reconsidered to ensure that the model remains
accurate and not overfitted.

Out of all the algorithms that were tested, the Extra Trees Regressor was found to have
the best performance in terms of accuracy. This can be attributed to several reasons. First of
all, the Extra Trees Regressor is an ensemble-based method that combines multiple decision
trees, which reduces overfitting and improves accuracy [30]. Additionally, the Extra Trees
Regressor randomly selects a subset of features for each split in the decision tree, leading to
more diverse and robust decision trees and improving accuracy [30]. Compared to other
ensemble-based methods, such as Random Forests, the Extra Trees Regressor has lower
variance, leading to better performance and higher accuracy.

The performance of deep learning algorithms was lower than our anticipated level of
accuracy due to the limited availability and quality of training data. Without sufficient and
diverse training data, the models may not be able to capture the underlying patterns in the
data. We suspect that the observed bias in the training data may be the contributing factor.
The impact of biases will be presented in depth in the following subsection. In order to
address the aforementioned challenge, we adopted a strategy of incorporating additional
data from the remaining regions of interest and incorporating them into a multi-source
fusion CNN model as input. This approach was undertaken with the aim of leveraging
the complementary nature of the data obtained from multiple sources to improve the
performance of the CNN model in recognizing the desired patterns in the input data.
However, we observed that the multi-source fusion CNN model did not provide any
significant improvement in accuracy compared to the single-source CNN model. This
could be attributed to the fact that the additional information provided by the multiple
sources may not be as informative as we initially thought for the given task.



Information 2023, 14, 301 15 of 21

6.4. Impact and Relevance of Extracted Variables

In previous studies, researchers have used the average of averages and the average
of standard deviations from two colour channels of an RGB camera to extract relevant
information [8,10,25]. However, since we only have access to an infrared camera, which
captures only one colour channel, we needed to adapt our approach. Therefore, we decided
to explore whether the average of averages, the average of standard deviations, the standard
deviation of averages, and the standard deviation of standard deviation can provide us
with useful information that can improve the accuracy of our method. Our rationale
behind using these statistical measures is based on the assumption that these values can
help us quantify the distribution of pixel intensities within the image. In Figure 5, scatter
plots for each of the 12 extracted variables are presented. It is evident from the scatter
plots that different combinations of variable values can result in the same SpO2 value.
This observation indicates the presence of non-uniqueness in the relationship between
the variables and the SpO2 value. The non-uniqueness can be attributed to the complex
physiological and environmental factors that affect SpO2 estimation, such as skin color,
lighting conditions, and motion artifacts. It is important to note that the non-uniqueness
of variable combinations can affect the accuracy and robustness of the SpO2 estimation
algorithm. The combination of these variables has shown to improve the regression of
SpO2 in our experiments; however, it is hard to visualize these dependencies.

V4(i−1)+1 ≡ meant{meanx,y{Ii(x, y, t)} (12)

V4(i−1)+2 ≡ meant{stdx,y{Ii(x, y, t)} (13)

V4(i−1)+3 ≡ stdt{meanx,y{Ii(x, y, t)} (14)

V4(i−1)+4 ≡ stdt{stdx,y{Ii(x, y, t)} (15)

We adopt an approach in which we assign the extracted variables Vj to the statistical
characteristics of each frame sequence Ii(x, y, t) as shown above, where i = 1, 2, 3 represents
each of the three facial areas. This allows us to capture the variability in the variables within
different facial regions and to identify which regions contribute the most to the overall SpO2
estimation. By constructing the collective histogram in Figure 6 containing the appearance
frequency of each variable in the top-10 feature set from every machine learning algorithm,
we are able to identify the most significant variables and their corresponding facial regions.
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Figure 5. A collection of scatter plots for each of the 12 variables.
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Frequency Analysis of Experimental Variables
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Figure 6. Collective variables’ appearance frequency histogram.

6.5. Parameters and Potential Biases

In Figure 7, we can see an histogram of the SpO2 measurement values in the collected
dataset. In addition, Figure 8 contains the age distribution of all participants the dataset. It
is evident from the histograms provided that the SpO2 measurement values are concen-
trated towards the higher end of the scale, with relatively fewer occurrences at the lower
end of the spectrum. This shift to the right is a clear indication that the majority of the
observations have higher SpO2 values, which may suggest a general trend towards better
oxygen saturation levels among the studied population. It is not unexpected to observe a
higher concentration of oxygen saturation readings towards the higher end of the scale for
younger adults, as compared to older individuals. It is well documented in the medical
literature that the baseline oxygen saturation levels of healthy individuals can vary based
on their age, and that elderly individuals tend to have lower oxygen saturation readings
compared to younger adults [42]. However, the underlying physiology of an individual
is also an important factor that should be taken into consideration when evaluating a
measurement reading. Various health conditions and lifestyle habits can affect the accu-
racy of pulse oximetry readings, which measure the oxygen saturation levels in the blood.
For example, obesity, lung and cardiovascular diseases, emphysema, chronic obstructive
pulmonary disease, congenital heart disease, and sleep apnea can lead to lower oxygen
saturation levels [42]. Smoking can also impact the accuracy of pulse oximetry, especially if
hypercapnia is present. Individuals with anemia may have normal oxygen saturation levels,
but this may not indicate adequate oxygenation due to a lower amount of hemoglobin to
carry oxygen [42]. For the previously stated reasons, it is essential to include individuals
from a diverse demographic in any study or analysis of SpO2 measurements. This includes
a representation of various age groups, both genders, individuals with a range of health
statuses, smokers, and non-smokers. This helps to account for the different factors that
can affect SpO2 readings. By including a representative sample of the population, the
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results of the study are more likely to be generalizable and relevant to a broader population.
Furthermore, this helps to minimize any potential biases that may result from a limited
sample, thereby increasing the reliability and validity of the results.
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Figure 7. SpO2 Measurement distribution of the participants in the created dataset.
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Figure 8. Volunteer age distribution of the participants in the created dataset.

7. Conclusions

In this paper, we proposed a system to perform SpO2 estimation using an infrared
commercial camera and facial videos. The proposed system uses infrared video for this
task for the first time in order to enable contactless patient monitoring during night-time.
The proposed approach uses motion magnification to enhance the facial video and extract
three regions of interest, as well as twelve statistical features. A variety of machine and
deep learning regression tools were used in a comparison study to infer the SpO2 value,
most of which satisfy the FDA accuracy specifications. The Extra Trees Regressor appears
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to deliver the minimum RMSE, using only five out of the twelve extracted features. In
the field of infrared photoplethysmography research, there has been limited prior work
utilizing conventional affordable camera technology for the purpose of pulse oximetry. As
a result, there are few direct comparisons that can be made to our approach. However,
there are some past papers that have explored related topics using different methodologies
and datasets. It is important to note that these prior works cover a range of techniques and
may not directly reflect the strengths and limitations of our proposed method. Given the
novelty of our approach and the limited prior work in this area, it is difficult to determine a
clear state of the art. While it is uncertain whether infrared-based videos will outperform
RGB-based videos in terms of accuracy, this should not be interpreted as a conflict between
the two methods. Instead, it can be viewed as a means of obtaining a holistic view of
SpO2 monitoring, as each approach may provide unique information that can complement
and improve the overall accuracy of the system. Nevertheless, we aim to contribute to
the field by providing a comprehensive and rigorous evaluation of our approach and its
potential applications and by exploring the potential benefits of combining the outputs of
both methods to further enhance the performance of SpO2 monitoring systems.
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