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Abstract: Blind image super-resolution (Blind-SR) is the process of leveraging a low-resolution
(LR) image, with unknown degradation, to generate its high-resolution (HR) version. Most of the
existing blind SR techniques use a degradation estimator network to explicitly estimate the blur
kernel to guide the SR network with the supervision of ground truth (GT) kernels. To solve this
issue, it is necessary to design an implicit estimator network that can extract discriminative blur
kernel representation without relying on the supervision of ground-truth blur kernels. We design
a lightweight approach for blind super-resolution (Blind-SR) that estimates the blur kernel and
restores the HR image based on a deep convolutional neural network (CNN) and a deep super-
resolution residual convolutional generative adversarial network. Since the blur kernel for blind
image SR is unknown, following the image formation model of blind super-resolution problem,
we firstly introduce a neural network-based model to estimate the blur kernel. This is achieved by
(i) a Super Resolver that, from a low-resolution input, generates the corresponding SR image; and
(ii) an Estimator Network generating the blur kernel from the input datum. The output of both
models is used in a novel loss formulation. The proposed network is end-to-end trainable. The
methodology proposed is substantiated by both quantitative and qualitative experiments. Results on
benchmarks demonstrate that our computationally efficient approach (12x fewer parameters than the
state-of-the-art models) performs favorably with respect to existing approaches and can be used on
devices with limited computational capabilities.

Keywords: blind image super-resolution (Blind-SR); single image super-resolution (SISR); kernel
estimation; isotropic blur kernel; anisotropic blur kernels

1. Introduction

The goal of single image super-resolution (SISR) is to generate a high-resolution (HR)
image from a low-resolution (LR) one. It has several applications in visual inspection,
satellite imaging, medical imaging [1], astronomy, microscope imaging, seismology, remote
sensing [2,3], surveillance [4–6], biometrics [7], image compression, etc. Most existing
literature (e.g., Refs. [8–10]) applies a bicubic downsampling kernel to an HR image to
generate its LR counterpart such that the inverse process can be modeled. However,
the downsampling process is not so unique in real-world LR images. As a result, modeling
it may yield very different performances due to the mismatch with the real degradation
settings. To overcome such limitations, blind super-resolution (Blind-SR) methods are
introduced with the following degradation process:

Y = (k ~ x̂) ↓S +η (1)

where x̂ and Y are the HR and LR images, ~ is the convolution operation, k is the blur
kernel, and η is the additive white Gaussian noise. ↓S is a down-sampling operator
with scale factor S. In the real world, η also includes factors that can alter the image
acquisition process, including inherent sensor noise, stochastic noise, compression artifacts,
and possible mismatches between the forward observation model and the camera device.
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The approaches that assume a known blur kernel k are named non-blind image SR
(Non-Blind-SR see Figure 1a) and have been extensively studied in literature [8,11–14].
Methods that assume the blur kernel k as unknown are named blind image SR (Blind-SR).
Because there exist infinite pairs of SR images and blur kernels can produce the same LR
image Y, the SISR is an ill-posed problem. Thus, regularization is needed to choose the
most likely one.

In recent years, deep neural network-based methods have achieved remarkable results in
SISR [15,16]. For Non-Blind-SR, the blur kernel is the bicubic interpolation kernel [8,11,17–20].
This is used to synthesize a large scale dataset for model training. Real LR images might have
a large disparity with the bicubic-generated ones since blur kernels are often more complex.
This pushed the literature to focus on SR in the presence of unknown blur kernels. Several
techniques have been proposed to address the Blind-SR problem by first estimating blur
kernels using statistical priors (e.g., patch self-similarity [21]) or deep neural networks (e.g.,
Refs. [22,23]) and then applying traditional SR techniques assuming a known kernel (e.g.,
Refs. [24,25]).

These techniques work well to restore minor details but perform independent esti-
mates of the blur kernels and HR images. So, if the blur kernel is incorrectly estimated,
the subsequent restoration of the HR image will produce artifacts in the restored images
(see Section 4 (Experiments) for a few examples). These introduced methods simultaneously
estimate the blur kernel and latent HR image. Methods following such an approach [26–28]
have focused on creating several efficient blur kernel estimation algorithms. After the
blur kernels have been estimated, they are fed into deep models to be used as inputs to
rectify the intermediate features used for HR restoration. However, it is unclear if such an
exploitation process actually removes the blur.

Existing Blind-SR methods suffer from two main issues: (i) they explicitly estimate the
blur kernel with the supervision of GT kernel (see Figure 1b) and require a large volume of
training data to train deeper/wider (many model parameters) networks, and (ii) because of
their numerous network parameters and large memory requirements, they are challenging
to implement on devices with limited computational capabilities (e.g., embedded devices,
smartphones, etc.).

We introduce a novel blind-SR technique to tackle such issues by means of a lightweight
convolutional neural network (CNN) that can estimate the unknown blur kernel k and
generate the super-resolved image (x̂) simultaneously (see Figure 1c). We propose two
different modules: (i) the Estimator and (ii) the Super Resolver. In this method, the low-
resolution input image LR(x̃) is exploited by the former to predict a blur kernel k and by
the latter to restore the SR image (x̂). The two outputs (i.e., k and x̂) are then combined in a
joint loss function that encourages x̂ to be (i) as close as possible to the ground-truth HR
datum (ii) while verifying that it is filtered (with x̂) and the down-scaled version matches
the LR input. We introduce an end-to-end training methodology to achieve a high-quality
image restoration result (see Figure 2).

The main contributions are:

• We introduce a Blind-SR approach that estimates the blur kernel k and the SR image
(x̂) simultaneously. The blur kernel is implicitly estimated, hence not requiring the
supervision of a ground truth kernel;

• Our proposed network compares favorably with respect to state-of-the-art approaches
that have a similar number of learnable parameters;

• We provide an end-to-end architecture for the proposed algorithm and extensively ana-
lyze its performance via quantitative and qualitative evaluation on benchmark datasets.
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Figure 1. The illustration of different blur kernel estimators. (a) Non-blind SR methods directly use
predefined degradation information to guide SR networks. (b) Many Blind-SR methods estimate the
blur kernel explicitly with the supervision of ground-truth blur kernels. (c) Our proposed approach
can estimate the blur kernel implicitly to guide SR without a ground-truth blur kernel.
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Figure 2. An overview of the proposed method.

2. Related Work
2.1. Non-Blind SR

Super Resolution is an ill-posed problem, for which creating image priors has proven
to be a successful approach in recent years [29–31]. Even though these image prior-based
algorithms have produced respectable results, they demand solutions to challenging opti-
mization issues. The application of several DNNs has resulted in major advancements in
recent years [8,11,13,19,24,32–36]. Most of these algorithms directly learn the mapping from
LR to HR images, thus ignoring the difficult optimization process induced by sophisticated
image priors. In Ref. [37], authors demonstrated that using feed-forward networks to
predict the mapping of LR images to HR images is insufficient. Haris et al. [37] develop a
deep back-projection network based on an error feedback mechanism to improve the LR to
HR mapping. In Ref. [38], the image model’s formation process is incorporated into a deep
CNN model [19], explicitly ensuring that the estimated high-resolution images satisfy the
model of the image formation process.

These deep CNN-based algorithms significantly outperform image prior-based meth-
ods and reach state-of-the-art results on many benchmarks. However, such methods
suppose that the degradation settings with known blur kernels, for example, the Bicubic in-
terpolation [8,32], Gaussian blur [39], or generalized ones [37], which does not hold true in
real circumstances because the blur kernels in the real degradation process are usually more
sophisticated. As discussed in Ref. [40], exploiting known/predetermined blur kernels
yields SR images with noisy artifacts. Differently, we follow a Blind-SR approach.

2.2. Blind-SR

Different Blind-SR methods [21,41,42] have been proposed to recover the HR image
from an input LR with an unknown blur kernel. Conventional techniques typically require
the estimate of the blur kernel and the latent HR restoration, which are bound by statistical
image priors. Michaeli et al. [21] investigate the internal patch recurrence to estimate the
blur kernel and latent HR images. Wang et al. [43] developed an effective probabilistic
combination model for blind image SR based on a patch-based image synthesis constraint.
In Ref. [44], the authors follow the real-world settings for degradation by using an adver-
sarial learning procedure to train the model with pixel-by-pixel supervision from its LR
counterpart in the HR domain. Ref. [45] introduces a deep network trained iteratively
with a residual learning method that takes advantage of powerful image regularization
and large-scale optimization techniques. Ref. [46] proposes a low-resolution to high-
resolution domain translation approach for real-image super-resolution. In Ref. [47], a burst
photography pipeline is used to restore the HR.
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Despite having achieved reasonable results, these techniques frequently involve com-
plex optimization techniques. To address the Blind-SR problem, multiple approaches
develop deep CNNs instead of statistical image priors. In order to estimate blur kernels
from LR images, Bell-Kligler et al. [22] develop an effective technique based on an image-
specific Internal-GAN. This method provided respectable results and can be used with
image SR techniques that rely on blur kernels for performance enhancement, such as those
found in Ref. [25]. However, results with considerable artifacts will be produced as a result
of the blur kernel errors. For accurate kernel estimation and SR refinement, Gu et al. [23]
introduced a spatial feature transform (SFT) and an iterative kernel correction (IKC) tech-
nique. Luo et al. [48] estimate the reduced kernel and restore the HR image iteratively
in an end-to-end fashion. Our approach has the same spirit as Refs. [23,48] with some
relevant differences. In Refs. [23,48] the basic properties of the blind image SR problem are
not adequately modeled by separately estimating the blur kernels and latent HR images,
thus affecting the final latent HR image restoration. In addition, both such methods are
extremely time-consuming and computationally very expensive. Differently, our approach
employs a trainable end-to-end network with a limited number of parameters, thus opening
to memory and computationally constrained devices.

3. Method
3.1. Problem Formulation

According to (1), estimating x̂ from Y is primarily based on the variational strategy
for combining observation and prior knowledge. This requires solving the following
minimization problem:

Ê(x̂) = arg min
x̂

1
2
‖Y− kx̂‖2

2 + λRW(x̂) (2)

where 1
2‖Y− kx̂‖2

2 is the data fidelity term related to the model likelihood. It measures
how closely the solution matches the observations. R(x̂) is a regularization term related to
image priors, and λ is a trade-off parameter that controls how closely the solution resembles
the observations. It is interesting to note that the variational technique directly relates to
the Bayesian approach. The generated solutions can be categorized as either maximum
a posteriori (MAP) estimates [49,50] or penalized maximum likelihood estimates. Due to
strong prior capabilities, we adopt the generator network [44] for super-resolution learning
and a simple CNN-based novel kernel estimator network, which predicts the kernel as
closest to the original one. We trained both networks end-to-end by exploiting a GAN
framework to minimize the energy-based objective function (2) with the discriminative and
residual learning approaches, considering the estimated kernel.

3.2. Kernel Estimation

For training kernel estimation network (Nkest), we provided low-resolution input x̃,
which is exploited by the network (Nkest) and predicts the kernel k, which is further utilized
for super resolver learning, as shown in Figure 2.

3.3. Super Resolver

The estimated blur kernel through the kernel estimator network is shown in Figure 2.
In the training process, we use the same low-resolution input x̃ for super-resolver GSR and
our proposed estimator Nkest. The super-resolved image x̂ obtained from super-resolver
GSR is convolved with the predicted blur kernel k obtained from the Nkest (estimator).
The blur kernel k predicted by Nkest (estimator)is used to calculate the novel loss Lk after
the convolution with the super-resolved image. We calculate the L1 from the super-resolved
image x̂ and ground truth. The loss Lk is added to the L1 and other network losses (i.e.,
Lper,LGAN ,Ltv) to calculate the final loss LGSR as given in (9).
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3.4. Network Architectures

The network architectures of the Generator (GSR), Discriminator (Dy), and Kernel
Estimator (Nkest) are depicted in Figure 3. The letters s, c, and k denoted stride size, number
of filters, and kernel size, respectively.
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Figure 3. The architectures of Generator, Discriminator, and Kernel Estimator networks.

3.4.1. Generator Network (GSR):

As illustrated in Figure 3a, the Encoder and Decoder include 64 feature maps, C×H×
W tensors, a 5× 5 kernel, and C input channels. The LR input x̃ is upsampled using Bilinear
kernel HT. There are 5 residual blocks, 2 pre-activation convolutional layers with 64 feature
maps each, and 3× 3 kernel. Pre-activations are parametrized rectified linear units (PReLU)
that support 64 feature maps. The project layer (Proj) [51] in the decoder determines the
proximal map using standard deviation (σ), which accounts for the prior terms and data
fidelity term. The α parameter in Proj is fine-tuned with the back-propagation in training.
In addition, the Resnet block located in-between the encoder and the decoder is where the
noise is estimated. The input LR image is then subtracted from the estimated residual image
provided by the Decoder. Finally, the clipping layer is responsible for complying with the
valid intensity of the image ranging from 0 to 255. In training, reflection padding is utilized
to lag the convolutional layers, which makes the consistent change in the input image.

3.4.2. Discriminator Network (Dy):

Figure 3b shows the discriminator network architecture. This aims to classify if
the input is a generated SR image x̂ (i.e., fake) or a real HR image y. The discriminator
comprises 3× 3 kernel, 4× 4 kernel, 64 feature map, 512 feature map, leaky ReLU, and Batch
Normalization (BN) as suggested in SRGAN [24].
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3.4.3. Estimator Network (Nkest):

Estimating the blur kernels from given LR images is difficult because blur and down-
sampling operations result in information loss. Existing methods typically require sophis-
ticated priors and the solution of complex optimization problems [21]. Bell-Kligler et al.
estimate the blur kernel from a single LR image using a generative adversarial network
in Ref. [22]. Unlike [21,22], we develop a simple deep CNN model (Nkest) that ingests an
LR image to estimate its blur kernel. This network, shown in Figure 3c, is trained using (8).

3.5. Loss Calculation
3.5.1. Texture Loss (LGAN):

Although perceptual loss can improve the overall quality of a reconstructed image, it
still introduces unwanted high-frequency components. That is why we consider including
texture loss in the total loss function as follows.

LGAN =LRaGAN −Ey[log(1−Dy)(y, GSR( ˆ(x)))]

−Eŷ[log(Dy(GSR(x̂), y))] (3)

where Ey and Eŷ are used for the average of real (y) and fake (ŷ) data, respectively. We use
a discriminator that gives the GAN score of a real image (HR) and a fake image (SR) as
used in Ref. [10]. It is defined as follows.

Dy(y, ŷ)(C) = σ(C(y)−E[C(ŷ)] (4)

The sigmoid function and the output of the raw discriminator have been represented by σ
and C, respectively, as shown in Figure 3b.

3.5.2. Perceptual Loss (Lper):

To generate images with more precise brightness and realistic textures, (Lper) based
on the VGG network, it is configured to use information from the feature layer before
the activation layer. On the activation layer of the pre-trained deep neural network, it is
specified to minimize the Euclidean distance between two activation features.

Lper =
1
N

N

∑
i
LVGG (5)

=
1
N

N

∑
i
‖φ(GSR(x̂i)− φ(yi)‖1

where φ denotes extracted feature from VGG-19 pretrained network as specified in Ref. [10].

3.5.3. TV (Total-Variation) Loss (Ltv):

The absolute differences between adjacent pixel values in the input images are added
to determine total variation loss. Total Variation loss measures the amount of noise in
images. To remove the image’s rough texture and make the resultant image look smoother,
we added the total variation loss to the total loss, as follows.

Ltv =
1
N

N

∑
i
(‖OhGSR(x̂i)−Oh(yi)‖1

+‖OvGSR(x̂i)−Ov(yi)‖1) (6)

where Ov and Oh represent the vertical and horizontal gradients of the images.

3.5.4. Content Loss (L1)

Mean Absolute Error (MAE) loss is used as the model’s content loss to ensure that
low-frequency information is the same between the reconstructed and LR images. Its job
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is to minimize the difference between the pixels in the generated HR images and those in
the real HR images. By making the distance between pixels smaller, the accuracy of the
reconstructed image information can be evaluated more quickly and accurately, leading to
a higher peak signal-to-noise ratio. We incorporated content loss to a total loss to generate
a good quality reconstructed image, as follows.

L1 =
1
N

N

∑
i
‖GSR(x̂)− yi‖1 (7)

where N represents the batch size.

3.5.5. Estimator Loss(Lk):

We computed the estimator loss in such a manner that we combined two outputs
(i.e., k and x̂) such that x̂ should be as close as possible to the ground-truth HR image,
and it is convolved (with x̂) and the down-scaled version matches the LR input.

Lk = ‖k ~ GSR(x̂) ↓S −LR(x̃)‖2 (8)

where S is a downscaling factor, k is the estimated kernel, and GSR(x̂) is the super-
resolved imaged.

Total loss function (LGSR ) formulation is defined as:

LGSR = LGAN + Lper + Ltv + 10 · L1 + Lk (9)

4. Experiments
4.1. Datasets

We followed a common protocol [23,44,46,48] and used 3450 high-resolution (HR)
images from DIV2K [52] and Flickr2K [53] for model training. For a fair comparison with
existing approaches, we followed [23,48] and trained/evaluated our approach with the
two following degradation settings.

4.1.1. Setting 1

We follow the protocol in Ref. [23] and set the kernel size to 21. For scale factors 4
and 2, the kernel width is uniformly sampled during training in the ranges of [0.2, 4.0] and
[0.2, 2.0]. Evaluation is conducted on popular benchmark HR datasets, such as Set5 [54],
Set14 [55], Urban100 [56], BSD100 [57], and Manga109 [58]. For a fair comparison with
existing methods, during testing, we adopted the same approach of Ref. [23] and uniformly
selected 8 kernels from the ranges [1.8, 3.2] and [0.80, 1.60] for scale factors 4 and 2, respec-
tively. The HR images are first blurred using the selected blur kernels, then downsampled
to generate synthetic test images.

4.1.2. Setting 2

Following the training protocol of Ref. [48], we set the kernel size to 11 and generated
Anisotropic Gaussian kernels with both axes’ lengths randomly taken in the range (0.6,
5). A random rotation in [−π, π] is then applied. We added uniform multiplicative noise
(up to 25 % of each kernel pixel value) and normalized it, to sum up to one. For a fair
comparison, the evaluation is run on the DIV2KRK benchmark dataset (with no additional
blur kernel applied to the images since these are already degraded).

4.2. Model Optimization

We trained our model with 32× 32 LR patches for 51,000 iterations. To minimize (9),
we used 16 samples per batch with the Adam optimizer [59] having β1 = 0.9, β2 = 0.999,
and ε = 10−8 without weight decay for both generator and discriminator. We initially set
the learning rate to 10−4, then reduce it by a factor of 2 after 5 K, 10 K, 20 K, and 30 K
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iterations. The projection layer parameter σ (standard deviation) is estimated according
to Ref. [60] from the input LR image. We initialize the projection layer parameter α on
log-scale values from αmax = 2 to αmin = 1 and then further fine-tune during the training via
a back-propagation. Using a GAN framework in Ref. [61] and the following loss functions,
we fine-tune the SRResCGAN network to learn the super-resolution. (i.e., pre-trained
GSR) [44].

Random vertical and horizontal flipping and 90 deg rotations are used as data aug-
mentation strategies.

4.3. Technical Details

We used Pytorch to implement our technique. The experiments use an i7-8700H
processor, 32 GB of RAM, and a 24 GB NVIDIA GeForce RTX 3090 GPU on Ubuntu
20.04 LTS. It took approximately 18.5 h to train the model.

4.4. Evaluation Metrics

For a fair comparison, we evaluated the trained model under the Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity (SSIM) [62] metrics. The PSNR and SSIM
are distortion-based measures. The RGB color space is used to evaluate the quantitative
SR results.

4.5. Experimental Results
4.5.1. Setting 1

We compare the proposed method with state-of-the-art Blind-SR approaches such
as IKC [23], DAN [48], and KernelGAN [22] (which explicitly estimates the blur kernels),
as well as with blind deblurring methods such as Pan et al [63]. We also compare our
results with existing Non-Blind-SR approaches like RCAN [11], ZSSR [25], CARN [17], and
MZSR [64]. Table 1 shows the quantitative evaluation of the benchmark datasets on scale
factors ×2 and ×4. The results show that the proposed method performed better than
most of the considered methods. IKC [23] and DAN [48] have higher PSNRs and SSIMs
but require a large number of parameters as compared to our method. Figures 4 and 5
show visualized SR results of the evaluated methods when scaled by a factor of ×4,
and the blur kernel in the degradation model is an isotropic Gaussian blur kernel. The non-
blind SR approaches, such as Bicubic, RCAN [11], and MZSR [64], produce results with a
considerable blur impact because they do not mimic the blur kernels while super-resolving
LR images (Figure 4c–e). The KernelGAN [22] approach proposes an effective blur kernel
estimation method and can use existing non-blind SR methods for blind SR, such as
ZSSR [25]. However, because blur kernel estimate and HR image restoration are distinct
processes, HR image restoration cannot rectify problems produced by inaccurate blur
kernels. As a result, the restored image has artifacts, as illustrated in Figure 5f.

The IKC [23] proposed an effective iterative kernel correction method to explicitly
estimate blur kernels and restore sharp images, as shown in Figure 4g, but has a large
number of parameters.

Figure 4h shows that the state-of-the-art blind SR method DAN [48] also produce
visually fine results.

On the other hand, our proposed method implicitly estimates blur kernels and HR
images simultaneously using a lightweight (less number of parameters) end-to-end train-
able network and the super resolver network to restore the HR images. Figures 4 and 5
show that our generated SR images are much better than state-of-the-art methods (e.g.,
Figure 4d–f), however Figure 4g,h outperforms ours.
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Table 1. Comparing state-of-the-art Non-Blind (*) and Blind-SR techniques under Setting 1.

Methods Scale Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

#Params
(M)

Bicubic

×2

28.65/0.84 26.70/0.77 26.26/0.73 23.61/0.74 25.73/0.84 /

RCAN * [11] 29.73/0.86 27.65/0.79 27.07/0.77 24.74/0.78 27.64/0.87 15.59

ZSSR * [25] 29.74/0.86 27.57/0.79 26.96/0.76 24.34/0.77 27.10/0.87 0.22

MZSR * [64] 29.88/0.86 27.32/0.79 26.96/0.77 24.12/0.77 27.24/0.87 0.22

CARN * [17] 30.99/0.87 28.10/0.78 26.78/0.72 25.77/0.76 26.86/0.86 1.592

Pan et al. [63]
+ CARN [17] 24.20/0.74 21.12/0.61 22.69/0.64 18.59/0.58 21.54/0.74 /

CARN [17] +
Pan et al. [63] 31.27/0.89 29.03/0.82 28.72/0.80 25.62/0.79 29.58/0.91 /

KernelGAN [22]
+ ZSSR [25] 26.02/0.77 20.19/0.58 21.42/0.60 19.55/0.61 24.22/0.78 0.52

KernelGAN [22]
+ MZSR [64] 29.39/0.88 23.94/0.72 24.42/0.73 23.39/0.77 28.38/0.89 0.52

IKC [23] 33.62/0.91 29.14/0.85 28.46/0.82 26.59/0.84 30.51/0.91 9.05

DAN [48] 34.55/0.92 29.92/0.86 29.66/0.85 27.96/0.87 33.82/0.95 4.33

Ours 31.02/0.89 27.87/0.80 27.67/0.79 25.11/0.80 28.44/0.89 0.38

Bicubic

×4

24.49/0.69 23.01/0.59 23.64/0.59 20.58/0.57 21.97/0.70 /

RCAN * [11] 24.95/0.71 23.33/0.61 23.65/0.62 20.73/0.61 23.30/0.76 15.59

ZSSR * [25] 24.77/0.70 23.32/0.60 23.72/0.61 20.74/0.59 22.75/0.74 0.22

MZSR * [64] 24.99/0.70 23.45/0.61 23.83/0.61 20.92/0.61 23.25/0.76 0.22

CARN * [17] 26.57/0.74 24.62/0.62 24.79/0.59 22.17/0.58 21.85/0.68 1.592

Pan et
al. [63]+

CARN [17]
18.10/0.48 16.59/0.39 18.46/0.44 15.47/0.38 16.78/0.53 /

CARN [17]+Pan
et al. [63] 28.69/0.80 26.40/0.69 26.10/0.65 23.46/0.65 25.84/0.80 /

KernelGAN [22]
+ ZSSR [25] 17.59/0.42 19.20/0.49 17.14/0.40 16.95/0.47 19.40/0.61 0.52

KernelGAN [22]
+ MZSR [64] 23.08/0.66 22.24/0.61 21.51/0.56 19.37/0.58 22.05/0.70 0.52

IKC [23] 27.84/0.80 25.02/0.67 24.76/0.65 22.41/0.67 25.37/0.81 9.05

DAN [48] 27.64/0.80 25.46/0.69 25.35/0.67 23.21/0.71 27.04/0.85 4.33

Ours 25.94/0.73 23.83/0.62 24.12/0.60 21.15/0.59 22.15/0.71 0.38
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(a) Ground

Truth Image

(b) HR patch (c) bicubic (d) RCAN

(e) MZSR (f)

kernelGAN+ZSSR
(g) IKC (h) DAN

(i) Ours

Figure 4. Visual comparison on Set5 (×4) with Setting 1.

4.5.2. Setting 2

Setting 2 used irregular blur kernels (anisotropic), which is more generic but harder to
solve. Table 2 shows that our proposed method performs favorably against some state-of-
the-art methods like RCAN [11], ZSSR [25], but IKC [23], DAN [48], and KOALAnet [28]
have better results since they explicit estimate the blur kernels (hence assuming a GT kernel
is available) and have a large number of parameters. Figure 6 shows the visual comparison
with the state-of-the-art (SOTA) super-resolution (SR) method with setting 2.

Table 2. Comparing state-of-the-art Non-Blind (*) and Blind-SR techniques under Setting 2.

Scale Bicubic RCAN* [11] ZSSR* [25] KernelGAN [22]
+ ZSSR [25]

IKC [23] DAN [48] KOALAnet [28] Ours

×2 27.00/0.77 27.52/0.79 27.47/0.79 27.62/0.79 29.24/0.84 31.09/0.88 30.48/0.86 27.53/0.79

×4 23.89/0.64 24.16/0.65 24.11/0.65 24.50/0.66 25.26/0.70 26.42/0.73 26.23/0.72 24.67/0.66

4.6. Computational Cost

In Table 3 we report on the number of FLOPs required to run our method and compare
it against [23] and [48]. We followed the same methodology described in Ref. [48] and
computed the FLOPs and inference time considering an input size of 270× 180. This is
done for 40 images synthesized by 8 blur kernels from the Set5 dataset. Results show
that, with 3× less required FLOPs, our model achieves a significantly faster inference time
yielding 0.243 s/image while DAN and IKC have 0.312 and 1.735 s/image, respectively.
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Table 3. Comparison of FLOPs.

Methods FLOPs

IKC [23] 2178.72 G
DAN [48] 929.35 G
Ours 295.17 G

4.7. Ablation Study

In Table 4, we analyze the impact of the kernel estimation module. Results are
computed on the DIV2K validation set with unknown blur kernels. It shows that without
using (Nkest) it does not generate good SR images in terms of PSNR/SSIM, and with
our proposed method, PSNR/SSIM increased by +0.17/+0.02, respectively. To study
the effects of different blur kernels, we compute the results in Table 5. These indicate
that our method can generalize better than a Non-Blind-SR method (i.e., Ref. [25]) while
maintaining competitive performance with a Blind-SR method (i.e., Ref. [23]) requiring
7.5×more learnable parameters.

(a) Ground

Truth Image

(b) HR patch (c) bicubic (d) RCAN

(e) MZSR (f)

kernelGAN+ZSSR
(g) IKC (h) DAN

(i) Ours

Figure 5. Visual comparisons (×4) on the Set14 with Setting 1.



Information 2023, 14, 296 13 of 16

Table 4. This table displays that the DIV2K validation set (100 images with unknown blur kernels)
was used for our ablation investigation.

Methods w/o (Nkest) Ours

PSNR/SSIM 25.63/0.69 25.80/0.71

Table 5. Quantitative performance of proposed approach on Set5(x4) with different blur kernels width.

Kernel Width 1.0 2.5 3.0 3.5 4.0

Bicubic 25.20/0.72 24.38/0.69 23.70/0.66 23.18/0.63 22.80/0.62

ZSSR [25] 26.30/0.76 25.06/0.72 24.11/0.68 23.44/0.65 22.95/0.62

IKC [23] 28.12/0.82 28.32/0.82 28.29/0.81 27.90/0.80 24.26/0.69

Ours 26.31/0.76 26.05/0.73 25.09/0.70 24.17/0.66 23.38/0.63

(a) Ground

Truth Image

(b) HR patch (c) bicubic (d) RCAN

(e) MZSR (f)

kernelGAN+ZSSR
(g) DAN (h) Ours

Figure 6. Visual comparisons (×4) on the DIV2KRK dataset with Setting 2.

5. Conclusions

In this paper, we have introduced an effective, lightweight, and implicit blur kernel
estimation end-to-end approach for blind image super-resolution (blind-SR). Our proposed
approach is based on a deep convolutional neural network (CNN) named estimator and a deep
super-resolution residual convolutional generative adversarial network named super resolver.
The Estimator module implicitly estimates the blur kernels from the LR input without the
supervision of the ground truth kernel. The Super Resolver module restores the SR image
by exploiting a GAN framework to minimize the energy-based objective function with the
discriminative and residual learning approaches, considering the estimated kernel. The whole
architecture is trained in an end-to-end fashion. Results on different benchmark datasets show
that our approach achieves better performance than state-of-the-art methods having a similar
number of learnable parameters, enabling it to work on devices with limited computational ca-
pacity.
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