
Citation: Medileh, S.; Laouid, A.;

Hammoudeh, M.; Kara, M.; Bejaoui,

T.; Eleyan, A; Al-Khalidi, M. A

Multi-Key with Partially

Homomorphic Encryption Scheme

for Low-End Devices Ensuring Data

Integrity. Information 2023, 14, 263.

https://doi.org/10.3390/

info14050263

Academic Editors: Moutaz Alazab

and Ammar Alazab

Received: 10 March 2023

Revised: 23 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Multi-Key with Partially Homomorphic Encryption Scheme
for Low-End Devices Ensuring Data Integrity †

Saci Medileh 1 , Abdelkader Laouid 1,* , Mohammad Hammoudeh 2, Mostefa Kara 1 , Tarek Bejaoui 3,
Amna Eleyan 4 and Mohammed Al-Khalidi 4

1 LIAP Laboratory, University of El Oued, P.O. Box 789, El Oued 39000, Algeria
2 Information and Computer Science Department, King Fahd University of Petroleum and Minerals (KFUPM),

Academic Belt Road, Dhahran 31261, Saudi Arabia
3 Computer Engineering Department, University of Carthage, Amilcar 1054, Tunisia
4 Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M1 5GD, UK
* Correspondence: abdelkader-laouid@univ-eloued.dz
† This article is a revised and expanded version of a paper entitled A Multi-Key Based Lightweight Additive

Homomorphic Encryption Scheme, which was presented at the 2021 International Conference on Artificial
Intelligence for Cyber Security Systems and Privacy, El Oued and 20–21 November 2021.

Abstract: In today’s hyperconnected world, the Internet of Things and Cloud Computing complement
each other in several areas. Cloud Computing provides IoT systems with an efficient and flexible
environment that supports application requirements such as real-time control/monitoring, scalability,
fault tolerance, and numerous security services. Hardware and software limitations of IoT devices can
be mitigated using the massive on-demand cloud resources. However, IoT cloud-based solutions pose
some security and privacy concerns, specifically when an untrusted cloud is used. This calls for strong
encryption schemes that allow operations on data in an encrypted format without compromising the
encryption. This paper presents an asymmetric multi-key and partially homomorphic encryption
scheme. The scheme provides the addition operation by encrypting each decimal digit of the given
integer number separately using a special key. In addition, data integrity processes are performed
when an untrusted third party performs homomorphic operations on encrypted data. The proposed
work considers the most widely known issues like the encrypted data size, slow operations at the
hardware level, and high computing costs at the provider level. The size of generated ciphertext
is almost equal to the size of the plaintext, and order-preserving is ensured using an asymmetrical
encryption version.

Keywords: lightweight cryptography; homomorphic encryption; multi-key encryption; privacy-
preserving; cloud data integrity

1. Introduction

In the current technology-driven world, such as smart cities, metaverse, 5G, and oth-
ers, security is considered the crucial element that users, developers, and researchers are
concerned about [1]. Homomorphic Encryption (HE) is a type of encryption that allows
computations to be performed on ciphertexts without revealing their plaintext. The ob-
tained results can be decrypted only by the owner of the secret key. HE can resolve many
security and privacy issues in various technologies and applications. One of the common
practical applications of HE is protecting data on the cloud. The power of HE allows users
to profit from an untrusted cloud provider’s huge computation and storage.

The homomorphism concept ensures secure data processing in regulated industries,
such as financial services and healthcare, via the use of the data without access to its
decrypted content. This aspect can also be exploited in other applications like the Internet
of Medical Things (IoMT), where HE offers predictive analytics of medical data without
compromising data privacy. In fact, HE may meet other services such as maintaining

Information 2023, 14, 263. https://doi.org/10.3390/info14050263 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14050263
https://doi.org/10.3390/info14050263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-0285-3181
https://orcid.org/0000-0002-8175-8467
https://orcid.org/0000-0002-5736-8039
https://orcid.org/0000-0002-2025-3027
https://orcid.org/0000-0002-1655-8514
https://doi.org/10.3390/info14050263
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14050263?type=check_update&version=2

Information 2023, 14, 263 2 of 20

customer privacy in personalized advertising, financial privacy of functions such as market
forecasting and image recognition, and forensic investigations. Election transparency
frequently uses HE, where additive encryption systems are suitable for voting applications.
These systems allow voters to add different values impartially while keeping their private
values and protecting data from manipulation. HE also has been used in cryptocurrency [2],
a peer-to-peer currency issued without passing through a central bank. Cryptocurrency is
used through a decentralized computer network and managed with a confidential ledger
by blockchain users, which lists all transactions since the origin. There are numerous
applications in fields where data privacy is of utmost importance. In this list, we explore
some of the domains that have widely exploited homomorphic encryption in the literature:

• Cloud computing: Homomorphic encryption has been used to enable secure compu-
tation of sensitive data in the cloud without revealing the data to the cloud provider.

• Machine learning: Homomorphic encryption can be used to perform secure and
private machine learning on encrypted data without the need for decryption.

• Blockchain: Homomorphic encryption can be used to enable secure and private
transactions on a blockchain without revealing the transaction details to third parties.

• Privacy-preserving data analysis: Homomorphic encryption can be used to perform
privacy-preserving data analysis on encrypted data without the need for decryption
or data sharing.

• Internet of Things: Homomorphic encryption can be used to enable secure and private
computation on IoT devices without the need for decryption or data sharing.

For instance, integrating the Internet of Things with blockchain has gained significant
attention in industry and academia. These two technologies can provide trusted, secure
decentralized data storage and reliable communication in various domains, such as health-
care, finance, and industrial systems. However, there is a risk of privacy leakage of sensitive
information in the centralized IoT system because the centralized servers can access the
plain text data from the IoT devices. Homomorphic encryption (HE) has been integrated
with blockchain-based IoT systems to provide high privacy and security. Recently, HE has
become particularly relevant in healthcare, where sensitive medical data are collected from
various IoT devices. With the integration of HE, the collected data can be encrypted before
being sent to the blockchain network, and computations can be performed on the encrypted
data without decrypting it. This integration ensures that sensitive patient data remains
private and secure, even when it is analyzed or processed by third-party applications.
The reason for integrating blockchain-based IoT with HE is to provide a decentralized
access model, i.e. in that the data will not be stored in a centralized server and that the
owner of the private key controls access to the data. Additionally, integrating HE with
blockchain-based IoT systems can provide tamper-proof data storage, where any changes
to the data can be detected and traced back to the source.

Hence, any proposed crypto-system for IoT with HE should:

1. Provide high security and privacy for the data.
2. Be scalable and handle large amounts of data from various IoT devices.
3. Be efficient and not add significant overhead to the computational resources required

for data processing.
4. Be compatible with existing support interoperability between connected low-end

devices.
5. Define a user-friendly mode and easy to implement for developers and end-users.

The crucial question in this paper is which is the most suitable HE scheme dedicated
to the IoT environment. Classical symmetric key encryption systems have the disadvan-
tage that the user must have a secure private channel to transfer the encryption key to
the receiver, which, when compromised, may expose all exchanged data. Furthermore,
several symmetric key encryption schemes provide a weak digital signature method [3].
Asymmetric homomorphic encryption has the potential to enable secure computation of
data while keeping it confidential. However, one of the main challenges of implementing

Information 2023, 14, 263 3 of 20

asymmetric homomorphic encryption is the computation complexity associated with the
encryption and decryption operations.

Despite these challenges, research in asymmetric homomorphic encryption continues
to progress, and new schemes are being proposed to address the computation complexity
and security issues. This paper extends and completes the work in [4] to present an
improved Partially Homomorphic Encryption (PHE) asymmetric scheme based on the
Polynomial Reconstruction Problem. The completed design of PHE offers order-preserving
capabilities, making it suitable for IoT-constrained devices. In this proposed multi-key
encryption scheme, any decimal number will be fragmented into digits, and each digit
will be multiplied by a key using several small secret keys. An asymmetric version that
allows an efficient range of queries on encrypted data is proposed as a secondary goal to
ensure the order-preserving aspect of the proposed scheme. The order-preserving scenario
is that the owner may ask the untrusted cloud to return ciphertexts in the database whose
decryptions are in a given range [x; y]. The current version also introduces ’data integrity
ensuring’ after performing homomorphic functions by an untrusted third party. Thanks to
the extended version, the client can easily verify the results validity of operations executed
by the cloud without the need to execute all these operations.

The rest of the paper is organized as follows: Section 2 shows relevant related work.
In Section 3, we present the features of the proposed partially homomorphic encryption
scheme and formulate the depth of operations. At the end of this section, we explain and
demonstrate the order-preserving propriety of the proposed scheme. Section 4 describes
how the proposal ensures data integrity after an untrusted cloud performs homomorphic
addition. In Section 5, we analyze the hardness level of the proposed crypto-system.
Section 6 dictates the implementation results and shows the efficiency compared with
others. Finally, Section 7 concludes the paper.

2. Related Work

The ever-growing data generated by increasingly connected environments require new
measures to protect user privacy, security, and safety [5]. Many encryption mechanisms
have been designed to protect the privacy of user data in storage and during communication.
This section analyzes relevant existing HE cryptosystems in the literature.

In this Section, we will categorize these schemes based on various properties, such as
their security assumptions, the types of homomorphic operations they support, and their
computational efficiency. Hereafter, we will review some of the most relevant work in
the literature.

2.1. Security Assumptions

The security assumptions categorize multi-key with partially homomorphic encryp-
tion schemes based on the underlying mathematical problems that provide their security.
These problems can come from various fields of mathematics, such as number theory,
coding theory, and lattice theory. The security of these schemes is based on the assumed
hardness of solving these mathematical problems. This section highlights three common
types of security assumptions: Public key encryption, lattice-based encryption, and code-
based encryption. By understanding the security assumptions of these schemes, we can
better evaluate their suitability for different applications and potential vulnerabilities.

2.1.1. Public Key Encryption

In this category, we have encryption schemes that rely on the security of a public
key encryption algorithm. Examples include the Paillier cryptosystem and the BGN
cryptosystem. These schemes typically rely on the hardness of the Decisional Composite
Residuosity (DCR) or the Decisional Diffie-Hellman (DDH) problem.

Information 2023, 14, 263 4 of 20

2.1.2. Lattice-Based Encryption

Lattice-based encryption schemes use the hardness of specific lattice problems to pro-
vide security. Examples include the Gentry-Sahai-Waters (GSW) scheme and the Brakerski-
Gentry-Vaikuntanathan (BGV) scheme. These schemes are typically based on the Learning
with Errors (LWE) problem or the Ring Learning with Errors (RLWE) problem.

2.1.3. Code-Based Encryption

Code-based encryption schemes rely on the hardness of certain coding theory problems
to provide security. Examples include the McEliece cryptosystem and the Niederreiter
cryptosystem. These schemes are typically based on the hardness of decoding a random
linear code or a random quadratic residue code.

2.2. Homomorphic Operations

Homomorphic operations allow computations to be performed on encrypted data
without the need for decryption. We highlight three common types of homomorphic
operations: Additive homomorphic encryption, multiplicative homomorphic encryption,
and fully homomorphic encryption. Additive homomorphic encryption allows for the ho-
momorphic addition of ciphertexts, while multiplicative homomorphic encryption allows
for the homomorphic multiplication of ciphertexts. Fully homomorphic encryption allows
for both homomorphic addition and multiplication of ciphertexts. By understanding the
types of homomorphic operations these schemes support, we can better evaluate their
usefulness for applications requiring secure computation on encrypted data.

2.3. Computational Efficiency

We divide the computation efficiency into two types of computational efficiency:
Asymptotic efficiency and practical efficiency. Asymptotic efficiency refers to the theoretical
running time of an algorithm as the size of the input grows. In contrast, practical efficiency
refers to the actual running time of an algorithm on real-world data. By understanding the
computational efficiency of these schemes, we can better choose the appropriate scheme
for a given application, considering the trade-off between security and computational cost.

Multi-key with partially homomorphic encryption schemes are based on their security
assumptions, the types of homomorphic operations they support, and their computational
efficiency. By understanding the different properties of these schemes, we can better choose
the appropriate scheme for a given application. HE includes a variety of schemes that
allow arbitrary computation over encrypted data [6]. The difference between them is
related to the types and the periodicity of mathematical operations that can be performed.
The common types of HE schemes are Partially Homomorphic Encryption (PHE), Leveled
Fully Homomorphic Encryption (LFHE), Somewhat Homomorphic Encryption (SHE),
and Fully Homomorphic Encryption (FHE).

PHE is a type of encryption in which only one operation, such as addition or multipli-
cation, can be performed on the ciphertext. This type includes the RSA [7] and El-Gamal [8]
cryptosystems, both of which are multiplicative schemes. Common additive cryptosys-
tems include Naccache and Stern 1998 [9], Paillier 1999 [10], Galbraith 2002 [11] and
Kawachi et al., 2007 [12].

LFHE supports finite operations over ciphertexts with a limited number of multiplica-
tion and addition [13], mainly from the perspective of circuit depth. The circuit depth is
predetermined in the setup algorithm. SHE is another term sometimes used interchange-
ably with LFHE [6,14]. The authors in [15] present an SHE scheme and analyze for which
parameters the scheme is correct and how many homomorphic operations can be per-
formed before decryption fails to ensure correct decryption in the presented scheme. Both
homomorphic operations (addition and multiplication) can be achieved, but only for a
limited number of times [15]. In this family of HE, the works of Boneh et al., 2005 [16]
and Ishai and Paskin 2007 [17] are widely known in the literature. The first cryptosystem
in FHE is the Gentry 2009 scheme [18]. Other proven mechanisms were published by

Information 2023, 14, 263 5 of 20

Van Dijk et al., 2010 [19], Brakerski and Vaikuntanathan 2011 [20], and López-Alt et al.,
2012 [21].

To satisfy the Paillier cryptosystem [10] for data mining that preserves privacy, pa-
per [22] presented a homomorphic technique. This scheme allows multiple cloud users to
have different public keys. The proposed variant-Paillier cryptosystem is from c = gm × rn

mod n2 to c = gm × hr mod N2 with conditions on the selection of the integers N and g.
The smallest common factor prime of the values of the Euler function of the large prime
numbers p and q is set as the public key. The parameter h is a component of the public key.
The problem with this scheme is that it is probabilistic, i.e., we can find c1 = Enc(m1) and
c2 = Enc(m1) with c1 6= c2, this allows an attacker to extract some secret information.

In [23], the authors implemented an LFHE technique. Using a public key k, the en-
cryption function of a bit b ∈

{
0, 1
}

is represented by c = k× r1 + 2× r2 + b, where r1 and
r2 are random. The decryption is as follows: m = c× f mod 2 where f is the secret key.
A re-linearization operation must be performed during multiplication.

The authors of [24] proposed a fully HE scheme based on a symmetric key. Their
encryption function is defined as follows: C = KT × d(M; 1; 2; 3)× K, where KT is the trans-
pose of matrix K of dimension 4, d(M; 1; 2; 3) denotes the diagonal matrix with diagonal
elements as parameters. This cryptosystem has a refresh procedure whereby the key is
refreshed periodically to maintain forward, and backward, secrecy (K′ ← randortho(t);
randortho(x) is a randomized function that generates random orthonormal new matrix K
of dimension t); the refresh procedure can slow down homomorphic operations. In ad-
dition, this technique is symmetrical, which will impose certain restrictions on their use.
A targeted fully HE was proposed in [25]. Based on El-Gamal, the authors used a ciphertext
of three parts. The first is c1 = αk where k is random for each value to be encrypted, and c1
is exploited to decrypt parts one and two. The second part is c2 = m× βk, knowing that
αp = β (where p is the secret key) and pk = (α, β), the third part c3 = βk+m has been added
to ensure the addition of two ciphertexts. The major problem with this technique is using
a discrete logarithm to decrypt βm1+m2 to obtain m1 + m2. It will take a very long time,
and hence it minimizes the size of m.

In 2018, a fully HE technique was proposed in [26]. The encryption function is
ci = (mi + randi × k) mod (k× p), where randi = (mi × k) mod p, the decryption is very
simple as follows, f−1 : Mi = ci mod k. To preserve order, the authors used a linear
expression shown by the equation: indexi = p × mi + randi. In reality, this system is
vulnerable to a known-plaintext attack, where the attacker has both the ciphertext and
its plaintext. If ci = mi + randi × k, then randi × k = ci − mi = x, where x is known.
By knowing the public key pk = k× p, the attacker just has to do a successive division to
extract the value of the secret key k.

A novel fully HE scheme based on learning with errors (LWE) is presented in [27].
To avoid the complex matrix operations of the existing key switching mechanism, the au-
thors modified the re-linearization method developed by Brakerski et al., [28] and improved
a new technique called non-matrix key switching. This proposed mechanism includes
key switching with re-linearization and pure key switching. Firstly, the authors built a
leveled fully HE scheme without bootstrapping from LWE, then transformed it into FHE.
The technique has improved compared to the Brakerski scheme, but the key switching time
remains non-negligible in certain applications.

Most schemes suffer from ciphertext size or run-time. The authors in [29] propose
a general construction of MKFHE scheme with compact ciphertext. They proceed by
accumulating each party’s public key under the CRS model to create the accumulated
public key of the parties set with compact, after which all parties provide the ciphertext of
their secret keys, which is encrypted by the accumulated public key; that is then used as the
accumulated evaluation key. Next, they refresh the ciphertext by running the key-switching
process on each party’s ciphertext and accumulating the evaluation key. Eventually, they
homomorphically calculate the refreshed ciphertext and decrypt it using the joint secret key.

Information 2023, 14, 263 6 of 20

This paper proposes an asymmetric PHE scheme with feasibility in an IoT environment
where these devices store their data in the cloud.

3. Cryptosystem Design

An interaction scenario in homomorphic encryption is the client’s desire to perform
computational operations with unreliable outsourcing. The client must first use a function
that allows operations to be performed on encrypted values. After that, it has to encrypt
the input values before sending it and decrypt the cloud result. In Figure 1, the user
wants to compute the result of α θ β, defying untrusted providers and insecure channels.
Equation (1) can be used to improve the security level of the scheme and obtain reliable
results. Where ψ denotes ciphertext, π denotes plaintext, k denotes the secret key, and r
denotes a random number.

ψ = (π × k + r× p) mod n (1)

Figure 1. Interaction scenario in Homomorphic Encryption.

We consider the plaintext m as a set of decimal digits and separately manage each
digit mi where 0 ≤ mi ≤ 9. Finally, we multiply each digit mi by a secret key ski. The use of
public keys (pki) gave us the asymmetric version of this technique, and it is worth noting
here that ki must be small.

For construction:

• KeyGen: (pki, ski) is equal ((ki + ri × p, n), (ki, p))
• Enc(m) : c = m0 × pk0 + m1 × pk1 + . . . mi × pki, where pki < pki+1

• Dec(c): m = ∑0
i=l(

c
ki
)× 10i, c← c− c× ki, with (c

ki
) presents the quotient of c÷ ki.

3.1. System Description

The proposed scheme is based on treating each decimal digit of the plaintext separately
(Figure 2). We do not consider the carry bit because we perform the operations on the
whole number rather than the bits.

3.1.1. Keys Generation

Let s be the number of digits of m. We propose the following equation:

k0 > 10, k j > 9×
j−1

∑
i=0

ki ∀j > 0 (2)

Equation (2): In the decryption operation, we calculate the quotient of c÷ ki; we use
a recursive process in which we eliminate the largest element in the sum of ciphertext to

Information 2023, 14, 263 7 of 20

calculate the quotient; after that, we eliminate the quotient to recover the largest element;
finally, we calculate the factor which is multiplied by its secret key. Therefore, the secret key
k1 must be greater than 9× k0, and k2 must be greater than 9× k0 + 9× k1 (9 represents
the largest possible value of mi). For further clarification, consider the following example:
c = 2× k0 + 3× k1 + 7× k2; to calculate the value 7, we calculate c/k2 which is equal to
(2× k0 + 3× k1) if k2 is greater than (2× k0 + 3× k1); after, we calculate c− c

k2
which is

equal to 7× k2; finally, we can extract the value 7 by calculating 7× k2 ÷ k2, and so on.
When this example is generalized, we get Equation (2).

Figure 2. Proposed encryption scheme.

To simplify the key generation, we propose a programmable formula. If k j = hj +

9×∑
j−1
i=0 ki with hj denotes a small random number, and hi = 1 ∀ i > 1, hj = 1 ⇒ k j =

1 + 9×∑
j−1
i=0 ki = (1 + 9× k0) + 9× k1 + . . . 9× k j−1.

Posing (1 + 9× k0) = k1 ⇒ k j = k1 + 9× k1 + . . . 9× k j−1.
Posing k1 + 9× k1 = k2 ⇒ k j = k2 + 9× k2 + . . . 9× k j−1 etc.
Therefore, k j = 10× k j−1.

k0 > 10, k1 = 1 + 9× k0, k j = 10j−1 × k1 (3)

If c = m0 × k0 + m1 × k1 + . . . ms−1 × ks−1, then c < ks = 10s × k0.
Let d denotes the addition depth, with C = ∑d

i=1 ci, ki coefficient should be less
than ki that implies k0 > ∑d

i=1 mi, if max(mi) = 9 ⇒ k0 > ∑d
i=1 9 ⇒ k0 > 9 × d.

With ∑d
i=1 ci < p and c < 10s × k0 that implies d × (10s × k0) > d × c that implies

p > d× (10s × k0), where k0 > 9× d i.e., p > 9× d2 × 10s.
Finally, the parameter conditions are:

• s = size(M), d is the number of addition operations, and h denotes a small random number.

• k0 > 10, k j = hj + 9×∑
j−1
i=0 ki.

• In addition operation: k0 = h + 9× d, p = h′ + d× (10s−1 × k1).

The KeyGen function, see Algorithm 1 is demonstrated using Equation (3) where
size(M) designates the number of digits of the plaintext ring M written in decimal. It is
worth noting that pki = ki + ri, where ri is a random number.

Information 2023, 14, 263 8 of 20

Algorithm 1 KeyGen algorithm

Require: M, k0
Ensure: (k1, k2 . . . k j)

1: function KEYGEN
2: s← size(M)
3: k1 ← 1 + 9× k0
4: for i← 2 to s− 1 do
5: ki ← 10i−1 × k1
6: end for
7: return (k1, k2 . . . ks−1)
8: end function

3.1.2. Encryption

As shown in Algorithm 2, if m = mjmj−1 . . . m0 with m0 denotes the coefficient of 100,
mi ∈

{
0, . . . , 9

}
∀ i ∈

{
0, . . . , j

}
, and mj 6= 0.

c = m0 × pk0 + m1 × pk1 + . . . mj × pk j so c = m0 × (k0 + r0 × p) + m1 × (k1 + r1 ×
p) + . . . mi × (k j + rj × p).

We get :

c = (m0 × k0 + m1 × k1 + . . . mj × k j + r× p) mod n (4)

with r = m0 × r0 + m1 × r1 + . . . mi × rj.
Noting that: m0 × k0 + m1 × k1 + . . . mj × k j < p.

Algorithm 2 Encryption algorithm

Require: mi, pki, n
Ensure: (c, t)

1: function ENC2
2: s← size(m)
3: c← 0
4: for j = 0 to s do
5: c← Encpkj ,n(m)

6: t← pkm
0 mod n

7: end for
8: return (c, t)
9: end function

3.1.3. Decryption

To get the original digits of plaintext m from the ciphertext c (Figure 3), the last part
r× p must be eliminated by computing the modulo operation. Then, decreasing i, c must
be divided successively on ki. Finally, the obtained digits must be multiplied successively
by 10i (decreasing i).

Information 2023, 14, 263 9 of 20

Figure 3. Proposed decryption scheme.

Lemma 1. If c
ki
= mi ⇒ Dec(c) = m.

Proof. Lemma 1 ⇔ m0 × k0 + m1 × k1 + . . . mj−1 × k j−1 < mj × k j ∀ mi 0 6 mi 6 9,

that is
m0×k0+m1×k1+...mj−1×kj−1

kj
= 0.

Let mi = 9 ∀ i ∈
{

0, . . . , j− 1
}

and mi = 1 for i = j that implies 9× k0 + 9× k1 +
. . . 9× k j−1 < k j.

So, 9× (k0 + k1 + . . . k j−1) < k j i.e., 9×∑
j−1
i=0 ki < k j ⇒ c

kj
= mj.

The subtraction: c ← c − c × kj must be calculated. So, c = m0 × k0 + . . . mj−1 ×
k j−1 that implies c

kj−1
= mj−1. Thus, we will get m0, m1, . . . , mj; finally, we can calculate

m = m0 × 100 + m1 × 101 + . . . mj × 10j.

To retrieve m, the division must be started on kj with j = size(c). Let i = size(m), that
implies j > i because c > m. Furthermore, the decryption operation is correct for mi < k0.

3.2. Homomorphic Addition

In practice, additive HE is efficient enough to be used, although it has limits in
terms of operations. The goal is to guarantee the additive property of the proposed
scheme. When two plaintexts are added, the additive homomorphic scheme realizes
Enc(m1 + m2) = Enc(m1) + Enc(m2).

Let i < j, c = m0× k0 +m1× k1 + . . . mi× ki + r× p, c′ = m′0× k0 +m′1× k1 + . . . mj×
k j + r′ × p, so Enc(m) + Enc(m′) = (m0 + m′0)× k0 + (m1 + m′1)× k1 + . . . (mi + m′i)× ki +
. . . mj × k j.

If : (mx +m′y) < ks ∀ x ∈
{

0, .., i
}

, y ∈
{

0, .., j
}

, s ∈
{

0, .., j
}

, Enc(m)+Enc(m′)
kv

= mv ∀ v ∈{
0, . . . , j

}
that implies Dec(c + c′) = m + m′.

Algorithm 3 could define the addition operation.

Information 2023, 14, 263 10 of 20

Algorithm 3 Addition 1 algorithm

Require: c1, c2, n
Ensure: c3 = Add(c1, c2)

1: function ADD
2: c3 ← (c1 + c2) mod n
3: return c3
4: end function

Depth Demonstration

Table 1 shows some practical examples. In this test (size in digits), the size of the
private key p is limited to 2 kbit.

Table 1. Number of addition.

Size (Digits) m k0 p Depth

2 301 603 10300

5 301 606 10300

10 301 611 10300

20 301 621 10300

60 301 661 10300

100 251 601 10250

200 201 601 10200

3.3. Order-Preserving

When the order of encrypted data must be preserved, an order-preserving scheme
should be proposed as an ideal solution. In the proposed cryptosystem, an order-preserving
approach can index and process unencrypted data, allowing an efficient range of queries.
The data server can locate ciphertexts in logarithmic time through standard tree data
structures. To avoid the treatment of key management issues, we assume that the message
to be encrypted should not be too large.

We can exploit the proposed technique as a symmetric scheme, where there are no
public keys, neither n (n = p× q) nor pki (pki = ki + r× p). It should just have ski = ki
with this version to preserve order, i.e., m > m′ ⇒ c > c′.

Lemma 2. m > m′ ⇒ Enc(m) > Enc(m′)
∀m, m′ <= M.

Proof. Let

{
m = mjmj−1 . . . m0, 0 6 mi 6 9 ∀ i
m′ = m′j′m

′
j′−1 . . . m′0, 0 6 m′i′ 6 9 ∀ i′

m > m′ that implies


j > j′ . . . (A)
or
j = j′ and mj > m′j′ . . . (B)

(A) ⇒
{

c = m0 × k0 + m1 × k1 + . . . mj × k j
c′ = m′0 × k0 + m′1 × k1 + . . . m′j′ × k j′

Let,


mi = 0 ∀ i < j and mj = 1
j = j′ + 1
m′i′ = 9 ∀ i′ 6 j′

(A) ⇒
{

c = k j

c′ = 9×∑
j′

i′=0 ki′ = 9×∑
j−1
i′=0 ki′

Information 2023, 14, 263 11 of 20

Knowing that: k j > 9×∑
j−1
i=0 ki so c > c′

(B) ⇒
{

c = m0 × k0 + m1 × k1 + . . . mj × k j
c′ = m′0 × k0 + m′1 × k1 + . . . m′j × k j

Let,

{
mi = 0 ∀ i < j and mj = m′j + 1
m′i = 9 ∀ i < j

(B) ⇒
{

c = m′j × k j + k j

c′ = m′j × k j + 9×∑
j−1
i=0 ki

Knowing that: k j > 9×∑
j−1
i=0 ki that implies c > c′

So, in any case, if we have m > m′ we will get c = Enc(m) > c′ = Enc(m′), then the
symmetric version of our proposal preserves the order in an additive HE.

4. Data Integrity Ensuring

Homomorphic encryption techniques are particularly useful in cloud computing
environments, where sensitive data is often stored and processed on remote servers. How-
ever, HE can be vulnerable to attacks that compromise the integrity of the encrypted data.
For example, an attacker could modify the encrypted data in a way that would cause the
computation to produce incorrect results when the data is decrypted. This attack could
have serious consequences, such as financial losses and data breaches. To prevent these
types of attacks, data integrity is certainly crucial in cloud homomorphic encrypted data.
Furthermore, for a data owner, data integrity (DI) [30] is a very important and sensitive
point in the design, implementation, and use of any data system when he stores its data
and then processes or retrieves it, especially if the matter comes to the cloud. DI can be
defined as the validity, completeness, accuracy, and consistency of data (Figure 4). This also
includes data integrity in terms of privacy and security. After proper data validation and
error checking, the owner can ensure that sensitive data is not used, exploited, improperly
classified, or stored incorrectly. All incorrect changes to the data due to storage, compu-
tation, or retrieval operations, including unexpected hardware failure, malicious intent,
or human errors, will inevitably lead to a fatal error in exploiting this data and its use later.

DI can be easily guaranteed in local databases to prevent intentional information
changes. For example, it can first be ensured that internal users will handle the data
correctly and harmlessly. However, it will be much more difficult when using a third party
(untrusted cloud) to make operations on the encrypted data.

While validation of these homomorphic calculations is a prerequisite for data integrity,
we will modify the proposal by adding a second part of the cipher, as this part will prevent
any manipulations of homomorphic processing outcomes by a third party, whether these
changes are intentional or unintentional. The ciphertext will now be in two parts; the first
part provides linear message encryption allowing the cloud to compute the sum of the two
first parts. The cloud uses the second part to prove its sincerity in calculation processes.
This second part depends on discrete logarithm hardness, where the public key is raised
to the power of the plaintext. Therefore, the cloud cannot access the value of the original
message in order to change the result of the sum operation.

Information 2023, 14, 263 12 of 20

Data ownerUntrusted third party

homomorphic

computing request

response

(addition result, DI ensuring part)

Plain data
Encrypted

data

Data validation

Use

Figure 4. Data integrity ensuring architecture.

4.1. Scenario

Suppose a data owner requests the cloud to accomplish a homomorphic addition
operation of two ciphertexts. After obtaining that c3 (c3 = c1 + c2), the data owner will
utilize c3 considering that it is a valid compute, i.e., c3 was not manipulated. Nevertheless,
the untrusted cloud may have changed that computed result, whether by error or deliber-
ately. The data owner cannot discover this change, especially if many addition operations
are performed.

User: Encrypts x and y, sends them to the cloud.
Cloud: cx + cy → cz, changes it to c′z (where cz 6= c′z), sends it to the user.
User: Decrypts and uses c′z, but Dec(c′z) = z′ 6= x + y !
The proposed encryption scheme allows the user to confirm whether the computed

result of a homomorphic operation transmitted by the cloud is valid and can be used later.
In the proposal, the cloud must multiply the second parties for each addition homomorphic
operation, i.e., computing tz = tx × ty.

After decrypting c′z as shown in Algorithm 4 and getting z, the data owner has to
calculate t′z = pkz

0. If t′z = tz, the computed result is valid.

Algorithm 4 Decryption algorithm

Require: c, t, ki, p
Ensure: m

1: function DEC2
2: m← Decki ,p(c)
3: t′ ← pkm

0 mod n
4: if t′ = t then
5: return m
6: else
7: return error
8: end if
9: end function

So, the addition Algorithm 5 will be as follows:

Information 2023, 14, 263 13 of 20

Algorithm 5 Addition 2 algorithm

Require: cx, cy, tx, ty, n
Ensure: cz, tz

1: function ADD2
2: cz ← cx + cy mod n
3: tz ← tx × ty mod n
4: return (cz, tz)
5: end function

4.2. Demonstration

Let tx = pkx
0 mod n and ty = pky

0 mod n.
As illustrated in Algorithm 5, computing cz = cx + cy → computing tz = tx × ty.
→ tz = pkx+y

0 mod n.

Dec(cz) = z = x + y, t′z = pkDec(cz)
0 mod n = pkz

0 = pkx+y
0 .

So, if t′z = tz then the DI of homomorphic addition is guaranteed.
Noting here that the third part cannot manipulate tx × ty because tx (respectively ty)

contains x (respectively y) as an exponential parameter, and ci uses mi in a linear addition-
multiplication. Thus, it is impossible to simultaneously manipulate cz and tz without
having data inconsistency.

5. Proof of Security and Performance

The proposed technique has the secret keys, ki, and the trapdoor p. If an adversary
gets p, he will get all ki using the public keys where pki = ki + ri × p. Thus, to obtain p,
the adversary has to solve the factorization problem, which cannot be solved in polynomial
time. If λ is the parameter of security with 2λ < p < 2λ+1, so the cryptanalysis requires 2λ

operations to get p.
Known-plaintext attack: When the adversary has m and c and tries to get the secret

keys. If size(m) = 1 digit, the adversary cannot obtain anything, c = m× pk where c, m,
and pk are known. In addition, c× pk−1 = m× pk× pk−1 ⇒ α = m + β× n ⇒ α mod
n = (m + β× n) mod n ⇒ m = m with β is independent of k; therefore, the adversary
will have no information. If size(m) = j where j > 1. For example j = 2, c = m0 × pk0 +
m1 × pk1, if the adversary computes pk−1

0 and pk−1
1 , c × pk−1

0 = m0 + m1 × pk1 × pk−1
0

that implies α + β1 × n = α + β2 × n so α = α with β1 and β2 are independent of k0
and k1; the adversary will have no information. If the adversary has m and m′ where
size(m) = size(m′) = 1, there is no information. Let, size(m) > 1 and size(m′) > 1,{

c = m0 × pk0 + m1 × pk1
c′ = m′0 × pk0 + m′1 × pk1

So,
{

m′0 × c = m′0 ×m0 × pk0 + m′0 ×m1 × pk1
m0 × c′ = m′0 ×m0 × pk0 + m0 ×m′1 × pk1

To remove pk1, the coefficients m′0 ×m1 and m0 ×m′1 must be different. The adversary
will get another value of the public key pk1.

So, to get information, it is insufficient to obtain m, m′, c, and c′. If size(m) = 3 digits,
to get p, the adversary must have three plaintexts with conditions and so on. If we use this
technique as a symmetrical scheme (without r × p), the hardness of our scheme will be
based on the polynomial reconstruction problem, which can be written as Enc(m) = F(ki),
where F : M, K −→ C.

Brute force attack (BFA): In the RSA cryptosystem, the attacker must perform 2d

operations to get p with m = cd mod n. In the proposed technique, if there are s keys,
the attacker must perform (2k0)s operations. So, there are two layers of security, to find
m, c and to find sk. In the asymmetric version of the proposal, the attacker can not directly
make an exhaustive search on ki since it is hidden using r× p where c = F(m, k) + r× p,

Information 2023, 14, 263 14 of 20

the attacker has to perform 2p operations to get p. In order to protect against known attacks
and mitigate quantum computing attacks, noisy encryption techniques can be exploited.
These techniques involve using large key sizes, making it more difficult for attackers to
factor the key using a classical or quantum computer. However, recent studies prove that
quantum computing poses a significant threat to classical cryptographic systems such as
RSA, which may break large keys in just a few hours [31]. Larger key sizes also increase the
computational overhead and the size of the encrypted message. To further protect against
these kinds of attacks, key rotation and nested encryption can be implemented by regularly
changing the keys based on randomly chosen values and encrypting the message more
than once using distinct keys. This method can help to mitigate the threat of quantum
computing attacks, as an attacker would need to break multiple keys to compromise the
security of the encryption scheme. By randomizing the keys, noisy encryption makes it
more complex for an attacker to break the encryption scheme than a single key. These
techniques have proven effective in securing data against various types of attacks.

Computation complexity: If size(m) = j, we have C(j + 1) = C(j) + α in the encryp-
tion operation where C(j) denotes the complexity and α is a constant, if
maxsize(j) = size(M), then the time complexity is linear: T(M) = O(M). The proposed
technique performance in terms of complexity is shown in Table 2.

Table 2. Encryption and decryption complexity comparison relative to plaintext size.

Schemes Enc Dec

Proposed scheme O(λ) O(λ)

[32] O(λ4) O(λ4)

[24] O(λ5) O(λ4.8)

[33] O(λ6) O(λ5)

[34] O(λ6) O(λ5)

[35] O(λ13) O(λ12)

Small Key and Ciphertext Sizes: The ciphertext size has great importance in cryptog-
raphy because it is the most exchanged element between a sender and a receiver, where
the plain message is converted into a ciphertext in order to send it through an unreliable
channel. Unlike the public key, the secret key, or the private key, no matter how big it is, it
will be exchanged between communicants no more than once. The size of the ciphertext is
more important in low-energy environments such as the IoT, which are spreading more
day by day and being applied in various fields. Therefore, a lot of cryptographic research
focuses on creating techniques that enable the generation of ciphertexts of a small size, so
that these techniques can be practical in the largest possible number of fields. Hence, we
focused in the proposed scheme on this point and were able to create a relatively small
ciphertext compared to other work.

The simplified formula as given in Equation (3) results in a relatively small key and
ciphertext size.

Lemma 3. size(c) = size(m) + α with α is a constant.

Proof. If size(m) = j, knowing that
{

m = m0 × 100 + m1 × 101 + . . . mj × 10j

c = m0 × k0 + m1 × k1 + . . . mj × k j
.

If we put k1 = 10× k0, we will get: c = m0 × 100 × k0 + m1 × 101 × k0 + . . . mj ×
10j × k0 that is Enc(m)c = k0 × (m0 × 100 + m1 × 101 + . . . mj × 10j) = k0 ×m that implies
c = k0 ×m. So, α = size(k0)− 1.

Information 2023, 14, 263 15 of 20

6. Implementation and Comparative Analysis

The implementation was done in Python on a computer with an Intel Core i5-3230M
CPU 2.6 GHz, 2 Core(s), and 8 GB RAM.

Whether in the encryption or decryption operation, Table 3 shows how much the
proposed scheme’s execution time was reduced compared to the other schemes when
encrypting a 16-bit message. In the other schemes, the shortest encryption time [36] was
estimated to be two times our encryption time. As for the fastest decryption operation [36],
it was estimated to be over 290 times. This is due to the technique used in each scheme.

In the study represented in Figure 5, we performed many tests to calculate the encryp-
tion and decryption time if size(m) = 16 bits and size(n) = 360 bits. The decryption time
was higher than the encryption time because there were five steps in the decryption process,
while there were three steps in the encryption process. As well as that, the ciphered text
size grows faster than the plaintext size.

Table 3. Execution time (ms).

Schemes Enc Dec

Proposed scheme 0.036 0.041

[36] 0.07 11.95

[22] 11.91 17.67

[37] 47 15

[38] 50 10

[39] 255 493

[40] 899 785

Figure 5. Encryption and decryption time relative to the increase in key size.

6.1. Comparative Study

In this section, we conduct a comparative analysis of our crypto-system against rele-
vant state-of-the-art systems The aim is to show the major gaps filled compared with others.
The listed crypto-systems in Table 2 cover a range of homomorphic encryption schemes for
different data types and with various efficiency and security levels. The introduced work
in [24,32] proposed fully HE schemes based on symmetric keying, which imposes certain
restrictions on their use. The analysis confirms the schemes’ efficiency and practicality
for adoption in various cloud computation applications. However, compared with the

Information 2023, 14, 263 16 of 20

proposed crypto-system in this paper, the restriction of symmetric key sharing and the en-
cryption complexity proves the limitations of [24,32] and prevents their uses in the context
of IoT scenarios. The proposed somewhat homomorphic encryption scheme over integers
in [33] is another kind of asymmetric homomorphic encryption. The scheme encryption
principle focuses on the Eurocrypt van Dijk et al. crypto-system [19]. Gentry’s techniques
are used in the contribution of [33] to easily convert the somewhat scheme into a practical,
fully homomorphic encryption scheme available in cloud computing. The analysis results
show the robustness and the dynamicity of the proposed scheme. Compared with the
proposed crypto-system in this paper, the authors of [33] focused on reducing the key
size of van Dijk to mitigate the computation complexity. However, Gentry’s encryption
techniques are still considered the most complicated encryption techniques and are not
feasible to be implemented in many domains.

The work in [34] presents a new variant of the DGHVs integer-based somewhat
homomorphic encryption scheme, including an efficient public key generation method.
The authors claim that the proposed scheme has significantly lower complexities in various
algorithms involved in the encryption process, making it more practical for real-world
applications. The security is based on the two-element Partial Approximate Greatest Com-
mon Divisors (PAGCD) problem. The experimental results demonstrate that the proposed
scheme is more efficient than any other integer-based SHE scheme currently available, mak-
ing it a practical solution for homomorphic encryption. The authors in [35] extended the
DGHV fully homomorphic encryption (FHE) scheme over integers by enabling batch FHE.
This allows a vector of plaintext bits to be encrypted and homomorphically processed as a
single ciphertext. The scheme is semantically secure because it relies on the approximate-
GCD problem without errors. The paper demonstrates how arbitrary permutations can
be performed on the plaintext vector using the ciphertext and public key. The scheme
shows competitive performance and implements a fully homomorphic evaluation of AES
encryption; the results are promising compared to the timings presented by Gentry et al.
at Crypto 2012 for implementing a Ring-LWE-based FHE scheme. However, the PAGCD
problem can be computationally intensive, making it challenging to efficiently implement
homomorphic encryption schemes based on this problem. The generated noises in the
encrypted data are considered significant. These concerns prevent the implementation of
such encryptions in low-end connected devices.

In general, the proposed crypto-system is suitable for IoT environments. The small key
and encrypted data sizes, the multiple keying, the execution speed, and the robustness are
considered. The shown time execution in Table 3 confirms the highlight of our proposed en-
cryption and decryption schemes. The strongest factor of the proposed encryption scheme
is the constant progression of the encryption time in the function of data size, as illustrated
in Figure 5. This could be particularity exploited in IoT–Cloud communications, where
the connected low-end devices efficiently encrypt the data before sending it to the cloud.
The cloud plays its role by storing and manipulating encrypted data.

To demonstrate the complexity of encryption and decryption algorithms, as repre-
sented by O(λ), Figure 6 illustrates six tests with plaintext sizes equal to 8, 16, 32, 64, 96,
and 128 bits respectively. Curve Figure 6A presents the rate plaintextsize/encryptiontime,
the curve Figure 6B presents the rate plaintextsize/decryptiontime; we note that the per-
centage increase is constant and it expresses O(λ).

Information 2023, 14, 263 17 of 20

177

296

480

533

600 609

0

100

200

300

400

500

600

700

T1 T2 T3 T4 T5 T6

R
at

e
 (

b
it

/m
s)

Test

plaintext size / Encryption

216

340

423
462

533

602

0

100

200

300

400

500

600

700

T1 T2 T3 T4 T5 T6

R
at

e
 (

b
it

/m
s)

Test

plaintext size / Decryption

(A) (B)

Figure 6. Rate of plaintext size to encryption and decryption time.

Figure 7 shows the ratio of plaintext size to ciphertext size in Figure 7A, as it is clear in
Figure 7B that they are close, especially as the plaintext size increases, which shows how
effective the proposed scheme is in using a small ciphertext size.

Figure 7. Rate of plaintext size to ciphertext size in the symmetric version that preserves order.

6.2. A Comparative Study against Attacks

Brute Force Attack is an attack where an attacker tries all possible combinations of
passwords or keys to gain unauthorized access to encrypted data. To counter this attack,
various homomorphic encryption techniques have been developed. This comparative
study will compare brute force attacks against these techniques, including our proposed
work. One of the key advantages of our proposed work is that it provides an asymmetric
multi-key with a partially homomorphic encryption scheme. This means that each decimal
digit of the given integer number is encrypted separately using a special key, providing an
additional layer of security against brute force attacks. On the other hand, homomorphic
encryption techniques rely on only a single key to encrypt and decrypt the data and are
therefore vulnerable and prone to brute-force attacks.

Regarding data integrity, our proposed work also addresses the issue of untrusted
third parties performing homomorphic operations on encrypted data, ensuring that the

Information 2023, 14, 263 18 of 20

integrity of the data is maintained. This is important because it helps prevent attacks like
tampering or data alteration. Data alternation attacks involve manipulating encrypted
data without knowing the secret key, leading to incorrect decryption results. The attacker
can modify the ciphertext to produce a different plaintext upon decryption, causing data
loss, unauthorized access, or other malicious outcomes. The proposed work offers an
asymmetric multi-key with partially HE scheme that encrypts each decimal digit of the
given integer number separately using a special key. This approach offers a higher degree
of security against data alternation attacks, as an attacker must modify each digit of the
ciphertext separately.

Overall, the proposed work offers significant improvements compared with other ho-
momorphic encryption techniques regarding security against brute force attacks, providing
data integrity, and computational efficiency.

7. Conclusions

This paper presents an improved partially homomorphic encryption asymmetric
scheme for IoT devices based on number factorization and polynomial reconstruction
problems. The proposed multi-key encryption scheme fragments decimal numbers into
digits and multiplies each digit by a small secret key. The scheme has an order-preserving
capability, making it suitable for IoT-constrained devices, enabling the owner to query
ciphertexts in a specified range. The size of the generated ciphertext is almost equal
to plaintext, and order-preserving is ensured using a symmetrical encryption version.
The paper also addresses security and privacy concerns of cloud-based IoT solutions,
addressing known issues such as encrypted data size, slow operations at the hardware
level, and high computing costs at the provider level.

Further real experiments are needed, and alternative approaches could be explored to
address the limitations of the current scheme. Future work could also focus on integrating
the proposed encryption scheme with blockchain technology; a secure and distributed
system that could enhance the overall security and privacy of IoT systems.

Author Contributions: Conceptualization, A.L.; Methodology, S.M.; Validation, M.H.; Formal analy-
sis, A.E.; Investigation, M.K.; Supervision, T.B. and M.A.-K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alsbouí, T.; Hammoudeh, M.; Bandar, Z.; Nisbet, A. An overview and classification of approaches to information extraction

in wireless sensor networks. In Proceedings of the 5th International Conference on Sensor Technologies and Applications
(SENSORCOMM’11), Saint Laurent du Var, France, 21–27 August 2011; p. 255.

2. Kara, M.; Laouid, A.; Bounceur, A.; Lalem, F.; AlShaikh, M.; Kebache, R.; Sayah, Z. A novel delegated proof of work consensus
protocol. In Proceedings of the 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy
(AI-CSP), El Oued, Algeria, 20–21 November 2021; pp. 1–7.

3. Kara, M.; Laouid, A.; Hammoudeh, M. An Efficient Multi-Signature Scheme for Blockchain. Cryptology ePrint Archive, Paper
2023/078. 2023. Available online: https://eprint.iacr.org/2023/078 (accessed on 3 April 2023).

4. Chait, K.; Laouid, A.; Laouamer, L.; Kara, M. A Multi-Key Based Lightweight Additive Homomorphic Encryption Scheme. In
Proceedings of the 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP),
El Oued, Algeria, 20–21 November 2021; pp. 1–6.

5. Ghafir, I.; Prenosil, V.; Hammoudeh, M.; Han, L.; Raza, U. Malicious ssl certificate detection: A step towards advanced persistent
threat defence. In Proceedings of the International Conference on Future Networks and Distributed Systems, New York, NY,
USA, 19–20 July 2017. [CrossRef]

6. Sniatala, P.; Iyengar, S.; Ramani, S.K. Homomorphic Encryption. In Evolution of Smart Sensing Ecosystems with Tamper Evident
Security; Springer: Berlin/Heidelberg, Germany, 2021; pp. 69–76. [CrossRef]

7. Rivest, R.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM
1978, 21, 120–126. [CrossRef]

https://eprint.iacr.org/2023/078
http://doi.org/10.1145/3102304.3102331
http://dx.doi.org/10.1007/978-3-030-77764-7_9
http://dx.doi.org/10.1145/359340.359342

Information 2023, 14, 263 19 of 20

8. Elgamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 1985,
31, 469–472. [CrossRef]

9. Naccache, D.; Stern, J. A New Public Key Cryptosystem Based on Higher Residues. In Proceedings of the 5th ACM Conference on
Computer and Communications Security (CCS ’98), New York, NY, USA, 2–5 November 1998; pp. 59–66. [CrossRef]

10. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the International
Conference on the Theory and Applications of Cryptographic Techniques, Prague, Czech Republic, 2–6 May 1999; Springer:
Berlin/Heidelberg, Germany, 1999; pp. 223–238. [CrossRef]

11. Galbraith, S.D. Elliptic curve Paillier schemes. J. Cryptol. 2002, 15, 129–138. [CrossRef]
12. Kawachi, A.; Tanaka, K.; Xagawa, K. Multi-bit cryptosystems based on lattice problems. In Proceedings of the International Work-

shop on Public Key Cryptography, Beijing, China, 16–20 April 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 315–329.
[CrossRef]

13. Brakerski, Z.; Gentry, C.; Vaikuntanathan, V. (Leveled) fully homomorphic encryption without bootstrapping. ACM Trans.
Comput. Theory TOCT 2014, 6, 1–36. [CrossRef]

14. Brakerski, Z. Fundamentals of Fully Homomorphic Encryption-A Survey. Proc. Electron. Colloq. Comput. Complex. 2018, 25, 125.
15. Smart, N.P.; Vercauteren, F. Fully homomorphic encryption with relatively small key and ciphertext sizes. In Proceedings of the

International Workshop on Public Key Cryptography, Paris, France, 26–28 May 2010; Springer: Berlin/Heidelberg, Germany,
2010; pp. 420–443. [CrossRef]

16. Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF Formulas on Ciphertexts. In Proceedings of the Theory of Cryptography; Kilian, J.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 325–341. [CrossRef]

17. Ishai, Y.; Paskin, A. Evaluating branching programs on encrypted data. In Proceedings of the Theory of Cryptography Conference;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 575–594. [CrossRef]

18. Gentry, C. A Fully Homomorphic Encryption Scheme; Stanford University ProQuest Dissertations Publishing: Stanford, CA, USA,
2009.

19. Van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully homomorphic encryption over the integers. In Proceedings of the
Annual International Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 30 May–3
June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 24–43.

20. Brakerski, Z.; Vaikuntanathan, V. Fully homomorphic encryption from ring-LWE and security for key dependent messages. In
Proceedings of the Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 505–524.

21. López-Alt, A.; Tromer, E.; Vaikuntanathan, V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, New York, NY, USA, 19–22
May 2012; pp. 1219–1234.

22. Pang, H.; Wang, B. Privacy-preserving association rule mining using homomorphic encryption in a multikey environment. IEEE
Syst. J. 2020, 15, 3131–3141. [CrossRef]

23. Doröz, Y.; Shahverdi, A.; Eisenbarth, T.; Sunar, B. Toward Practical Homomorphic Evaluation of Block Ciphers Using Prince. In
International Conference on Financial Cryptography and Data Security; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8438,
pp. 208–220.

24. Biksham, V.; Vasumathi, D. A lightweight fully homomorphic encryption scheme for cloud security. Int. J. Inf. Comput. Secur.
2020, 13, 357–371. [CrossRef]

25. Yang, Y.; Zhang, S.; Yang, J.; Li, J.; Li, Z. Targeted fully homomorphic encryption based on a double decryption algorithm for
polynomials. Tsinghua Sci. Technol. 2014, 19, 478–485. [CrossRef]

26. Yagoub, M.A.; Abdelkader, L.; Kazar, O.; Bounceur, A.; Euler, R.; AlShaikh, M. An adaptive and efficient fully homomorphic
encryption technique. In Proceedings of the 2nd International Conference on Future Networks and Distributed Systems,
New York, NY, USA, 26–27 June 2018; pp. 1–6. [CrossRef]

27. Ding, Y.; Li, X.; Lü, H.; Li, X. A novel fully homomorphic encryption scheme bsed on LWE. Wuhan Univ. J. Nat. Sci. 2016,
21, 84–92. [CrossRef]

28. Brakerski, Z.; Vaikuntanathan, V. Efficient fully homomorphic encryption from (standard) LWE. Siam J. Comput. 2014, 43, 831–871.
[CrossRef]

29. Zhou, T.; Zhang, Z.; Chen, L.; Che, X.; Liu, W.; Yang, X. Multi-key Fully Homomorphic Encryption Scheme with Compact
Ciphertext. Cryptology ePrint Archive, Paper 2021/1131. 2021. Available online: https://eprint.iacr.org/2021/1131 (accessed on
3 April 2023).

30. Kara, M.; Laouid, A.; Hammoudeh, M.; Bounceur, A. One Digit Checksum for Data Integrity Verification of Cloud-executed
Homomorphic Encryption Operations. Cryptology ePrint Archive, Paper 2023/231. 2023. Available online: https://eprint.iacr.
org/2023/231 (accessed on 3 April 2023).

31. Gidney, C.; Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 2021, 5, 433.
[CrossRef]

32. Gai, K.; Qiu, M.; Li, Y.; Liu, X.Y. Advanced fully homomorphic encryption scheme over real numbers. In Proceedings of the 2017
IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud), New York, NY, USA, 26–28 June 2017;
pp. 64–69.

http://dx.doi.org/10.1109/TIT.1985.1057074
http://dx.doi.org/10.1145/288090.288106
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/s00145-001-0015-6
http://dx.doi.org/10.1007/978-3-540-71677-8_21
http://dx.doi.org/10.1145/2633600
http://dx.doi.org/10.1007/978-3-642-13013-7_25
http://dx.doi.org/10.1007/978-3-540-30576-7_18
http://dx.doi.org/10.1007/978-3-540-70936-7_31
http://dx.doi.org/10.1109/JSYST.2020.3001316
http://dx.doi.org/10.1504/IJICS.2020.109482
http://dx.doi.org/10.1109/TST.2014.6919824
http://dx.doi.org/10.1145/3231053.3231088
http://dx.doi.org/10.1007/s11859-016-1142-0
http://dx.doi.org/10.1137/120868669
https://eprint.iacr.org/2021/1131
https://eprint.iacr.org/2023/231
https://eprint.iacr.org/2023/231
http://dx.doi.org/10.22331/q-2021-04-15-433

Information 2023, 14, 263 20 of 20

33. Yang, H.M.; Xia, Q.; Wang, X.F.; Tang, D.H. A new somewhat homomorphic encryption scheme over integers. In Proceedings
of the 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Zhangjiajie,
China, 5–6 March 2012; pp. 61–64.

34. Ramaiah, Y.G.; Kumari, G.V. Towards practical homomorphic encryption with efficient public key generation. Int. J. Netw. Secur.
2012, 3, 10.

35. Cheon, J.H.; Coron, J.S.; Kim, J.; Lee, M.S.; Lepoint, T.; Tibouchi, M.; Yun, A. Batch fully homomorphic encryption over the
integers. In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Athens, Greece, 26–30 May 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 315–335.

36. Kara, M.; Laouid, A.; Euler, R.; Yagoub, M.A.; Bounceur, A.; Hammoudeh, M.; Medileh, S. A Homomorphic Digit Fragmentation
Encryption Scheme Based on the Polynomial Reconstruction Problem. In Proceedings of the 4th International Conference on
Future Networks and Distributed Systems (ICFNDS), New York, NY, USA, 26–27 November 2020; pp. 1–6.

37. Thangavel, M.; Varalakshmi, P. Enhanced DNA and ElGamal cryptosystem for secure data storage and retrieval in cloud. Clust.
Comput. 2018, 21, 1411–1437. [CrossRef]

38. Coron, J.S.; Mandal, A.; Naccache, D.; Tibouchi, M. Fully Homomorphic Encryption over the Integers with Shorter Public Keys.
In Proceedings of the Advances in Cryptology—CRYPTO 2011, Santa Barbara, CA, USA, 14–18 August 2011; Rogaway, P., Ed.;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 487–504. [CrossRef]

39. Dasgupta, S.; Pal, S. Design of a Polynomial Ring based Symmetric Homomorphic Encryption Scheme. Perspect. Sci. 2016, 8,
692–695. [CrossRef]

40. Boer, D.; Kramer, S. Secure Sum Outperforms Homomorphic Encryption in (Current) Collaborative Deep Learning. arXiv 2020,
arXiv:2006.02894.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10586-017-1368-4
http://dx.doi.org/10.1007/978-3-642-22792-9_28
http://dx.doi.org/10.1016/j.pisc.2016.06.061

	Introduction
	Related Work
	Security Assumptions
	Public Key Encryption
	Lattice-Based Encryption
	Code-Based Encryption

	Homomorphic Operations
	Computational Efficiency

	Cryptosystem Design
	System Description
	Keys Generation
	Encryption
	Decryption

	Homomorphic Addition
	Order-Preserving

	Data Integrity Ensuring
	Scenario
	Demonstration

	Proof of Security and Performance
	Implementation and Comparative Analysis
	Comparative Study
	A Comparative Study against Attacks

	Conclusions
	References

