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Abstract

:

Intent classification is an essential task for goal-oriented dialogue systems for automatically identifying customers’ goals. Although intent classification performs well in general settings, domain-specific user goals can still present a challenge for this task. To address this challenge, we automatically generate knowledge graphs for targeted data sets to capture domain-specific knowledge and leverage embeddings trained on these knowledge graphs for the intent classification task. As existing knowledge graphs might not be suitable for a targeted domain of interest, our automatic generation of knowledge graphs can extract the semantic information of any domain, which can be incorporated within the classification process. We compare our results with state-of-the-art pre-trained sentence embeddings and our evaluation of three data sets shows improvement in the intent classification task in terms of precision.
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1. Introduction


A large part of global business in the consumer domain is providing services, such as consumer payments, mobile cloud services, and more. In providing these services to the customers, a business also needs to provide services to satisfy the customer needs that arise from their customer base [1]. Much of this customer support is provided through online interactions in the form of web chats. The ability to address these customer requests more efficiently can be of significant business benefit.



The intent classification task is the automated categorisation of text with different intents based on customer goals using machine learning (ML) and natural language processing (NLP) techniques. In a general setting, a sentence such as “Where is the best place to buy a television?” could be associated with the purchase intent. Because most goal-oriented dialogue systems are used to engage with customers through personalised conversations, intent classification is an essential component of these systems, where intent can be aligned with a customer’s asked question. Therefore, the automated classification of users’ intent can significantly reduce the manual effort of analysing user comments to identify avenues for improvements and issue remediation.



To enrich the classical classification task with domain-specific knowledge, we focus in this work on automatic knowledge graph (KG) generation, which is incorporated into the classification task. To automatically generate a KG, we leverage term extraction techniques, named entity recognition (NER), and dependency parsing to align the concepts, i.e., terms and named entities with semantic relations. We perform intent classification on two publicly available data sets, i.e., ComQA [2] and ParaLex [3], as well as on one proprietary domain-specific data set, named ProductServiceQA, in the telecommunications domain. For this, we automatically generate KGs based on the data sets used in this study, whereby we distinguish between generic and domain-specific KGs. Because the automatically generated KGs are based on domain-specific data, they emphasise the depth of knowledge. We compare these results to a general KG, i.e., DBpedia [4], which is based on common knowledge and emphasises the breadth of knowledge. Within the process of the automatic KG generation, we evaluate the knowledge extraction, in particular, the extraction of entity classes and semantic relations between them, as expressed within the data set. Finally, we leverage this information as knowledge graph embeddings (KGEs) for intent classification according to the extracted classes and relations.




2. Related Work


In this section, we provide an overview of related work focusing on intent classification using large pre-trained models and the incorporation of external knowledge for intent classification.



Leveraging large pre-trained embedding models for intent classification is explored in Cavalin et al. [5], where class labels are not represented as a discrete set of symbols but as a space where the word graphs associated with each class are mapped using typical graph embedding techniques. This allows the classification algorithm to take into account inter-class similarities provided by the repeated occurrence of some words in the training examples of the different classes. The classification is carried out by mapping text embeddings to the word graph embeddings of the classes. Their results demonstrate a considerable positive impact on the detection of out-of-scope examples when an appropriate sentence embedding such as LSTM and BERT is used. Similarly, Zhang et al. [6] proposed IntentBERT, which is a pre-trained model for few-shot intent classification. The model is trained by fine-tuning BERT on a small set of publicly available labelled utterances. The authors demonstrate that using small task-relevant data for fine-tuning is far more effective and efficient than the current practice that fine-tunes on a large labelled or unlabeled dialogue corpus. Furthermore, Zhang et al. [7] focused on the compositional aspects of intent classification. The authors decompose intents and queries into four factors, i.e., topic, predicate, object/condition, and query type. To leverage the information, they combine coarse-grained intents and fine-grained factor information applying multitask learning. Purohit et al. [8] studied the intent classification of short text from social media combining knowledge-guided patterns with syntactic features based on a bag of n-gram tokens. The authors explored knowledge sources to create pattern sets for examining improvement in the multiclass intent classification. The work demonstrated significant gains in performance on the data set collected from Twitter only.



Combining large pre-trained models with KGs is explored in Ahmad et al. [9], where the authors study a joint intent classification and slot-filling task with unsupervised information extraction for KG construction. The authors trained the intent classifier in a supervised way but used this intent classifier for the slot-filling task in an unsupervised manner. They trained a BERT-based classifier for the intent classification task, which is used in a masking-based occlusion algorithm that extracts information for the slots from an utterance. A KG construction algorithm from dialogue data is also described in this paper. Within their evaluation, they observed that in a completely unsupervised setting the occlusion-based slot-information extraction method yielded good results. Yu et al. [10] capture commonsense knowledge for e-commerce behaviours by semi-automatically constructing a KG for intent classification. The authors leverage large language models to semi-automatically construct an intention KG, which is then evaluated and curated by human annotators. The annotation is performed on a large number of assertions that can explain a purchasing or co-purchasing behaviour, whereby the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor. Furthermore, Pinhanez et al. [11] manually leveraged symbolic knowledge from curators of conversational systems to improve the accuracy of those systems. The authors use the context of a real-world practice of curators of conversational systems who often embed taxonomically structured meta-knowledge, i.e., knowledge graphs, into their documentation. The work demonstrates that the knowledge graphs can be integrated into the dialogue system to improve its accuracy and to enable tools to support curatorial tasks. He et al. [12] presented their user intent system and demonstrated its effectiveness in downstream applications deployed in an industrial setting. For KG construction, the authors leveraged lexical rule matching, part-of-speech tagging, and short text matching to construct a KG with “isA” relations between the “intent” nodes.



Further work focused on leveraging large but generic knowledge bases or knowledge graphs for intent classification. Within this work, Zhang et al. [13] demonstrated that informative entities in KGs can enhance language representation with external knowledge. The authors utilized large-scale textual corpora and KGs to train an enhanced language representation model. The model can leverage lexical, syntactic, and knowledge information simultaneously. By leveraging a knowledge base and slot-filling joint model, He et al. [14] proposed a multitasking learning intent-detection system. The proposed approach was used to share information and rich external utility between intent and slot modules. The LSTM and convolutional networks were combined with a knowledge base to improve the model’s performance. Siddique et al. [15] proposed an intent detection model, named RIDE, that leverages commonsense knowledge from ConceptNet in an unsupervised fashion to overcome the issue of training data scarcity. The model computed robust and generalisable relationship meta-features that capture deep semantic relationships between utterances and intent labels. These features were computed by considering how the concepts in an utterance are linked to those in an intent label via commonsense knowledge. Shabbir et al. [16] presented the generation of accurate intents for unstructured data in Romanised Urdu and integrated this corpus in a RASA NLU module for intent classification. The authors embedded the KG with the RASA framework to maintain the dialogue history for a semantic-based natural language mechanism for chatbot communication and compared results with existing linguistic systems combined with semantic technologies. Similarly, Sant’Anna et al. [17] engaged RASA to extract intents and entities from a given sentence. Using RASA, the authors investigated the effectiveness of automatic answering systems to consumer questions about products in e-commerce platforms. Hu et al. [18] proposed a general methodology for the problem of query intent classification by leveraging Wikipedia. The concepts in Wikipedia were used as the intent representation space, thus, each intent domain was represented as a set of Wikipedia articles and categories. The intent of any input query was identified by mapping the query into the Wikipedia representation space. The authors demonstrated the effectiveness of this method in three different applications, i.e., travel, job, and person name.



Differently from the approaches noted above, our work focuses on providing domain-specific knowledge into the classification model by automatically generating semantically structured resources, i.e., knowledge graphs, from the targeted data sets. This allows us to automatically generate a knowledge graph from a document of a targeted domain, which eliminates human intervention or the dependency on existing knowledge graphs needed to guide the intent classification within a goal-oriented dialogue system.




3. Experimental Setup


In this section, we provide information on the KG extraction framework, KGEs generation, the state-of-the-art (SOTA) pre-trained sentence embeddings, and the data sets used in this work.



3.1. Saffron—Knowledge Extraction Framework


To automatically generate KGs from the targeted data sets, we used the KG extraction framework Saffron (https://saffron.insight-centre.org/, accessed on 30 March 2023). The tool is designed to create a KG automatically from a large text corpus by identifying terms and relations between them using syntactic and corpus frequency information.




3.2. Knowledge Graph Embeddings


In a given KG, each subject h or object t entity can be associated as a point in a continuous vector space. In this work, we use TuckER [19], which employs a three-way Tucker tensor decomposition, which computes the tensor T and a sequence of three matrices leveraging the embeddings of entities (A and C) and relations (B) between them (  G ≈ T ⊗ A ⊗ B ⊗ C  ). This allows us to create KGEs that are used in the network embedding layers in our system.




3.3. Pre-Trained Word and Sentence Embeddings


In addition to using the automatically generated KGs and KGEs trained on the targeted data sets, we leverage different SOTA pre-trained word and sentence embeddings for the classification task. First, we leveraged the pre-trained GloVe [20] word embeddings, which were trained on six billion tokens extracted from Wikipedia and the Gigaword archive (https://catalog.ldc.upenn.edu/LDC2011T07, accessed on 30 March 2023). LASER [21] is a multilingual sentence encoder to calculate and use multilingual sentence embeddings. The framework learns joint multilingual sentence representations for 93 languages and uses a single Bi-LSTM encoder combined with a decoder trained on publicly available corpora. LASER transforms sentences into language-independent vectors, which allows it to learn a classifier using training data in any of the covered languages. Furthermore, we use SBERT [22], which uses Siamese and triplet network structures for generating sentence embeddings. Finally, we leverage MPNet [23], which is trained through permuted language modelling (PLM), allowing a better understanding of bidirectional contexts. MPNet leverages the dependency among predicted tokens through PLM and takes auxiliary position information as input to make the model see a full sentence. The model is trained on various corpora (over 160 GB of text) and fine-tuned on a variety of down-streaming tasks, such as GLUE and SQuAD, among others.




3.4. LIME


To better understand the predictions made by our intent classification models, we used the local interpretable model-agnostic explanations (LIME, https://github.com/marcotcr/lime, accessed on 30 March 2023) algorithm introduced by Ribeiro et al. [24]. LIME learns an interpretable model locally around the prediction to explain predictions of any given classifier. For each prediction, it illustrates the degree how much each feature contributed to the outcome of the machine learning model’s output. LIME implements this using the original model to generate fresh samples by making slight permutations to the feature values from the training set given to the model. Each of these samples is then given a weight based on its resemblance to the occurrence we are seeking to describe. The explainable model is then trained using the weighted proxy data created earlier.



Figure 1 illustrates the LIME visualisation of important words (i.e., recharge, ticket, develop) and their contribution degree for the intent classification of the question Hello, may I recharge my account? Where can U develop my ticket? Using LIME allowed us to identify the most important words that contribute to the classification task. Furthermore, we compare the top-k words (k = 5) provided by LIME with the automatically extracted terms using Saffron. This allowed us to filter the automatically generated KGs by Saffron based on the important words provided by LIME (cf. Section 4.3).




3.5. Significance Testing


To compare the predictive accuracy of the two models, we use McNemar’s test [25], which is based on a two-by-two contingency table of the two models’ predictions. For McNemar’s test, the null hypothesis shows there is no difference between the marginal frequencies. Therefore, if the p-value is greater than 0.05, it can be concluded that there is not a significant difference between false negatives and false positives. The alternative hypothesis shows there is a significant difference between the marginal frequencies, whereby the p-value is less than or equal to 0.05.




3.6. Data Sets


First, we used a proprietary question–answer data set, named ProductServiceQA data set (Table 1). It consists of 7611 user queries, such as “Can the VISA and MASTER cards be added to the card package?”, which are distributed among 338 different classes (i.e., Bank cards that can be added).



The ComQA data set [2] (http://qa.mpi-inf.mpg.de/comqa/, accessed on 30 March 2023) consists of 11,214 questions of users’ interest, which were collected from WikiAnswers, a community question-answering website. The data set contains questions with various challenging phenomena such as the need for temporal reasoning, comparison, compositionality, and unanswerable questions (e.g., Who was the first human being on Mars?). The questions in ComQA are originally grouped into 4834 clusters, which are annotated with their answer(s) in the form of Wikipedia entities. To evaluate all data sets with a similar set of classes, we selected from ComQA only the QA pairs, which appear more than six times in the data set.



The ParaLex data set [3] (http://knowitall.cs.washington.edu/paralex/, accessed on 30 March 2023). The data set contains paraphrases, word alignments, and basic NLP-processed versions of the questions. There are about 2.5 million distinct questions and 18 million distinct paraphrase pairs. As an example, “What are the green blobs in plant cells?” and a green substance in the plant cell be the? represent the question pairs within this data set. This allowed us to evaluate the targeted data sets with a similar set of intents, ranging between 272 intents for ComQA and 338 for ProductServiceQA.



The ATIS (Airline Travel Information Systems, https://www.kaggle.com/code/siddhadev/atis-dataset-from-ms-cntk?scriptVersionId=10371998, accessed on 30 March 2023) is a data set of manual transcripts regarding humans asking for flight information on automated airline travel inquiry systems. The data consist of 17 unique intent categories.





4. Methodology


In this section, we provide insights on using the automatically generated KGs from the targeted data sets, NER, dependency parsing for relation extraction, and a relation filtering approach. Each step of the KG generation allowed us to evaluate the impact of the semantic information represented in the KG in the classification task. As an example, Table 2 illustrates the different KGs generated from the ProductServiceQA data set. We conclude this section with the manual evaluation of the automatically generated KGs.



4.1. Knowledge Graph Creation Pipeline


The creation of domain-specific KGs includes NLP methods for term extraction, NER follows, and relation extraction provided by the Saffron tool for KG generation (Figure 2). To automatically generate KGs, domain-specific terms and NEs are extracted from the corpus and used as a base for the generation of a taxonomy. Additional relations are extracted from the text corpus and added to the taxonomy to form a KG.



4.1.1. Term Extraction


For the first step, we use the term extraction module implemented in Saffron [26]. The approach extracts noun phrases and uses distribution metrics to select term candidates. Then, a scoring function, i.e., occurrence frequency, context-relevance, reference corpus usage (e.g., Wikipedia), and topic modelling, is used to measure the domain relevance of the terms.




4.1.2. Named Entity Recognition


To obtain NEs from the targeted data sets, we used Flair’s NER model, which is based on XLM-R embeddings (https://huggingface.co/flair/ner-english-large, accessed on 30 March 2023). To include domain-specific NEs of relevance for the proprietary ProductServiceQA data set, a domain-specific NEs recognition model was built to extend the term extraction step [27]. A list of NEs that are specific to the ProductServiceQA data set was provided and used to train the NER system. For this, we used Flair [28], more concretely the “Flair (forward+backward)+GloVe”, embeddings as they performed best for our targeted domain. Table 3 provides the results of a comparison of different embedding methods on the ProductServiceQA data set.




4.1.3. Taxonomy Generation


The taxonomy generation step is constructing a taxonomy using the top N ranked terms (Saffron’s default setting is N = 100) and NEs obtained from the previous steps [29]. For each distinct pair of concepts, c, d∈C, we attempt to estimate the probability, p(c⊑d). Based on the probability scores given by the pairwise scoring, a likelihood function is defined that represents how likely a given structure of concepts represents a taxonomy for the set of terms provided. Then, greedy search is used to find the KG   t   with a taxonomic IS-A relation that maximizes the value of the likelihood function.




4.1.4. Relation Extraction


To extract relations between the terms, we make use of dependency parsing. For this, the corpus is parsed using the universal dependencies of the Stanford parser [30] implemented in Stanza (https://stanfordnlp.github.io/stanza/depparse.html, accessed on 30 March 2023). All dependencies involving a term, extracted previously using the Saffron framework, and a verb (using the POS information) are extracted, which provides us with a set of predicate–term pairs, e.g., nsubj(pay, customer) or obj(pay, bill). For phrasal verbs, particles are added to the predicate using a hyphen (-) (get-up). Similarly, for dependencies involving a preposition (obl dependency type), we concatenate the preposition to the predicate (add_to, phone). A triple (term1, predicate, term2) is constructed by combining any dependency pairs where, in the same sentence, the same predicate is the head of two dependencies in the list of pairs obtained in the previous step, e.g., nsubj_obj(customer, pay, bill). The triple relations are added to the previously generated taxonomy (KG   t  ). The outcome of this step is the KG    t r    with additional lexical relations between the extracted terms.




4.1.5. Knowledge Graph Generation


By performing term extraction, NER, and relation extraction, we use the obtained triples to generate the KG    t r e   , incorporating taxonomic and lexical relations between the extracted terms and named entities.





4.2. Intent Classification with Pre-Trained and Knowledge Graph Embeddings


Finally, we leverage the KGEs for intent classification trained on the KGs noted above using TuckER, which we combine with the pre-trained sentence embeddings. For this, we use a multi-layer feed-forward neural network. It is a fully connected network structure with five hidden layers, whereby the dimension of the input layer is decided based on the dimensions of the input embedding. The activation function used is ReLU [31], and we use the Softmax function in the output layer. Categorical Cross-Entropy is used as the loss function and Adam [32] is used as the optimiser. We apply dropout (0.3 dropout rate) between the two hidden layers and between the last hidden layer and the output layer. The number of training epochs is 300 and the batch size is 512.



The embeddings are fed through the above-explained network architecture for model building. With this, we leverage pre-trained embeddings (GloVe, LASER, SBERT, MPNet) in combination with KGEs. The various sentence embedding approaches used in our work can be categorised into three broad methods. In the first approach, the network is trained with the SOTA pre-trained models, i.e., LASER, SBERT, or MPNet. The results obtained from a single embedding category are considered our baseline results. Additionally, we performed a Concatenation approach, where, for a given sentence, two or more embeddings obtained from LASER, SBERT, GloVe, or KGEs are concatenated into the embedding matrix (E). For Substitution, we are examining if a term extracted from the data set is present in the KG. If it is, we use KGEs to obtain the embeddings; otherwise, GloVe embeddings are used. As both KG and GloVe have 300 dimensions, the input layer dimension remains the same.




4.3. Filtering Knowledge Graphs with LIME


We run the LIME algorithm on the targeted data sets and extract all words the model focuses on while making a prediction. The obtained ranked LIME list is compared with the top words provided by the Saffron tool. Whereas LIME extracts only unigrams, Saffron provides bi-grams extracted from the targeted data sets. We ran experiments with all KGs to obtain only the important words marked by LIME. This reduced the vocabulary of the KG by removing the excess noise.




4.4. Intent Classification on Intents Translated into English


Along with its intent in English, ProductServiceQA also holds the intents in Spanish and Chinese. To simulate the intent classification for these languages, we leveraged a translation pipeline to test how a slightly noisy data set affects the Siamese network classifier.




4.5. Manual Evaluation of KGs


We manually analysed and curated the automatically generated ProductServiceQA KGs, which resulted in the benchmark KGs for this data set. These benchmark KGs allowed us to evaluate the quality of the automatically generated ProductServiceQA KGs and are not used in training of the intent classification models or the generation of any other automatic KGs. Three curators, one male and two female, all NLP specialists in knowledge extraction, performed the curation.



Term Extraction Curation: The term list was provided to the three annotators who independently identified terms that were correctly extracted based on the definition of a term and the domain of the data set. As an example, the extracted term pay card swiping was annotated as an incorrectly extracted term, whereas pay card was labelled as correct. Where possible, if the term span was incorrect, a corrected version was proposed. In this case, wearable device support bank was corrected in the benchmark KGs to wearable device. Within this manual curation step, 50% of terms were identified as correct, whereby 13 terms were modified.



Taxonomic Relations Curation: A similar curation was performed on the extracted taxonomic relations. The curators were presented with pairs of terms involved in a taxonomic (hyponym) relation, i.e., parent_term → child_term. The annotators had to identify whether the parent term (payment) was correctly identified for the child term (flash payment). A wrongly identified relation pair would be device→support. If the taxonomic relation was not correctly extracted, the experts proposed a replacement parent term from the list or a new term if none was deemed appropriate. Evaluating this step, 33% of relations were considered as correct, whereby 20 new terms were defined and added to the benchmark taxonomy. The benchmark KG    t r   , which was used to evaluate the automatically generated KGs, contains 83 terms within a taxonomy of depth 5.



Named Entity with Dependency Relation Curation: For the benchmark KG    t r e   , we collected a list of NEs and their types, which resulted in 619 NEs (e.g., card) belonging to 22 different types (CARD_TYPE). In order to add the NEs to the benchmark KG    t r e   , we selected the NE types that match a term in the taxonomy. Seven such types were identified. We then collected all the NEs corresponding to these seven types from the list (amounting to 25 NEs) and added them to their parent in the benchmark KG    t r e    using a taxonomic relation.



Within the same curation step, the dependency-based relation extraction algorithm was performed, extracting predicates involving two NEs, or a NE and a term (from the initial list of terms in the third step of the approach). A set of 126 triples with terms and NEs were finally added as relations that contain NEs to the previously mentioned benchmark KG    t r e   .





5. Results


In this section, we provide insights into experiments using an RNN as well as Siamese networks for the intent classification task. Additionally, we illustrate the performance of the classification task with the most important term in KGs, identified by the LIME framework. Finally, we evaluate the performance of the classification task in a multilingual setting.



5.1. Intent Classification with Recurrent Neural Networks


Analysing the results for the ComQA data set in the top part of Table 4, MPNet embeddings contribute best to the classification task compared to LASER or SBERT. The KGEs trained on the automatically generated KGs do not outperform the SOTA embeddings, although the performance of the KGs improves with the number of terms within the KG. As seen in Table A1 (see Appendix A), KG   t   with 100 terms achieves a precision of 40.71, whereas KG    t r e   , with 750 terms and relations between them, achieves a precision of 93.34.



When concatenating sentence embeddings with GloVe or the automatically generated KGs, KG             t    with 500 and 750 terms performs best (99.45) when it is combined with LASER and SBERT or MPNET. Comparing the performance between the GloVe embeddings and the automatically generated KGs, the latter outperforms the former in the majority of the setups. Substitution performs comparably to the concatenation approach, where combining LASER+SBERT+KG                    t       r         achieves the same precision as the best-reported concatenation approach.



For the ParaLex data set (Table 4), leveraging the SBERT pre-trained model as a single resource performs best (54.06). Nevertheless, when combining different embeddings, LASER+SBERT+GloVe outperforms the standalone embeddings (54.41). Similarly to the ComQA data set, although extracting more terms for KG generation improves the classification task (precision of 22.38 with KG   t   with 100 terms, 50.45 KG    t r e    with 750 terms), it does not outperform any SOTA pre-trained models (Table A2 in Appendix A). On the other hand, in combination with LASER+MPNet, the KGEs trained on KG                    t       r         with 750 terms and extracted relations outperform the SOTA embeddings for the ParaLex data set using the substitution approach (55.42).



Next, we leverage the SOTA sentence embeddings on the proprietary ProductServiceQA data set (lower part of Table 4). Analysing single embeddings, compared to SBERT, LASER, or the KGEs trained on the automatically generated KGs and DBpedia, MPNet performs best on the proprietary data set in the telecommunication domain (69.25). When combining sentence embeddings with the KGs, DBpedia in combination with LASER+MPNet contributes the most when using the concatenation approach. Similarly to the data sets described above, embedding substitution does not outperform the concatenation approach (see Table A3 in Appendix A).



In addition to the experiments noted above on the proprietary ProductServiceQA data set, we analysed the impact of the set of terms within KG                    t       r       e         extracted by the Saffron tool. As Saffron in its default setting extracts the 100 most domain-specific terms from the targeted document, we extended the set of domain-specific terms gradually (Table 5). As seen in Table 6, extending the set of terms positively contributes to the classification precision when using the KGs as a single embedding resource. As a result, even the KG with 1000 terms does not outperform any pre-trained sentence embeddings used in this work. Nevertheless, when concatenating the KGs with SOTA pre-trained embeddings, LASER+MPNet+KG                    t       r       e         with 100 terms performs best (69.99).



For the ATIS data set (bottom part of Table 4) in the aviation travel inquiry domain, LASER performs best (98.87) as a single embedding resource, whereas combining LASER with SBERT or SBERT+GloVe does not improve the performance on the classification task. In contrast, many systems that leverage the information of the KGs outperform the classification task when only the LASER pre-trained embeddings are used (99.25).




5.2. Siamese Network


In addition to the experiments using the RNN architecture, we employed a Siamese network for the classification task. The top part of Table 7 illustrates the results for the ComQA data set, where compared to LASER, as well as the concatenation of SBERT and LASER embeddings, SBERT embeddings contribute best (95.18) to the intent classification task. When concatenating sentence embeddings with KGEs trained on the automatically generated KGs, KG                    t       r       e         with 100 terms combined with SBERT and LASER performs the same as SBERT pre-trained embeddings only (95.18).



For the ParaLex data set (top right part in Table 7), the MPNet pre-trained model as a single resource performs best within the classification task (50.33). Next, when combining different embeddings, MPNet+LASER slightly improves the performance on the classification task (50.47). We significantly (  p < 0.05  ) outperform the performance of the classification task of MPNet+LASER when leveraging the KG   t   with 100 terms in combination with MPNet.



The lower part of Table 7 illustrates the intent classification task on the ProductServiceQA data set using the Siamese network. Analysing SOTA pre-trained embeddings, SBERT performs best (73.94); when leveraging the KGEs trained on automatically generated KGs, the combination of MPNet+LASER+KG                      t          t    with 100 terms further improves the performance of the classification task compared to the existing pre-trained models (74.69 vs. 73.94).



For the ATIS data set, SBERT demonstrates the best performance among the SOTA pre-trained models (lower part of Table 7). When leveraging the KGEs based on the automatically generated KGs, MPNet+KG                    t       r       e        , further improves the performance of the intent classification task.



As the sentences in the ComQA data set appear frequently and are thus repetitive, we filtered the data set with sentences in a manner so that they appear only between two and five times in the data set. Compared to the entire ComQA data set (top part of Table 7), the classification precision drops due to the smaller set of sentences used to train the Siamese network (≈95 vs. ≈84). Table 8 demonstrates best performance by the concatenation of the MPNet+LASER embeddings (84.23), while concatenating sentence embeddings with the automatically generated KGs, i.e., SBERT+LASER+KG             t    with 100 terms, outperforms the usage of SOTA embeddings (84.87 vs. 84.23). Table A6 in Appendix A illustrates the extended analysis with different KGs and sets of terms and relations extracted by Saffron.




5.3. Filtering Knowledge Graphs Using LIME


Within the next steps, we analysed the significance of the automatically extracted terms and relations within the KGs. Therefore, we leveraged the LIME toolkit (cf. Section 3.4) to exclude terms in the original KGs that are not considered important by LIME.



5.3.1. Filtering for Intent Classification with Recurrent Neural Networks


For the ComQA data set (top part of Table 9), we observed two cases, i.e., KG    t r    with 100 terms and KG    t r    with 750 terms, where the classification performance significantly (  p < 0.05  ) improved compared to the original KGs (90.49 vs. 90.67 and 94.96 vs. 95.25). This demonstrates that these filtered KGs, which are reduced to one-third (or less) of their original size, hold important domain-specific information to guide the classifier to predict the correct intent.



For the ParaLex data set, three filtered KGs significantly improve (  p < 0.05  ) the performance of the classification task over the original KGs (54.72 vs. 55.14, 55.07 vs. 55.47 and 54.45 vs. 54.62).






[image: Table] 





Table 9. Intent classification evaluation in terms of precision for the targeted data sets using an RNN and most important terms within KG using LIME (bold numbers indicate the best results for each setting; Orig. = original KG, Filt. = filtered KG; * denote statistically significant, p = 0.05).






Table 9. Intent classification evaluation in terms of precision for the targeted data sets using an RNN and most important terms within KG using LIME (bold numbers indicate the best results for each setting; Orig. = original KG, Filt. = filtered KG; * denote statistically significant, p = 0.05).





	
ComQA

	
KG    t   

	
KG    t   

	
KG    t   

	
KG     t r    

	
KG     t r    

	
KG     t r    

	
KG     t r e    

	
KG     t r e    

	
KG     t r e    




	
Data Set

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
183

	
86

	
873

	
315

	
1246

	
392

	
416

	
115

	
1272

	
347

	
1681

	
425

	
1510

	
327

	
2767

	
590

	
4133

	
628




	
LASER+KG

	
89.74

	
89.10

	
91.54

	
90.26

	
90.49

	
90.49

	
90.03

	
90.67 *

	
90.26

	
90.72

	
89.33

	
90.90

	
91.48

	
91.13

	
89.74

	
89.74

	
89.22

	
89.45




	
LASER+SBERT+KG

	
94.38

	
94.84

	
95.07

	
95.25

	
95.19

	
94.67

	
95.77

	
95.65

	
94.96

	
95.36

	
94.67

	
95.25 *

	
94.78

	
95.30

	
94.78

	
95.48

	
94.78

	
94.61




	
LASER+MPNet+KG

	
94.84

	
95.19

	
95.19

	
94.90

	
94.72

	
94.26

	
95.13

	
94.61

	
94.03

	
94.61 *

	
93.91

	
93.91

	
94.49

	
94.38

	
92.93

	
93.39

	
93.16

	
94.20




	
ParaLex

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   




	
Data Set

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
169

	
70

	
785

	
262

	
1116

	
313

	
343

	
100

	
1156

	
313

	
1473

	
343

	
641

	
138

	
1445

	
340

	
1816

	
388




	
LASER+KG

	
54.04

	
53.57

	
54.39

	
54.22

	
54.72

	
55.14 *

	
53.94

	
54.15

	
54.74

	
55.14

	
54.48

	
54.62 *

	
54.39

	
54.29

	
54.34

	
55.09

	
54.08

	
55.33




	
LASER+SBERT+KG

	
54.25

	
54.08

	
54.76

	
55.11

	
54.48

	
54.27

	
54.04

	
54.11

	
54.43

	
54.41

	
55.00

	
54.48

	
53.92

	
54.46

	
54.55

	
54.69

	
55.23

	
55.14




	
LASER+MPNet+KG

	
54.48

	
54.20

	
55.40

	
54.83

	
54.81

	
54.53

	
53.89

	
53.73

	
55.07

	
55.47

	
55.16

	
55.16

	
54.41

	
54.69

	
54.95

	
54.67

	
55.21

	
55.16




	
ProductServiceQA Data Set

	
KG    t   

	
KG     t r    

	
KG     t r e    




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
Dimension

	
136

	
34

	
494

	
129

	
1280

	
286




	
LASER+KG

	
1324

	
63.64

	
63.51

	
63.16

	
62.42

	
63.42

	
63.16




	
LASER+SBERT+KG

	
2092

	
68.50

	
68.46

	
68.76

	
68.37

	
67.89

	
68.86




	
LASER+MPNet+KG

	
2092

	
69.60

	
68.94

	
69.03

	
69.16

	
68.77

	
68.16











Similarly to the aforementioned data sets, KG    t r    and KG    t r e    improve the performance of the classification task over the original KGs generated on the ProductServiceQA data set (lower part of Table 9).




5.3.2. Filtering for Intent Classification with Siamese Networks


In addition to the RNN classification using the filtered KGs, we perform the same experiment with the Siamese network. As seen in the top part of Table 10 for the ComQA data set, filtered KG   t   with 100 and 500 terms, respectively, significantly (  p < 0.05  ) outperform the performance of the classification task in comparison to the original KGs, which contain a larger set of terms and relations.



Similarly, applying the filtered KGs to the ParaLex data set, KG    t r    and KG    t r e    outperform their original counterparts while using the SBERT and MPNet embeddings, respectively.



As seen in the lower part of Table 10, the filtered KGs did not significantly outperform any of the original KGs generated from the ProductServiceQA data set. Nevertheless, minor improvement is detected for all KG variants with different SOTA embeddings.
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Table 10. Intent classification evaluation in terms of precision for the targeted data sets using a Siamese network and most important terms within KG using LIME (bold numbers indicate the best results for each setting; Orig. = original KG, Filt. = filtered KG; * denote statistically significant, p = 0.05).
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ComQA

	
KG    t   

	
KG    t   

	
KG    t   

	
KG     t r    

	
KG     t r    

	
KG     t r    

	
KG     t r e    

	
KG     t r e    

	
KG     t r e    




	
Data Set

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
183

	
86

	
873

	
315

	
1246

	
392

	
416

	
115

	
1272

	
347

	
1681

	
425

	
1510

	
327

	
2767

	
590

	
4133

	
628




	
SBERT+KG

	
94.96

	
94.67

	
94.43

	
94.78

	
94.78

	
94.90

	
94.78

	
95.13

	
94.31

	
94.78

	
94.78

	
94.55

	
94.78

	
95.13

	
94.32

	
94.78

	
94.78

	
94.55




	
SBERT+LASER+KG

	
95.13

	
94.49

	
94.55

	
95.25 *

	
94.60

	
94.84

	
94.78

	
94.96

	
94.55

	
94.55

	
94.95

	
94.66

	
94.14

	
94.61

	
93.80

	
94.32

	
92.93

	
92.12




	
MPNet+KG

	
95.13

	
98.63 *

	
94.49

	
94.38

	
92.86

	
93.28

	
94.49

	
94.72

	
94.03

	
94.32

	
92.34

	
92.35

	
94.49

	
94.72

	
94.03

	
94.32

	
92.35

	
92.35




	
MPNet+LASER+KG

	
95.02

	
89.62

	
94.43

	
94.49

	
92.92

	
93.28

	
94.14

	
94.61

	
93.79

	
94.32

	
92.92

	
92.12

	
94.14

	
94.61

	
93.80

	
94.32

	
92.93

	
92.12




	
ParaLex

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   




	
Data Set

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
169

	
70

	
785

	
262

	
1116

	
313

	
343

	
100

	
1156

	
313

	
1473

	
343

	
641

	
138

	
1445

	
340

	
1816

	
388




	
SBERT+KG

	
49.26

	
48.59

	
48.82

	
48.43

	
49.49

	
49.53

	
48.93

	
49.13

	
49.43

	
50.23

	
49.31

	
50.42

	
49.30

	
50.14 *

	
50.59

	
50.54

	
49.91

	
49.91




	
SBERT+LASER+KG

	
49.17

	
48.94

	
49.52

	
48.59

	
49.17

	
49.86

	
48.65

	
48.83

	
49.28

	
50.40

	
49.35

	
50.28

	
52.72

	
52.04

	
53.66

	
53.10

	
52.77

	
52.44




	
MPNet+KG

	
52.29

	
50.35

	
51.21

	
52.11

	
51.54

	
52.28

	
50.18

	
52.16

	
50.55

	
52.79

	
51.86

	
54.48 *

	
52.89

	
52.63

	
53.14

	
53.07

	
52.79

	
52.60




	
MPNet+LASER+KG

	
51.49

	
50.54

	
50.97

	
52.42

	
50.57

	
52.46

	
50.86

	
53.26

	
51.04

	
52.58

	
51.75

	
53.87

	
52.72

	
52.04

	
53.66

	
53.10

	
52.77

	
52.44




	
ProductServiceQA

	
KG    t   

	
KG     t r    

	
KG     t r e    




	

	
Orig.

	
Filt.

	
Orig.

	
Filt.

	
Orig.

	
Filt.




	
Embeddings

	
Dimension

	
136

	
34

	
494

	
129

	
1280

	
286




	
SBERT+KG

	
1068

	
73.51

	
73.23

	
73.77

	
73.67

	
73.73

	
73.67




	
SBERT+LASER+KG

	
2092

	
73.16

	
73.06

	
74.08

	
74.06

	
73.07

	
73.36




	
MPNet+KG

	
1068

	
73.64

	
73.80

	
74.37

	
74.50

	
73.59

	
73.45




	
MPNet+LASER+KG

	
2092

	
73.81

	
73.49

	
73.77

	
73.14

	
73.29

	
73.49













5.4. Multilingual Setting


As a final experiment, we leverage the translations into English of the multilingual ProductServiceQA data set. Table 11 illustrates the intent classification task when the Spanish language is used. The best performance with pre-trained models is demonstrated with SOTA MPNet+LASER embeddings. When leveraging the KGEs trained on the automatically generated KGs, the classification precision increases to 65.57 when combining the embeddings as MPNet+LASER+KG.



We performed the same experiment with the Chinese intents, which were translated into English. In this setting, the MPNet+LASER embedding combination outperforms other SOTA pre-trained embeddings (Table 12). Similarly to the experiment on the Spanish language, employing the automatically generated KG, in this case in combination with MPNet, further improves the performance of the classification task.





6. Conclusions


In this paper, we presented work on leveraging automatically generated knowledge graphs for intent classification. We provide an analysis of each step, i.e., term extraction, named entity recognition, and relation extraction, towards the creation of knowledge graphs and provide insights on their evaluation and manual curation steps. We perform the intent classification using state-of-the-art sentence embeddings and combine these with domain-specific knowledge graph embeddings trained on the automatically generated knowledge graphs. We evaluate our methodology on four different data sets and demonstrate that the domain-specific knowledge within knowledge graphs further improves the performance on the intent classification task. Furthermore, we study the set of terms and relations within the knowledge graphs and filter them by importance by leveraging the LIME tool. Finally, we leverage the Spanish and Chinese intents of the proprietary ProductServiceQA data set and leverage machine translation to perform the classification on noisy intents translated into English. Our ongoing work focuses on the use of knowledge graph extraction for use in multi-turn intent identification, more specifically on generating questions to direct a user to a more specific answer through knowledge subgraph identification.
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Table A1. Extended intent classification evaluation for the ComQA data set using an RNN and the automatically extracted KGs (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Prec.

	

	
Best Embeddings with KG

	
Dim.

	
Prec.




	

	
SBERT

	
768

	
98.36

	

	
LASER+SBERT+KG    t    (500)

	
2092

	
99.45




	

	
LASER

	
1024

	
96.75

	

	
LASER+MPNet+KG    t    (750)

	
2092

	
99.45




	

	
MPNet

	
768

	
98.63

	

	
LASER+SBERT+KG    t    (750)/GloVe

	
2092

	
99.45




	

	
LASER+SBERT

	
1792

	
98.28

	

	

	

	

	

	

	

	

	




	

	
LASER+SBERT+GloVe

	
2092

	
98.63

	

	

	

	

	

	

	

	

	




	

	

	

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   

	




	

	
Embeddings with KG

	
Dim.

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
DBpedia




	

	
KG

	
300

	
40.71

	
75.41

	
86.89

	
45.08

	
75.13

	
83.61

	
79.96

	
84.70

	
93.34

	
14.92




	
Concat.

	
LASER+KG

	
1324

	
95.35

	
95.62

	
95.08

	
95.63

	
95.08

	
95.08

	
95.90

	
95.90

	
95.63

	
96.17




	
LASER+SBERT+KG

	
2092

	
98.90

	
99.18

	
99.45

	
98.91

	
98.63

	
98.63

	
98.36

	
98.63

	
98.91

	
98.91




	
LASER+MPNet+KG

	
2092

	
99.18

	
99.45

	
98.09

	
98.91

	
98.36

	
98.63

	
98.09

	
98.63

	
98.36

	
98.36




	
Substit.

	
LASER+KG/GloVe

	
1324

	
94.81

	
94.54

	
95.36

	
94.81

	
93.72

	
94.26

	
95.36

	
96.72

	
95.36

	
96.72




	
LASER+SBERT+KG/GloVe

	
2092

	
98.36

	
98.63

	
98.91

	
98.09

	
98.91

	
99.45

	
98.91

	
98.91

	
98.36

	
98.09




	
LASER+MPNet+KG/GloVe

	
2092

	
97.54

	
98.09

	
98.36

	
97.54

	
98.36

	
98.09

	
98.36

	
98.91

	
97.81

	
98.36
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Table A2. Extended intent classification evaluation for the ParaLex data set using an RNN and the automatically extracted KGs (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Precision

	

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	

	
SBERT

	
768

	
54.06

	

	

	
LASER+MPNet+KG/GloVe

	
2092

	
55.42




	

	
LASER

	
1024

	
52.92

	

	

	

	

	

	

	

	

	




	

	
MPNet

	
768

	
53.80

	

	

	

	

	

	

	

	

	




	

	
LASER+SBERT

	
1792

	
54.07

	

	

	

	

	

	

	

	

	




	

	
LASER+SBERT+GloVe

	
2092

	
54.41

	

	

	

	

	

	

	

	

	




	

	

	

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   

	




	

	
Embeddings with KG

	
Dim.

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
DBpedia




	

	
KG

	

	
22.38

	
46.67

	
49.39

	
25.86

	
47.82

	
47.65

	
30.34

	
48.69

	
50.45

	
20.15




	
Concat.

	
LASER+KG

	
1324

	
54.04

	
54.39

	
54.72

	
53.94

	
54.74

	
54.48

	
54.43

	
54.95

	
54.46

	
53.24




	
LASER+SBERT+KG

	
2092

	
54.25

	
54.76

	
54.48

	
54.04

	
54.43

	
55.00

	
54.11

	
54.67

	
54.29

	
53.66




	
LASER+MPNet+KG

	
2092

	
54.48

	
55.40

	
54.81

	
53.89

	
55.07

	
55.16

	
54.46

	
55.28

	
55.14

	
53.66




	
Substit.

	
LASER+KG/GloVe

	
1324

	
51.41

	
54.27

	
53.47

	
52.91

	
54.20

	
54.27

	
54.25

	
54.46

	
54.29

	
51.55




	
LASER+SBERT+KG/GloVe

	
2092

	
52.37

	
54.39

	
53.26

	
52.11

	
52.49

	
53.54

	
54.58

	
54.90

	
55.16

	
53.43




	
LASER+MPNet+KG/GloVe

	
2092

	
51.69

	
54.65

	
53.10

	
53.45

	
53.40

	
54.79

	
54.62

	
55.35

	
55.42

	
51.64
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Table A3. Extended intent classification evaluation for the ProductServiceQA data set using an RNN and the automatically extracted KG with 100 terms (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	

	
SBERT

	
768

	
68.02

	

	
LASER+MPNet+DBpedia

	
2092

	
70.00




	

	
LASER

	
1024

	
62.68

	

	

	

	

	

	

	




	

	
MPNet

	
768

	
69.25

	

	

	

	

	

	

	




	

	
LASER+SBERT

	
1792

	
68.60

	

	

	

	

	

	

	




	

	
LASER+SBERT+GloVe

	
2092

	
68.40

	

	

	

	

	

	

	




	

	
Embeddings with KG

	
Dim.

	
Bench. KG   t  

	
Bench. KG    t r   

	
Bench. KG    t r e   

	
KG   t  

	
KG    t r   

	
KG    t r e   

	
KG    t  r e f  

	
DBpedia




	

	
KG

	
300

	
26.19

	
34.91

	
38.10

	
25.62

	
31.80

	
45.15

	
39.33

	
23.61




	
Concat.

	
LASER+KG

	
1324

	
63.20

	
62.06

	
62.46

	
63.64

	
63.16

	
63.42

	
63.03

	
62.77




	
LASER+SBERT+KG

	
2092

	
68.68

	
68.37

	
67.14

	
68.50

	
68.76

	
67.89

	
68.11

	
67.37




	
LASER+MPNet+KG

	
2092

	
68.77

	
68.94

	
68.24

	
69.51

	
68.16

	
68.77

	
69.21

	
70.00




	
Substit.

	
LASER+KG/GloVe

	
1324

	
59.75

	
61.76

	
60.93

	
59.75

	
60.18

	
62.33

	
62.07

	
60.27




	
LASER+SBERT+KG/GloVe

	
2092

	
67.15

	
67.85

	
68.33

	
67.76

	
68.55

	
68.46

	
68.07

	
67.76




	
LASER+MPNet+KG/GloVe

	
2092

	
67.59

	
67.02

	
66.14

	
67.85

	
68.51

	
67.15

	
68.37

	
68.64
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Table A4. Extended intent classification evaluation for the ATIS data set using an RNN and the automatically extracted KG with 100 terms (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	

	
SBERT

	
768

	
98.67

	

	
LASER+KG

	
1324

	
99.25




	

	
LASER

	
1024

	
98.87

	

	
LASER+MPNet+KG

	
2092

	
99.25




	

	
MPNet

	
768

	
98.43

	

	
LASER+SBERT+KG/GloVe

	
2092

	
99.25




	

	
LASER+SBERT

	
1792

	
98.50

	

	
LASER+MPNet+KG/GloVe

	
2092

	
99.25




	

	
LASER+SBERT+GloVe

	
2092

	
98.62

	

	

	

	

	




	

	
Embeddings with KG

	
Dim.

	
KG   t  

	
KG    t r   

	
KG    t r e   




	

	
KG

	
300

	
91.37

	
91.37

	
93.87




	
Concat.

	
KG

	
300

	
91.37

	
91.37

	
93.87




	
KG+Glove

	
600

	
98.25

	
98.62

	
98.00




	
LASER+KG

	
1324

	
99.25

	
98.62

	
98.25




	
LASER+SBERT+KG

	
2092

	
98.25

	
99.25

	
98.50




	
LASER+MPNet+KG

	
2092

	
99.25

	
99.25

	
98.50




	
Substit.

	
LASER+KG/GloVe

	
1324

	
98.87

	
98.62

	
97.87




	
LASER+SBERT+KG/GloVe

	
2092

	
99.00

	
98.37

	
99.25




	
LASER+MPNET+KG/GloVe

	
2092

	
99.12

	
99.12

	
99.25
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Table A5. Extended intent classification evaluation for the ComQA data set using a Siamese network and the automatically extracted KGs (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
95.18

	

	
SBERT+LASER+KG

	
2092

	
95.18




	
SBERT+LASER

	
1792

	
94.66

	

	

	

	

	

	

	




	
MPNET

	
768

	
94.37

	

	

	

	

	

	

	




	
MPNET+LASER

	
1792

	
94.14

	

	

	

	

	

	

	




	

	

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   




	
Embeddings with KG

	
Dim.

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	
SBERT+KG

	
1068

	
94.96

	
94.43

	
94.78

	
94.78

	
94.31

	
94.78

	
94.55

	
94.61

	
94.78




	
SBERT+LASER+KG

	
2092

	
95.13

	
94.55

	
94.60

	
94.78

	
94.55

	
94.95

	
95.18

	
94.55

	
94.43




	
MPNet+KG

	
1068

	
95.13

	
94.49

	
92.86

	
94.49

	
94.03

	
92.34

	
93.43

	
92.87

	
92.23




	
MPNet+LASER+KG

	
2092

	
95.02

	
94.43

	
92.92

	
94.14

	
93.79

	
92.92

	
93.91

	
93.27

	
91.65
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Table A6. Extended intent classification evaluation for the ComQA data set, filtered by questions with a frequency between two and five, using a Siamese network and the automatically extracted KGs (bold numbers indicate the best results for each setting).






Table A6. Extended intent classification evaluation for the ComQA data set, filtered by questions with a frequency between two and five, using a Siamese network and the automatically extracted KGs (bold numbers indicate the best results for each setting).





	
SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
83.31

	

	
SBERT+LASER+KG

	
2092

	
84.87




	
SBERT+LASER

	
1792

	
84.12

	

	

	

	

	

	

	




	
MPNET

	
768

	
83.25

	

	

	

	

	

	

	




	
MPNET+LASER

	
1792

	
84.23

	

	

	

	

	

	

	




	

	

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   




	
Embeddings with KG

	
Dim.

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	
SBERT+KG

	
1068

	
83.78

	
83.48

	
84.24

	
84.07

	
84.65

	
83.95

	
84.01

	
83.31

	
83.60




	
SBERT+LASER+KG

	
2092

	
84.87

	
84.42

	
83.54

	
83.31

	
83.89

	
84.01

	
84.18

	
83.14

	
83.78




	
MPNet+KG

	
1068

	
84.29

	
84.07

	
84.12

	
84.30

	
83.37

	
83.89

	
83.95

	
83.89

	
83.95




	
MPNet+LASER+KG

	
2092

	
83.02

	
83.89

	
83.49

	
83.89

	
83.31

	
83.89

	
83.54

	
84.36

	
83.78
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Table A7. Extended intent classification evaluation for the ParaLex data set using a Siamese network and the automatically extracted KGs (bold numbers indicate the best results for each setting; * denote statistically significant, p = 0.05).






Table A7. Extended intent classification evaluation for the ParaLex data set using a Siamese network and the automatically extracted KGs (bold numbers indicate the best results for each setting; * denote statistically significant, p = 0.05).





	
SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
48.81

	

	
MPNet+KG

	
1068

	
52.29




	
SBERT+LASER

	
1792

	
49.75

	

	

	

	

	

	

	




	
MPNET

	
768

	
50.33

	

	

	

	

	

	

	




	
MPNET+LASER

	
1792

	
50.47

	

	

	

	

	

	

	




	

	

	
KG   t  

	
KG   t  

	
KG   t  

	
KG    t r   

	
KG    t r   

	
KG    t r   

	
KG    t r e   

	
KG    t r e   

	
KG    t r e   




	
Embeddings with KG

	
Dim.

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)

	
(100)

	
(500)

	
(750)




	
SBERT+KG

	
1068

	
49.26

	
48.82

	
49.49

	
48.93

	
49.43

	
49.31

	
49.28

	
49.73

	
49.12




	
SBERT+LASER+KG

	
2092

	
49.17

	
49.52

	
49.17

	
48.65

	
49.28

	
49.35

	
48.89

	
48.93

	
49.49




	
MPNet+KG

	
1068

	
52.29 *

	
51.21

	
51.54

	
50.18

	
50.55

	
51.86

	
51.18

	
51.68

	
50.62




	
MPNet+LASER+KG

	
2092

	
51.49

	
50.97

	
50.57

	
50.86

	
51.04

	
51.75

	
51.28

	
50.69

	
51.20
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Table A8. Extended intent classification evaluation for the ProductServiceQA data set using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
73.94

	

	
MPNet+LASER+KG

	
2092

	
74.69




	
SBERT+LASER

	
1792

	
73.77

	

	

	

	

	




	
MPNET

	
768

	
73.55

	

	

	

	

	




	
MPNET+LASER

	
1792

	
73.51

	

	

	

	

	




	
Embeddings with KG

	
Dim.

	
Bench. KG   t  

	
Bench. KG    t r   

	
Bench. KG    t r e   

	
KG   t  

	
KG    t r   

	
KG    t r e   




	
SBERT+KG

	
1068

	
74.03

	
73.73

	
74.56

	
73.51

	
73.77

	
73.73




	
SBERT+LASER+KG

	
2092

	
73.68

	
73.77

	
73.51

	
73.16

	
74.08

	
73.07




	
MPNet+KG

	
1068

	
74.08

	
73.64

	
73.68

	
73.64

	
74.37

	
73.59




	
MPNet+LASER+KG

	
2092

	
74.64

	
74.69

	
74.16

	
73.81

	
73.77

	
73.29
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Table A9. Extended intent classification evaluation for the ATIS data set using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).






Table A9. Extended intent classification evaluation for the ATIS data set using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).





	
SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
99.37

	

	
MPNet+KG

	
1068

	
99.50




	
SBERT+LASER

	
1792

	
99.00

	

	

	

	

	




	
MPNET

	
768

	
98.62

	

	

	

	

	




	
MPNET+LASER

	
1792

	
98.62

	

	

	

	

	




	
Embeddings with KG

	
Dim.

	
KG   t  

	
KG    t r   

	
KG    t r e   




	
SBERT+KG

	
1068

	
99.25

	
99.50

	
99.37




	
SBERT+LASER+KG

	
2092

	
99.00

	
99.37

	
99.25




	
MPNet+KG

	
1068

	
99.12

	
99.12

	
99.50




	
MPNet+LASER+KG

	
2092

	
98.75

	
98.50

	
99.37
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Table A10. Extended intent classification evaluation for the Spanish ProductServiceQA data set translated into English using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).






Table A10. Extended intent classification evaluation for the Spanish ProductServiceQA data set translated into English using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).





	
SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
62.24

	

	
MPNet+LASER+KG

	

	
65.57




	
MPNET

	
768

	
64.34

	

	

	

	

	




	
SBERT+LASER

	
1792

	
61.62

	

	

	

	

	




	
MPNET+LASER

	
1792

	
65.00

	

	

	

	

	




	
Embeddings with KG

	
Dim.

	
Bench. KG   t  

	
Bench. KG    t r   

	
Bench. KG    t r e   

	
KG   t  

	
KG    t r   

	
KG    t r e   




	
SBERT+KG

	
1068

	
62.89

	
61.58

	
61.76

	
62.33

	
62.41

	
62.54




	
SBERT+LASER+KG

	
2092

	
62.33

	
61.97

	
62.94

	
61.32

	
62.46

	
60.92




	
MPNet+KG

	
1068

	
63.95

	
60.00

	
61.06

	
64.34

	
63.90

	
60.31




	
MPNet+LASER+KG

	
2092

	
65.57

	
59.13

	
62.41

	
64.91

	
63.29

	
59.83
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Table A11. Extended intent classification evaluation for the Chinese ProductServiceQA data set translated into English using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).






Table A11. Extended intent classification evaluation for the Chinese ProductServiceQA data set translated into English using a Siamese network and the automatically extracted KGs with 100 terms (bold numbers indicate the best results for each setting).





	
SOTA Embeddings

	
Dim.

	
Precision

	

	
Best Embeddings with KG

	
Dim.

	
Precision




	
SBERT

	
768

	
58.12

	

	
MPNet+KG

	

	
60.66




	
MPNET

	
768

	
59.30

	

	

	

	

	




	
SBERT+LASER

	
1792

	
59.01

	

	

	

	

	




	
MPNET+LASER

	
1792

	
59.70

	

	

	

	

	




	
Embeddings with KG

	
Dim.

	
Bench. KG   t  

	
Bench. KG    t r   

	
Bench. KG    t r e   

	
KG   t  

	
KG    t r   

	
KG    t r e   




	
SBERT+KG

	
1068

	
58.47

	
58.25

	
58.56

	
58.08

	
59.70

	
58.12




	
SBERT+LASER+KG

	
2092

	
57.32

	
57.42

	
58.51

	
58.30

	
57.42

	
58.34




	
MPNet+KG

	
1068

	
60.57

	
55.71

	
56.15

	
60.66

	
59.48

	
55.54




	
MPNet+LASER+KG

	
2092

	
60.18

	
55.23

	
57.59

	
60.40

	
58.82

	
55.45
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Figure 1. Visualisation of the LIME framework explanation with the top-k important words (k = 5) and their contribution degree based on the provided question. 
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Figure 2. Knowledge graph generation pipeline. 
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Table 1. Statistics on the data sets used, i.e., ComQA, ParaLex, ProductServiceQA, and ATIS.






Table 1. Statistics on the data sets used, i.e., ComQA, ParaLex, ProductServiceQA, and ATIS.












	
	ProductServiceQA
	ComQA
	ParaLex
	ATIS





	# Total samples
	7611
	1829
	21,306
	5632



	# Samples (train)
	5328
	1463
	17,045
	4833



	# Samples (test)
	2283
	366
	4261
	799



	# Classes
	338
	272
	275
	8
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Table 2. Information on different KGs and statistics on the benchmarks and the automatically generated KGs of the ProductServiceQA data set.






Table 2. Information on different KGs and statistics on the benchmarks and the automatically generated KGs of the ProductServiceQA data set.














	
	Benchmark KG    t   
	Benchmark KG     t r    
	Benchmark KG     t r e    
	KG    t   
	KG     t r    
	KG     t r e    





	Taxonomy
	Y
	Y
	Y
	Y
	Y
	Y



	Semantic Relations
	N
	Y
	Y
	N
	Y
	Y



	Named Entities
	N
	N
	Y
	N
	N
	Y



	Unique Concepts
	84
	84
	97
	100
	100
	908



	Unique Relations
	1
	221
	221
	1
	230
	259



	Vocabulary
	60
	190
	392
	36
	166
	468
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Table 3. Flair results for different embedding types on the ProductServiceQA data set.
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	Embedding
	Precision
	Recall
	F    1   





	Flair (Forward+Backward)
	0.94
	0.92
	0.93



	Flair (forward+backward)+GloVe
	0.95
	0.92
	0.93



	Flair (Forward)+GloVe
	0.94
	0.92
	0.93



	GloVe
	0.92
	0.91
	0.91



	BERT
	0.93
	0.91
	0.93



	ELMo
	0.94
	0.91
	0.93
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Table 4. Intent classification evaluation for the targeted data sets using an RNN (bold numbers indicate the best results for each setting).






Table 4. Intent classification evaluation for the targeted data sets using an RNN (bold numbers indicate the best results for each setting).





	
ComQA Data Set

	
ParaLex Data Set






	
SOTA Embeddings

	
Dimension

	
Precision

	
SOTA Embeddings

	
Dimension

	
Precision




	
SBERT

	
768

	
98.36

	
SBERT

	
768

	
54.06




	
LASER

	
1024

	
96.75

	
LASER

	
1024

	
52.92




	
MPNet

	
768

	
98.63

	
MPNet

	
768

	
53.80




	
LASER+SBERT

	
1792

	
98.28

	
LASER+SBERT

	
1792

	
54.07




	
LASER+SBERT+GloVe

	
2092

	
98.63

	
LASER+SBERT+GloVe

	
2092

	
54.41




	
Best Embeddings with KG

	
Dimension

	
Precision

	
Best Embeddings with KG

	
Dimension

	
Precision




	
LASER+SBERT+KG   t   (750)

	
2092

	
99.45

	
LASER+MPNet+KG    t r    (750)/GloVe

	
2092

	
55.42




	
LASER+MPNet+KG   t   (500)

	
2092

	
99.45

	

	

	




	
LASER+SBERT+KG    t r    (750)/GloVe

	
2092

	
99.45

	

	

	




	
ProductServiceQA Data Set

	
ATIS Data Set




	
SOTA Embeddings

	
Dimension

	
Precision

	
SOTA Embeddings

	
Dimension

	
Precision




	
SBERT

	
768

	
68.02

	
SBERT

	
768

	
98.67




	
LASER

	
1024

	
62.68

	
LASER

	
1024

	
98.87




	
MPNet

	
768

	
69.25

	
MPNet

	
768

	
98.43




	
LASER+SBERT

	
1792

	
68.60

	
LASER+SBERT

	
1792

	
98.50




	
LASER+SBERT+GloVe

	
2092

	
68.40

	
LASER+SBERT+GloVe

	
2092

	
98.62




	
Best Embeddings with KG

	
Dimension

	
Precision

	
Best Embeddings with KG

	
Dimension

	
Precision




	
LASER+MPNet+KG (DBpedia)

	
2092

	
70.00

	
LASER+KG   t   (100)

	
1324

	
99.25




	

	

	

	
LASER+SBERT+KG   t   (100)

	
2092

	
99.25




	

	

	

	
LASER+MPNet+KG    t r    (100)

	
2092

	
99.25




	

	

	

	
LASER+MPNet+KG    t r    (100)

	
2092

	
99.25




	

	

	

	
LASER+SBERT+KG    t r e    (100)/GloVe

	
2092

	
99.25




	

	

	

	
LASER+MPNet+KG    t r e    (100)/GloVe

	
2092

	
99.25
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Table 5. Statistics on the automatically generated KG                    t       r       e         with different thresholds of terms.
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	Terms
	100
	200
	300
	500
	1000



	Unique Concepts
	908
	1008
	1108
	1308
	1808



	Unique Relations
	259
	279
	299
	305
	324



	Vocabulary
	468
	494
	529
	553
	653
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Table 6. Impact of different sets of terms within the KG                    t       r       e         for intent classification, based on ProductServiceQA (bold numbers indicate the best results for each setting).
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SOTA Embeddings

	
Dimension

	
Precision

	
Best Embeddings with KG

	
Dimension

	
Precision




	

	
SBERT

	
768

	
68.02

	
LASER+MPNet+KG     t r e     (100)

	
2092

	
69.99




	

	
LASER

	
1024

	
62.68

	

	

	

	




	

	
MPNet

	
768

	
69.25

	

	

	

	




	

	
LASER+SBERT

	
1792

	
68.60

	

	

	

	




	

	
LASER+SBERT+GloVe

	
2092

	
68.40

	

	

	

	




	

	

	

	
Number of Set Terms




	

	
Embeddings with KG

	
Dimension

	
100

	
200

	
300

	
500

	
1000




	

	
KG

	
300

	
40.34

	
40.34

	
41.61

	
42.14

	
44.20




	
Concat.

	
LASER+KG

	
1324

	
62.15

	
62.15

	
61.94

	
62.85

	
52.91




	
LASER+SBERT+KG

	
2092

	
68.24

	
68.24

	
67.89

	
67.85

	
67.85




	
LASER+MPNet+KG

	
2092

	
69.99

	
68.37

	
68.77

	
68.29

	
68.46




	
Substit.

	
LASER+KG/GloVe

	
1324

	
62.51

	
60.58

	
61.54

	
62.64

	
60.36




	
LASER+SBERT+KG/GloVe

	
2092

	
68.20

	
68.37

	
68.20

	
67.81

	
67.41




	
LASER+MPNet+KG/GloVe

	
2092

	
67.89

	
67.90

	
67.19

	
67.76

	
67.24
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Table 7. Intent classification evaluation for the targeted data sets using a Siamese network (bold numbers indicate the best results for each setting; * denote statistically significant, p = 0.05).






Table 7. Intent classification evaluation for the targeted data sets using a Siamese network (bold numbers indicate the best results for each setting; * denote statistically significant, p = 0.05).





	
ComQA Data Set

	
ParaLex Data Set






	
SOTA Embeddings

	
Dimension

	
Precision

	
SOTA Embeddings

	
Dimension

	
Precision




	
SBERT

	
768

	
95.18

	
SBERT

	
768

	
48.81




	
SBERT+LASER

	
1792

	
94.66

	
SBERT+LASER

	
1792

	
49.75




	
MPNET

	
768

	
94.37

	
MPNET

	
768

	
50.33




	
MPNET+LASER

	
1792

	
94.14

	
MPNET+LASER

	
1792

	
50.47




	
Best Embeddings with KG

	
Dimension

	
Precision

	
Best Embeddings with KG

	
Dimension

	
Precision




	
SBERT+LASER+KG    t r e    (100)

	
2092

	
95.18

	
MPNET+KG   t   (100)

	
1068

	
52.29 *




	
ProductServiceQA Data Set

	
ATIS Data Set




	
SOTA Embeddings

	
Dimension

	
Precision

	
SOTA Embeddings

	
Dimension

	
Precision




	
SBERT

	
768

	
73.94

	
SBERT

	
768

	
99.37




	
SBERT+LASER

	
1792

	
73.77

	
SBERT+LASER

	
1792

	
99.00




	
MPNET

	
768

	
73.55

	
MPNET

	
768

	
98.62




	
MPNET+LASER

	
1792

	
73.51

	
MPNET+LASER

	
1792

	
98.62




	
Best Embeddings with KG

	
Dimension

	
Precision

	
Best Embeddings with KG

	
Dimension

	
Precision




	
MPNet+LASER+KG  t r   (100)

	
2092

	
74.69

	
MPNet+KG    t r e    (100)

	
1068

	
99.50
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Table 8. Intent classification evaluation for the ComQA data set, filtered by questions with a frequency between two and five, using a Siamese network (bold numbers indicate the best results for each setting).






Table 8. Intent classification evaluation for the ComQA data set, filtered by questions with a frequency between two and five, using a Siamese network (bold numbers indicate the best results for each setting).





	SOTA Embeddings
	Dimension
	Precision





	SBERT
	768
	83.31



	SBERT+LASER
	1792
	84.12



	MPNET
	768
	83.25



	MPNET+LASER
	1792
	84.23



	Best Embeddings with KG
	Dimension
	Precision



	SBERT+LASER+KG   t   (100)
	2092
	84.87
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Table 11. Intent classification evaluation for the Spanish ProductServiceQA data set translated into English using a Siamese network (bold numbers indicate the best results for each setting).






Table 11. Intent classification evaluation for the Spanish ProductServiceQA data set translated into English using a Siamese network (bold numbers indicate the best results for each setting).





	SOTA Embeddings
	Dimension
	Precision





	SBERT
	768
	62.24



	MPNET
	768
	64.34



	SBERT+LASER
	1092
	61.62



	MPNET+LASER
	1092
	65.00



	Best Embeddings with KG
	Dimension
	Precision



	MPNet+LASER+KG   t   (100)
	1392
	65.57
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Table 12. Intent classification evaluation for the Chinese ProductServiceQA data set translated into English using a Siamese network (bold numbers indicate the best results for each setting).






Table 12. Intent classification evaluation for the Chinese ProductServiceQA data set translated into English using a Siamese network (bold numbers indicate the best results for each setting).





	SOTA Embeddings
	Dimension
	Precision





	SBERT
	768
	58.12



	MPNET
	768
	59.30



	SBERT+LASER
	1092
	59.01



	MPNET+LASER
	1092
	59.70



	Best Embeddings with KG
	Dimension
	Precision



	MPNet+KG   t   (100)
	1092
	60.66
















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






nav.xhtml


  information-14-00288


  
    		
      information-14-00288
    


  




  





media/file5.png
Question-Answer
Pairs

Taxonomy
Generation (KG,)

Term terms
Extraction
terms
%
Named é§
Entity @

Recognition

triples

Relation
Extraction (KG, )

Knowledge Graph

Generation (KG, )






media/file3.png
Question: Hello, may I recharge my account? Where can I develop my ticket?
Groundtruth Intent: Obtain the recharge invoice of the Huawei Pay traffic card.
Model Prediction Intent: Obtain the recharge invoice of the Huawei Pay traffic card.

Prediction probabilities NOT 182 182

182 [N 0.76
242
184
73
Other

Text with highlighted words
Hello, may I [EEHaIgE my account? Where can I develop my ficket?






media/file0.png





media/file4.jpg
Tom Jterms Taxonomy
Extraction Generaton (KG)
Question-Answer e s )| Knowiedge Grapn
P Generation (KG, )
Named | /& e
enity  (° elaton
Extraction (KG,)

Recognition






media/file2.jpg
R s

Ptttz NoTIAT T
Text withhighiighted words
o —_ » froes Vi
o me - L] e
o — .
nos—)





