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Abstract: Single-task models (STMs) struggle to learn sophisticated representations from a finite set of
annotated data. Multitask learning approaches overcome these constraints by simultaneously training
various associated tasks, thereby learning generic representations among various tasks by sharing
some layers of the neural network architecture. Because of this, multitask models (MTMs) have better
generalization properties than those of single-task learning. Multitask model generalizations can
be used to improve the results of other models. STMs can learn more sophisticated representations
in the training phase by utilizing the extracted knowledge of an MTM through the knowledge
distillation technique where one model supervises another model during training by using its learned
generalizations. This paper proposes a knowledge distillation technique in which different MTMs are
used as the teacher model to supervise different student models. Knowledge distillation is applied
with different representations of the teacher model. We also investigated the effect of the conditional
random field (CRF) and softmax function for the token-level knowledge distillation approach, and
found that the softmax function leveraged the performance of the student model compared to CRF.
The result analysis was also extended with statistical analysis by using the Friedman test.

Keywords: biomedical named entity recognition; deep learning; single-task model; multitask learning;
knowledge distillation

1. Introduction

Vast amounts of valuable information are being shared online through textual data
that are posted at an extremely high rate. However, much of these data are unstructured,
rendering the manual processing of such large amounts of unstructured text data challeng-
ing and tedious. Processing such large amounts of unstructured data needs intelligent
domain-based techniques.

Natural language processing (NLP), a branch of artificial intelligence, processes un-
structured textual data [1] on the basis of user demand. NLP allows for computer systems
to understand, interpret, and manipulate human language, and it has been implemented
for many tasks, such as sentiment analysis, information extraction, and topic searching and
modeling. Information mining (IE) is a technique for extracting related data from unstruc-
tured text [2] that has been extended to several subtasks, of which one is entity recognition
(NER). A named entity is a proper noun that appears in a sentence. NER recognizes the
text of interest and maps it to predefined categories such as people, geographic locations,
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and organizations. NER can be viewed as a sequence tagging problem determining the
output tags of input words presented in sentences [3].

As the number of published biomedical texts has increased, IE has also become an
essential activity in the biomedical field. Biomedical named entity recognition (BioNER)
recognizes and associates biomedical facts to predefined categories such as genes, chem-
icals, and diseases [4]. BioNER tasks are more difficult to implement than usual NER
tasks because the biomedical literature differs in many ways from standard text data.
Although there are certain conventions observed by researchers to describe biomedical
concepts, there are still no hard and fast rules governing the biomedical field. It is becoming
increasingly difficult to follow the same naming conventions in the open and growing
biomedical literature. Another issue concerns entity classification. Different human annota-
tors, even from the same background, may associate the same words with different medical
concepts, e.g., “p53" corresponds to a protein in the GENIA corpus. In contrast, the HUGA
nomenclature annotates it as a gene: “TP53”.

The use of different spellings for the same entity is also very common in biomedical
texts. For example, IL12, IL 12, and IL-12 refer to the same entity, but use different spelling
conventions [5]. Another challenge for BioNER is learning synonyms that appear in
the text. For example, PTEN and MMAC1 represent the same genetic entity, but have
different synonyms.

Moreover, long compound word entities complicate the training process of the BioNER
model because these entities are represented by character types. For instance, “10-ethyl-
5-methyl-5,10-dideazaaminopterin” and “12-o-tetradecanoylphorbol 13-acetate” contain
alphanumerical and special characters. Different tokenizers treat these special characters
differently. Therefore, applying different tokenizers may result in different outputs for
the same entity. Descriptive entities such as “pigment-epithelium-derived factor” and
“medullary thymic epithelial cells” hinder entity boundary identification. Biomedical
entities may also comprise nested entities; e.g., “CIITA mRNA” symbolizes a reference to
RNA, but “CIIT” refers to DNA [6].

Furthermore, a common practice in writing biomedical texts is to use entity acronyms
that may refer to different entities. For instance,“TCF” can refer to “tissue culture fluid” or
“T-cell factor” [7]. Similarly, “EGFR” can stand for “estimated glomerular filtration rate”
or “epidermal growth factor receptor”. Determining acronyms for a particular entity is
associated with the context of the sentence. Distinguishing such entities from each other is
another challenging aspect for BioNER systems.

Due to the aforementioned limitations, BioNER tasks are more difficult than com-
mon NER tasks. Although early BioNER systems are effective, their overall performance
continues to be restricted by the open and expanding biomedical literature. Traditional
machine-learning algorithms show improved results compared to early dictionary-based
and rule-based methods. However, machine-learning algorithms require a manual feature-
engineering step that directly affects the performance of the model. Distinctive features
could improve performance, while redundant and irrelevant features worsen performance.

More advanced methods rely on deep-learning techniques, eliminating the need for
manual feature engineering while still providing the required outcome. A deep-learning
(DL) architecture consists of several layers that help in exploring the properties and complex
structure of data layer by data layer. The latent ability of DL models to learn complex
features was successfully demonstrated in various domains, e.g., speech recognition [8],
drug discovery [9,10], the clinical setting [11], and computer vision [12].

Even though deep-learning models produced state-of-the-art results in many fields,
the structure of these models is very complex and requires extensive computational power
for training. Sutskever et al. [13] proposed a model that comprised 4 layers of LSTMs
that each had 1000 hidden units. Similarly, the model presented by Zhou et al. [14] had
multilevel LSTMs, and each layer comprised 512 hidden units. With millions of parameters,
these models are computationally expensive to train. These cumbersome models also
require more storage space, rendering them unsuitable for deployment with real-time data.
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One example is to use them on a cellphone, where limited storage and computational
power are available. As a result, it is necessary to compress these complex models while
preserving the generalization that they have learned—-in other words, without jeopardizing
the performance of these deep-learning models. In this case, the knowledge distillation
approach is utilized to compress a cumbersome model into a simple model, allowing
for implementing it in end-user devices with less computational power [15]. This work
proposes the distillation knowledge approach to leverage the performance of deep-learning
models. Instead of compressing the model, this research aims to maximize the efficiency
and performance of the models.

Our previous work [16] used a multitask learning (MTL) approach to leverage the per-
formance of BioNER. The performance of the multitask model (MTM) is usually restricted
or improved due to loss optimization via the joint training of different tasks. Data distribu-
tion from different tasks renders the MTM overfitted for some tasks and underfitted for
other tasks. The knowledge distillation approach can overcome such limitations through,
for example, the student model learning not only from the available inputs, but also through
the output of the teacher model. Consequently, this article presents different knowledge
distillation approaches to boost the performance of deep neural network models.

2. Knowledge Distillation

In knowledge distillation, the goal is to train one model with the representations
learned from another model. The aim of distilling knowledge could be achieved by training
a simple model (student) on the knowledge gained through a complex model (teacher).
In particular, the knowledge distillation approach concerns how the generalizations of
one, often complex (teacher), model can be transferred to another model, usually a simple
(student) model. Complex models or ensemble approaches are more effective than simple
single-task models are, but require more computational power to train. Knowledge distil-
lation enables simple (student) models to perform better than single or ensemble models.
In this way, the student model can be trained with fewer training examples because, dur-
ing training, it also uses the knowledge gained from the teacher model. The idea is that,
during training, a complex model is generalized to the data. This helps the student’s model
in matching the teacher’s model or in approaching generalization. A learning model learns
not only via its implicit knowledge, but also through the gradients of other knowledge.

The transmission of knowledge from the teacher model is often achieved through the
output probabilities of the teacher model. The goal of any learning model is obviously the
prediction of the right label for the input instance. The model, therefore, assigns a high
probability to that specific class, while the remaining classes are represented with small
probability values. The association of probabilities with the rest of the false labels is not
arbitrary. These side probabilities also contain representations describing how a particular
model generalizes the classes. For example, it is quite unlikely that the image of a car
would be misclassified as the image of a motorcycle, but highly likely to be misclassified as
an image of a truck. The softmax activation function produces a probability distribution
for each class for a specific instance. These generated probability distributions sum to 1.
These softmax probabilities carry additional hidden information than that of one-hot “hard
labels”. For instance, softmax probability [0.7, 0.2, 0.1] indicates the ranks of the class. Such
information cannot be identified with rigid labels, e.g., [1, 0, 0]. These posterior probabilities
can provide additional effective signals to the student model during training. However,
training a student model that fits these probabilities may not be very effective, as the
student model may only consider the highest probability values. One way to reduce the
impact of high probability values is the normalization of these final output probabilities [17].
Normalized probabilities represent soft labels with more knowledge available to the student
model [18]. The student model then looks at other values in addition to the most probable
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class. Hinton et al. [17] proposed a tuneable parameter term temperature, τ, to soften the
posterior probabilities, as given in Equation (1).

Softmax(zi) =
exp(zi/τ)

∑j exp(zj/τ)
(1)

Introducing this new τ parameter normalizes the output probabilities; e.g., setting
the value of τ = 3 for the above softmax output yields [0.375, 0.317, 0.307]. The output
probabilities are softened, but the potential class rankings do not change. In addition,
the student model then looks for other nonclass values. A high value of τ normalizes the
softmax output, rendering nontarget class output probability prominent [19]. Keeping
τ = 1 renders it a standard softmax function. A large value of τ softens the softmax
output and enhances the nontarget class output probability [19], and the probability value
of the target class also decreases to some extent. Therefore, it is important to choose an
appropriate value for the temperature parameter.

3. Proposed Knowledge Distillation Approach

The proposed knowledge distillation approach [20] is shown in Figure 1. The teacher
model is an MTM that uses sentence, word, and character input representations. The top
layer of MTMs, indicated by black rounded rectangles, was shared by all datasets. The lower
layer, represented by a red rounded rectangle, was dataset-specific, and the softmax func-
tion was used to label the output. Jointly training on the associated tasks allows for an
MTM to learn common features among different tasks by using shared layers [21]. The
joint training of related tasks also enables the model to optimize its parameters for different
tasks, thus reducing the possibility of overfitting for a particular task. Task-specific layers
learn features that are more relevant to the current task.
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Figure 1. Proposed KD approach (colored circles show embedding) [20].

Such a behavior of MTM can also be transferred to the student model with the help
of the knowledge distillation approach. Thus, an MTM (right-hand side of Figure 1)
is a teacher model used in the experiments presented later in this paper. Furthermore,
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this research aims to achieve knowledge distillation at the token level. For this reason,
the proposed approach uses a softmax function that generates token-level probability
distribution. Conditional random fields (CRFs) predict labels for entire sequences, so
token-level knowledge extraction is not possible. CRF-based models label sequences by
considering associations between adjacent labels. This confines knowledge extraction from
the teacher model [22]. To test this hypothesis, we implemented a teacher MTM with a CRF
at the output layer (Section 5.4).

The student model was in fact a counterpart STM of the MTM. As such, the STM
was a student model that had been trained without a knowledge distillation approach.
Therefore, the structure of the two models was the same. The proposed approach utilizes
different layers of MTM for knowledge distillation. The deep-learning model comprehends
complex features from the generic to the abstract levels, layer by layer. Different inter-
mediate layers of the teacher model are used for knowledge distillation. This includes a
shared BiLSTM layer, a task-specific BiLSTM layer, and hidden layer logits (refer Figure 1).
As such, the student model was trained in a guided way at different levels; therefore, this
may improve the performance of the student model. Layer knowledge was integrated from
the logit layer to different layers step by step in different experiments to observe the effects
of each integration. The logits (input to the softmax layer [23]) carry values in the range of
[−∞,+∞], corresponding to unmasked information; therefore, feature representation at
this level is more beneficial and refined. The softmax function uses logits to produce the
probability distribution of class labels, which causes the loss of hidden knowledge present
in the logit layer. Considering that, this paper also contains experiments in which a student
model was trained on the logits of the MTM. However, to validate this hypothesis, knowl-
edge distillation is also performed at the softmax layer using soft labels where the output
probability distribution of the teacher model is softened by tuneable parameter τ.

This work also explores the advantages of ensemble methods in two different ways.
First, the logits (input to the softmax layer [23]) of different MTMs were combined to train
the student model. The MTMs used in the ensemble method had the same architecture,
but were initialized with different seed values, resulting in MTMs with different trained
weights. The combined logits were averaged and then used to distill knowledge to the
student model. The second method, the ensemble approach, averages the logits of CRF-
based and softmax-based MTMs to train the student model (SM). The rationale for this
approach is that different MTMs learn different feature sets, so the SM is trained with a
wider range of features.

During training, the SM considers the actual labels and distillation loss that depend
on the results by matching the outputs of the teacher model (MTM). For the intermediate
layers’ knowledge distillation loss, mean-squared error (MSE) is calculated to minimize the
loss between student and teacher predictions at the different layers. When soft labels are
considered, on the other hand, cross-entropy loss is used.

4. Experimental Settings

The MTM shown on the right-hand side of Figure 1 was trained separately with
an MTL approach using all the datasets presented in this paper and was then utilized
for knowledge transformation into the student model (SM) [24]. When the knowledge
distillation was performed using the logits of the hidden layer, Equation (2) was used to
compute the loss of the SM. The knowledge distillation loss was the MSE of the teacher
and the student logits. Here, x represents the input, W represents SM parameters,H is the
cross-entropy loss, y corresponds to the true labels, and σ is the softmax function applied
to the teacher logits, zs, and student logits, zt. α and β are hyperparameters to quantify
each loss.

The experiments were conducted to consider different α values, i.e., [0, 0.5, 1] whereas
β = 1− α. Hyperparameter tuning for α and β was not performed, and the values were
naively chosen. If α = 0, the SM learnt with only distillation loss, while choosing α = 0.5
equally used both student loss and distillation loss. Lastly, α = 1 enabled the SM to utilize
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student loss. α = 1 transformed the SM into a single-task model (STM). The SM, however,
still utilized the logits of the teacher model during its training phase. This helps the SM in
learning and modifying the weights of layers during the backpropagation phase.

When knowledge distillation is carried out at the task-specific BiLSTM layer along
with the logits of the hidden layer, the loss is computed using Equation (3). The new
parameter, γ = [0, 0.5, 1], weighs the matching loss at the task-specific BiLSTM layer. The
hyperparameters are tuned to select the best value for α, β , and γ. When the knowledge
of the shared BiLSTM was incorporated with the above layer’s knowledge, the loss was
calculated using Equation (4). The MSE error of the task-specific BiLSTM was controlled
using the new parameter, κ = [0, 0.5, 1]. For Equation (4), hyperparameter tuning was
performed for β, γ, and κ to select the best value from [0, 0.5, 1] for each parameter, while
α was kept constant at 1. When knowledge distillation was carried out using soft labels,
Equation (5) was used to calculate the loss. Parameters α and β were retained at 0.5, while
τ was finetuned for each dataset. All our results were over the course of five runs, and each
run was executed with different seed values. The reported F1 scores are, therefore, based
on five runs.

L(x; W) = α · H(y, σ(zs, zt)) + β ·MSElogits (2)

L(x; W) = α · H(y, σ(zs, zt)) + β ·MSElogits + γ ·MSETaskSpeci f ic (3)

L(x; W) = α · H(y, σ(zs, zt)) + β ·MSElogits + γ ·MSETaskSpeci f ic + κ ·MSEShared (4)

L(x; W) = α · H(y, σ(zs, zt)) + β · H(y, σ(zs/τ, zt/τ)) (5)

Our experiments considered 15 datasets [25] that had also been used by Wang et al. [26],
and Crichton et al. [27]. The biological entities in these datasets are diseases, species,
cellular components, cells, genes, proteins, and chemicals. Each dataset contains a training
set, a validation set, and a test set. We followed a similar experimental setup to that of
Wang et al. (https://github.com/yuzhimanhua/Multi-BioNER, accessed on 10 February
2023), where the model was trained using both the training set and validation set.

We also performed detailed statistical analysis, and used graphs to find statistical
significance between the different results so that they could be better represented. Statistical
analysis was performed using the Friedman test [28] to determine the statistical significance
of the differences in the results of the different models.

5. Results and Discussions
5.1. Knowledge Distillation Using Logits of the Teacher Model

Table 1 presents the result comparison of the SMsψ with STM and MTM (a teacher
model). SMsψ outperformed most of the datasets compared with the STM except for
BC4CHEMD. MTM results for BC4CHEMD show that the MTM was not able to improve
the results for these datasets. This might be the reason why SMsψ were not able to learn
sufficient knowledge from the MTM. However, SMsψ improved the results for BC4CHEMD
compared with the MTM, showing the benefits of the knowledge distillation approach.
The SMψ(α = 0.5) trained with both student loss and distillation loss was more effective,
yielding an average F1 score of 84.1. The SMψ(α = 0) trained with only knowledge
distillation loss had the second-best score, with an average F1 score of 83.7.

https://github.com/yuzhimanhua/Multi-BioNER
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Table 1. Result comparison of the SMψ trained with logits of the softmax-based teacher MTM.

Datasets STM MTM
SMsΨ

α = 0 α = 0.5 α = 1

AnatEM 86.7 86.7 87.1 87.1 87.3

BC2GM 81.2 80.0 80.7 81.1 81.4

BC4CHEMD 90.1 86.6 89.3 89.4 89.4

BC5CDR 88.0 87.3 87.4 87.9 88.1

BioNLP09 87.6 88.3 88.8 88.4 88.7

BioNLP11EPI 82.7 84.4 84.2 84.7 82.9

BioNLP11ID 85.7 87.2 87.0 87.1 85.9

BioNLP13CG 82.1 84.0 82.9 83.6 82.5

BioNLP13GE 75.6 79.3 77.6 77.8 75.4

BioNLP13PC 86.8 88.6 88.0 88.3 87.2

CRAFT 84.4 82.3 82.6 84.0 84.5

ExPTM 73.5 80.9 76.1 76.5 73.6

JNLPBA 70.8 70.3 70.6 72.1 71.2

linnaeus 87.4 88.4 88.5 88.4 87.5

NCBI 84.3 85.0 84.9 85.3 84.2

Average 83.1 83.9 83.7 84.1 83.3

Statistical Analysis of SMψ

Statistical analysis was also performed on the results of Table 1 using the Friedman test
to find out if the differences in the results from different models were statistically significant.
Figure 2 represents the results of the output of the statistical analysis. Only one knowledge
distillation model, SMψ(α = 0.5), produced statistically significant results regarding STM.
However, when the results were compared with those of the MTM (teacher model), no
distillation model SMψ was able to deliver statistically significant results. SMψ(α = 0.5)
produced statistically significant results against other variants, i.e., SMψ(α = 0) and
SMψ(α = 1).

Figure 2. Post hoc pairwise analysis for Table 1.

Figure 3 depicts the graphical representation of the model on the basis of the generated
ranks with the Friedman test. For better understanding, different colors are used for the
rectangles and arrows, where the arrow has the same color as that of the rectangle to
which it belongs. SMψ(α = 0.5) produced the best results among all the models. Other
knowledge distillation models (SMψ(α = 0) and SMψ(α = 1)) also resulted in fewer ranks
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than those of the teacher model (MTM). The results of SMψ with (α = 1) were the worst
among the SMsψ.

Figure 3. Friedman test representation for Table 1. Arrows indicate models that were statistically
significant from each other. Models are ranked from left to right, with the best model first.

5.2. Knowledge Distillation Using an Ensemble Approach

In machine learning, ensemble approaches are more effective than a single machine-
learning model approach. Deep-learning models are nonlinear and thereby produce a
different set of weights when a single model is trained each time. The initial weights can
also cause different predictions, resulting in high variance in the predictions. To reduce
that variance, various neural network models can be trained and combined to generate
a single prediction. Furthermore, a single model might not necessarily learn distinctive
features in the data. This limitation can be tackled in the ensemble approach, where
feature representations from different models are combined into a single ensemble model.
The predictions from different models can be combined using different methods, including
voting, average, and weighted voting/average schemes.

This section introduces two types of ensemble methods where different predictions
are combined using a weighted average scheme. In this scheme, predictions from different
models are averaged and combined according to their estimated performance. In this
section, feature representation at the logit layer is combined from various models, which
enhances the learning ability of the SM to learn from a wide range of feature representations.
The architecture of the teacher MTMs used in the experiments was the same, but their
weights were initialized randomly with different seed values, ensuing different predictions.
In the first proposed approach, SMsφ used logits from an ensemble of MTMs to train
the SMφ. The averaged logits of these MTMs were used to train the SMφ. In the second
ensemble approach, the averaged logits of softmax-based MTMs and CRF-based MTMs
were used to train the SM§.

Table 2 represents the first ensemble approach where the results were improved
over the previous single teacher distillation approach. The results of SMφ also showed
performance improvement against STM. SMφ(α = 0.5) and SMφ(α = 1), improved the
performance of BC4CHEMD, as this dataset showed a performance drop when it was
trained with the logits of a single MTM (Section 5.1).

The results of the second ensemble approach are presented in Table 3. The logits of the
CRF-based MTM (MTM

CRF
) were used in conjunction with the logits of the softmax-based

MTM, where the average sum of the two logits was used to train the student model. This
rendered both models teacher models for the student model; therefore, the given table
also contains the results of the CRF-based MTM (MTM

CRF
) for comparison. The CRF-

based MTM (MTM
CRF

) had the best F1 score for most of the datasets, even compared with
the softmax-based MTM. However, when knowledge distillation was performed using
the same MTM

CRF
and MTM, the performance of the SMs§ did not improve for most of

the datasets. CRF-based models may tag sequences globally and anticipate relationships
between adjacent tags; therefore, knowledge extraction from the teacher’s model is lim-
ited [22]. This might be the reason for the performance degradation of the corresponding
SMs§. Comparing the SMs§ with MTM, a performance gain was noticed for various
datasets. The SM§(α = 0) model showed a performance gain for 9 datasets compared to
MTM. The SM§(α = 0.5) model improved results for 9 datasets, while SM§(α = 1) yielded
the worst performance, with a performance gain for only 5 datasets.
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Table 2. Result comparison of SMφ trained with the logits of the ensemble teacher softmax-
based MTMs.

Datasets STM MTM
SMsφ

α = 0 α = 0.5 α = 1

AnatEM 86.7 86.7 87.8 88.2 87.1

BC2GM 81.2 80.0 82.0 82.2 80.9

BC4CHEMD 90.1 86.6 88.9 90.6 90.2

BC5CDR 88.0 87.3 88.5 88.8 88.5

BioNLP09 87.6 88.3 89.4 89.0 87.3

BioNLP11EPI 82.7 84.4 84.9 85.0 82.8

BioNLP11ID 85.7 87.2 87.6 87.7 85.1

BioNLP13CG 82.1 84.0 83.7 84.1 82.3

BioNLP13GE 75.6 79.3 77.8 78.1 76.2

BioNLP13PC 86.8 88.6 88.7 88.8 87.4

CRAFT 84.4 82.3 83.7 84.9 84.1

ExPTM 73.5 80.9 77.2 76.7 73.7

JNLPBA 70.8 70.3 72.0 72.7 71.3

linnaeus 87.4 88.4 89.9 90.0 87.5

NCBI 84.3 85.0 86.1 86.1 84.1

Average 83.1 83.9 84.6 84.9 83.2

Table 3. Result comparison of the SM§ trained with the logits of the softmax-based MTM and
CRF-based MTM (MTM

CRF
).

Datasets STM MTM MTM
CRF SMs§

α = 0 α = 0.5 α = 1

AnatEM 86.7 86.7 87.5 87.6 87.7 86.8

BC2GM 81.2 80.0 81.7 80.5 81.7 81.2

BC4CHEMD 90.1 86.6 88.9 88.4 90.2 90.2

BC5CDR 88.0 87.3 88.4 87.9 88.4 88.1

BioNLP09 87.6 88.3 89.0 88.9 88.8 87.5

BioNLP11EPI 82.7 84.4 85.3 84.3 84.7 83.1

BioNLP11ID 85.7 87.2 87.4 87.5 87.0 85.8

BioNLP13CG 82.1 84.0 85.2 83.3 83.7 82.1

BioNLP13GE 75.6 79.3 79.9 77.8 77.8 75.4

BioNLP13PC 86.8 88.6 89.1 88.2 88.4 87.2

CRAFT 84.4 82.3 84.0 82.9 84.7 84.5

ExPTM 73.5 80.9 81.8 76.8 76.3 73.4

JNLPBA 70.8 70.3 72.8 70.1 72.3 71.2

linnaeus 87.4 88.4 88.6 89.0 88.9 87.4

NCBI 84.3 85.0 86.5 85.7 85.5 84.2

Average 83.1 83.9 85.1 83.9 84.4 83.2
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Statistical Analysis of SMsφ and SMs§

The post hoc statistical analysis of the reported results in Table 2 is presented in Figure 4.
All the variants of SMsφ delivered statistically significant results regarding the teacher
model (MTM) and among themselves. However, SMφ(α = 1) did not generate statistically
significant results against STM and MTM. Figure 5 presents the models according to their
statistical ranks from using the Friedman test. SMφ(α = 0.5) set up the best rank compared
to the variants of SMsφ(α = 0 and α = 1). SMsφ(α = 0) achieved a better score against
the teacher model (MTM), whereas SMφ(α = 1) did not produce significant results, even
compared with the STM, and generated one fewer rank than MTM did.

Figure 4. Post hoc pairwise analysis for Table 2.

Figure 5. Friedman test representation for Table 2. Arrows indicate models that were statistically
significant from each other. Models were ranked from left to right, with the best model first.

Statistical analysis for Table 3 is presented in Figures 6 and 7. Post hoc analysis
(Figure 6) indicates that all student model SMs§ yielded statistically significant results
against MTM

CRF
(teacher model), except for SMs§(α = 0.5), while for the MTM (softmax-

based teacher model), SMs§(α = 0) could not generate statistically significant results.
Additionally, all the results of the student models, SMs§, were statistically significant
among themselves. Figure 7 illustrates the Friedman test ranks for the models presented in
Table 3. None of the SMs§ produced statistically better ranks than those of the MTM

CRF

(teacher model). However, SMs§ (α = 0.5) was statistically better than the MTM.
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Figure 6. Post hoc pairwise analysis for Table 3.

Figure 7. Friedman test representation for Table 3. Arrows indicate models that are statistically
significant from each other. Models are ranked from left to right, with the best model first.

5.3. Knowledge Distillation Using Intermediate Layers of Teacher Model

Knowledge distillation was executed at the middle layers of the teacher model in order
to extract more knowledge from it. Different layers learn different feature representations,
and training an SM on diverse features can be effective. The outputs of shared and task-
specific BiLSTM (Figure 1) were used with hidden layer logits for knowledge distillation,
and the results are shown in Table 4. The MSE was computed for the output of the
teacher’s BiLSTM and the student’s BiLSTM. SM†† corresponds to a task-specific BiLSTM
and showed remarkable improvement in all datasets compared with the STM; compared
against MTM, an increase in performance was noted for nine datasets. Likewise, previously
proposed SMs, SM††, also failed to leverage the performance for most of the protein
datasets. With the introduction of the shared BiLSTM layer along with the task-specific
BiLSTM layer (SM†F), the performance of the model improves for some datasets compared
to the task-specific SM††.

Table 4. Result comparison of the proposed softmax-based SM. SM†† trained with task-specific
intermediate BiLSTM layer of softmax-based MTM. SM†F trained with shared and task-specific
intermediate BiLSTM layer of softmax-based MTM.

Datasets STM MTM SM†† SM†F

AnatEM 86.7 86.7 87.8 87.7

BC2GM 81.2 80.0 81.8 81.7

BC4CHEMD 90.1 86.6 90.6 90.5

BC5CDR 88.0 87.3 89.0 88.8

BioNLP09 87.6 88.3 88.5 88.1

BioNLP11EPI 82.7 84.4 84.1 84.2

BioNLP11ID 85.7 87.2 86.5 86.8

BioNLP13CG 82.1 84.0 83.7 83.7

BioNLP13GE 75.6 79.3 77.9 77.8
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Table 4. Cont.

Datasets STM MTM SM†† SM†F

BioNLP13PC 86.8 88.6 88.3 88.5

CRAFT 84.4 82.3 85.1 85.1

ExPTM 73.5 80.9 75.1 74.5

JNLPBA 70.8 70.3 71.9 71.8

linnaeus 87.4 88.4 88.7 88.2

NCBI 84.3 85.0 85.4 85.5

Average 83.1 83.9 84.3 84.2

Statistical Analysis of SM†F and SM††

Further analysis of the results using the Friedman test in Figure 8 shows that the results
of both SMs (SM†F and SM††) were not statistically significant with each other. However,
they were statistically better against STM and the teacher model, MTM. The statistical
rankwise comparison is given in Figure 9, which shows that SM†† (SM with task-specific
BiLSTM layer) yielded the best ranks among others, and SM†F had the second best rank.
Conclusively, all SMs were able to generate statistically better ranks and significant results
regarding MTM and STM.

Figure 8. Post hoc analysis for Table 4.

Figure 9. Friedman test representation for Table 4. Arrows indicate models that are statistically
significant from each other. Models were ranked from left to right, with the best model first.

5.4. Knowledge Distillation for CRF-Based Student Model

In the above experiments, the SMs used softmax at the output layer. This section
uses the SM that utilized CRF at the output layer, while the rest of the architecture and
approaches remained the same. As discussed earlier, the SM is in fact an STM, but is trained
with external knowledge. For this reason, an STM with CRF (STMCRF) at the output layer
was selected for comparison. Table 5 depicts the results of the CRF-based SM trained on
the logits of the CRF-based MTM. The results of the SMsF noticeably worsened against
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teacher MTM. This demonstrates that the performance of the SMsF was confined when
CRF-based teacher MTM (MTMCRF) was used for knowledge distillation. However, it
is quite interesting that the SMsF still produced a high F1 score against the counterpart
STM. All the variants of the SMF demonstrated performance improvement for 10 datasets
compared with the STM.

Table 5. Result comparison of the proposed CRF-based SM. SMF trained with CRF-based
teacher MTM.

Datasets STMCRF MTMCRF
CRF-Based SMF

α = 0 α = 0.5 α = 1

AnatEM 86.8 87.7 87.7 87.7 87.6

BC2GM 81.8 81.7 80.2 80.2 80.3

BC4CHEMD 90.4 89.1 90.2 90.1 90.1

BC5CDR 88.7 88.5 88.3 88.4 88.3

BioNLP09 87.9 89.1 88.0 88.1 88.0

BioNLP11EPI 83.4 85.3 84.1 83.9 84.0

BioNLP11ID 86.2 87.7 86.8 87.1 86.8

BioNLP13CG 83.2 84.7 83.4 83.4 83.3

BioNLP13GE 76.6 80.9 77.0 76.9 76.9

BioNLP13PC 87.7 89.3 88.2 88.1 88.3

CRAFT 85.1 84.5 84.4 84.4 84.4

ExPTM 73.5 82.4 76.0 76.1 75.9

JNLPBA 72.3 72.8 71.4 71.2 71.2

linnaeus 87.9 88.3 88.9 89.5 88.9

NCBI 84.8 86.0 85.0 85.1 85.0

Average 83.8 85.2 84.0 84.0 83.9

In another experiment, the CRF-based SMFφ corresponded to the CRF-based SM
trained with the logits of softmax-based MTM, and results are presented in Table 6. The av-
erage scores of the SMsFφ indicate a distinguishable increase in F1 score compared with
the SMsF. This performance improvement illustrates that the softmax-based teacher
MTM distilled more knowledge in comparison to CRF-based teacher MTM (MTM

CRF
).

The SMFφ(α = 0) achieved a better F1-score for nine datasets compared with its coun-
terpart STM. SMsFφ(α = 0.5 and α = 1) showed an improvement in performance for 10
datasets against their counterpart STM.

Statistical Analysis of SMsF and SMsFφ

Figure 10 depicts the statistical analyses of CRF-based SMs for Table 5. None of the
SMsF produced statistically significant results regarding each other, STM, and teacher
MTMCRF. The statistical ranks are presented in Figure 11, which further show that student
models SMsF produced statistically worst results against the teacher model (MTM

CRF
),

but better than those of STM
CRF

.
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Table 6. Result comparison of the proposed CRF-based SM. SMFΦ trained with softmax-based
teacher MTM.

Datasets STMCRF MTMCRF
CRF-Based SMFΦ

α = 0 α = 0.5 α = 1

AnatEM 86.8 87.7 87.5 87.6 85.5

BC2GM 81.8 81.7 81.3 81.4 81.2

BC4CHEMD 90.4 89.1 89.8 89.7 89.8

BC5CDR 88.7 88.5 88.3 88.3 88.3

BioNLP09 87.9 89.1 88.9 88.8 88.8

BioNLP11EPI 83.4 85.3 83.9 84.4 84.4

BioNLP11ID 86.2 87.7 86.8 86.7 86.7

BioNLP13CG 83.2 84.7 83.1 83.3 83.4

BioNLP13GE 76.6 80.9 77.9 77.8 78.0

BioNLP13PC 87.7 89.3 88.3 88.3 88.3

CRAFT 85.1 84.5 84.1 84.3 84.3

ExPTM 73.5 82.4 76.1 76.1 76.4

JNLPBA 72.3 72.8 71.8 71.9 71.7

linnaeus 87.9 88.3 88.9 89.7 88.8

NCBI 84.8 86.0 85.3 85.4 85.5

Average 83.8 85.2 84.1 84.2 84.1

Figure 10. Post hoc analysis for Table 5.

We also present the statistical analysis for Table 6 , and post hoc analysis is shown
in Figure 12. None of the SMsFφ produced statistically significant results against each
other. However, they were able to generate statistically significant results against a first
teacher model (MTM), but failed to yield against the teacher model (MTM

CRF
). However,

SMFφα = 0.5 was able to generate statistically significant results regarding MTM
CRF

.
This worse result may have been due to the MTM

CRF
-based teacher model. The rankwise

analysis in Figure 13 demonstrates that all the SMsFφ were, again, statistically worse than
the MTM

CRF
, but better than the MTM.
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Figure 11. Graphical representation of the Friedman test for Table 5. Arrows indicate models that
were statistically significant from each other. Models were ranked from left to right, with the best
model first.

Figure 12. Post hoc analysis for Table 6.

Figure 13. Graphical representation of the Friedman test for Table 6. Arrows indicate models that
were statistically significant from each other. Models were ranked from left to right, with the best
model first.

5.5. Knowledge Distillation Using Soft Labels

The SMs discussed in the above subsections were trained on true labels along with the
feature representations of the teacher model’s intermediate layers. This subsection presents
the SM model that was simultaneously trained on the soft labels of the teacher model.
The soft labels were, in fact, the output probability distribution of the softmax function.
However, they were normalized with constant temperature hyperparameter τ, as discussed
in Section 2. Cross-entropy loss was calculated for soft labels, just as cross-entropy was
used for true labels. The cross-entropy loss of true labels and the cross-entropy loss of soft
labels were considered equally. Table 7 depicts the results of the SM: SM showed a slight
performance improvement for some datasets compared with the STM. When compared
with the MTM, the SM performed better for those datasets for which STM had a high F1
score, e.g., BC2GM, BC4CHEMD, and CRAFT. This indicates that the learning behavior of
the SM resembles an STM more. Result analysis shows that logits passed more knowledge
to the student model (Section 5.1) compared to the soft labels.
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Table 7. Result comparison of the SM trained with the soft labels of the teacher MTM.

Datasets STM MTM SM

AnatEM 86.7 86.7 87.0

BC2GM 81.2 80.0 81.1

BC4CHEMD 90.1 86.6 90.1

BC5CDR 88.0 87.3 88.1

BioNLP09 87.6 88.3 87.6

BioNLP11EPI 82.7 84.4 83.1

BioNLP11ID 85.7 87.2 85.2

BioNLP13CG 82.1 84.0 82.2

BioNLP13GE 75.6 79.3 74.9

BioNLP13PC 86.8 88.6 87.1

CRAFT 84.4 82.3 84.3

ExPTM 73.5 80.9 73.0

JNLPBA 70.8 70.3 71.2

linnaeus 87.4 88.4 87.7

NCBI 84.3 85.0 84.1

Average 83.1 83.9 83.1

Statistical Analysis of SM

The post hoc pairwise analysis of Table 7 is given in Figure 14. Only MTM and
STM produced statistically significant results against each other, and none of the models
generated statistically significant results regarding SM. The ranks of the Friedman test
in Figure 15 show that SM performed statistically worse than the MTM, but better than
the STM.

Figure 14. Post hoc analysis for Table 7.
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Figure 15. Graphical representation of the Friedman test for Table 7. Arrows indicate models that
were statistically significant from each other. Models were ranked from left to right, with the best
model first.

6. Conclusions

Our reported results showed that the MTM approach could generalize well by learning
common features among different tasks. In an effort to transfer the generalizations of the
MTM, the proposed knowledge distillation method utilizes MTM as the teacher model.
The deep-learning model learns from generic level features to abstract level features layer
by layer. Therefore, the proposed approach performs knowledge distillation from different
layers of an MTM that includes shared BiLSTM, task-specific BiLSTM, and a hidden layer.
Additionally, an ensemble method was implemented in which the logits of the different
MTMs were averaged to train the student model. In another ensemble approach, the logits
of the softmax-based MTM and CRF-based MTM were averaged to teach the student model.
The distillation and student losses were controlled by the tuneable parameters. The results
show that the values of these hyperparameters could depend on the structure and size of
both teacher and student models. However, a performance increase was noted for student
models when true label loss and distillation loss were considered equally. The results of
our proposed work also revealed that distilling knowledge from a softmax-based MTM is
more favorable for knowledge distillation compared with the CRF-based MTM.

For future work, we plan to extend the experiments by utilizing different distillation
loss functions, such as Kullback–Leibler divergence [29]. Another future direction is to
use the compressed/simple student model, which can achieve similar results to those
of the complex teacher model. We also plan to use transformers to perform knowledge
distillation [30].
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