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Abstract: In the world, with the continuous development of modern society and the acceleration of
urbanization, the problem of air pollution is becoming increasingly salient. Methods for predicting
the air quality grade and determining the necessary governance are at present most urgent problems
waiting to be solved by human beings. In recent years, more and more machine-learning-based
methods have been used to solve the air quality prediction problem. However, the uncertainty
of environmental changes and the difficulty of precisely predicting quantitative values seriously
influence prediction results. In this paper, the proposed air pollutant quality grade prediction method
based on a hyperparameter-optimization-inspired long short-term memory (LSTM) network provides
two advantages. Firstly, the definition of air quality grade is introduced in the air quality prediction
task, which turns a fitting problem into a classification problem and makes the complex problem
simple; secondly, the hunter–prey optimization algorithm is used to optimize the hyperparameters of
the LSTM structure to obtain the optimal network structure adaptively determined through the use
of input data, which can include more generalization abilities. The experimental results from three
real Xi’an air quality datasets display the effectiveness of the proposed method.

Keywords: LSTM; hyperparameter; hunter–prey optimization; network structure; artificial intelligence

1. Introduction

Air pollution has become one of the most serious environmental problems in today’s
society [1], bringing along a series of serious consequences to human beings, such as respi-
ratory diseases [2]. With the continuous development of urbanization and industrialization,
air quality in various countries and regions has decreased to a certain extent compared with
previous years [3]. The pollutants contained in automobile exhaust and industrial waste
gases seriously affect human health [4]. A large number of epidemiological and patho-
logical studies have shown that pollutants in the air can cause serious lung diseases [5],
including particulate matter (PM2.5, PM10), sulfur dioxide (SO2), carbon monoxide (CO)
and nitrogen oxide (NOx) being capable of causing asthma and tuberculosis. At the same
time, other systems and organs of the body can also be harmed to varying degrees if people
are exposed to air pollution for a long time [6–9], and when the amount and concentration
of air pollutant increases obviously, even that can indirectly affect the health of human be-
ings through permeation into food products that people usually eat [10,11]. This introduces
an urgent need for people to have a certain degree of understanding of air quality in order
to adopt operations to manage air quality. For this reason, the idea of using air quality
prediction to provide a treatment basis for relevant personnel has received increasing
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recognition. Only by judging the pollution degree of different pollutants in the air and de-
termining accurate predictions based on data characteristics can air pollution be prevented
effectively [12]. Therefore, finding ways to determine real-time and effective air quality
predictions is an urgent problem in the field of environmental protection and governance.

At present, there are three main types of air quality prediction methods, one of the
traditional examples being global weather change models for forecasting the air pollution
index. However, this method is based on the atmospheric change model and has low
accuracy in most cases [13].

Thus, statistics-based methods have gradually come into use to predict air quality,
generally integrating mathematical models, the knowledge of physics and real-life experi-
ence. Based on the historical data of air quality monitoring stations distributed in different
regions, changes in air pollutant concentrations in the future can be statistically analyzed by
combining the air quality index with different weather conditions [14]. However, statistical-
based methods cannot solve sudden changes in air quality well, due to the uncertainty
of environmental change. For example, the support vector machine (SVM) [15,16] was
proposed by some researchers for solving the problem of air quality prediction, obtained
by dividing the hyperplane of the data feature space. This method takes full advantage of
the residual information of air quality and corrects the error term of the prediction target.
However, methods based on the SVM have problems such as a slow convergence speed
and oscillation during model training, so their effect is not ideal. Therefore, air quality
prediction accuracy based on statistical methods is not high, unable to be used in accurate
prediction tasks.

Finally, in recent years, a method based on deep learning has had satisfactory results
in air quality prediction [17]. This kind of method uses the neural network model to predict
the air quality index, which can better cope with the uncertainty of environmental changes
and other complex problems [18–21]. For instance, the artificial neural network (ANN),
proposed in the 1980s, mimics the function of neurons in the human brain so that it can
achieve the same effect as through the use of human numerical calculations. This method
has also been well applied in the sphere of air quality prediction [22]. The emergence of
back-propagation (BP) neural networks [23] improved the computational ability of the
artificial neural network, and after optimization with the K-nearest neighbor algorithm
(KNN), it has also been used to predict air quality [24]. Biancofiore et al. [25] used the
recurrent neural network (RNN) model to predict the concentration of PM2.5 in the air, and
obtained a high prediction accuracy. However, the limitation of this method was that the
RNN has the problem of vanishing gradients and can only handle short-term dependency,
not long-term dependence. Furthermore, there was no effective integration of previous air
quality data.

Although methods of deep learning have resulted in acceptable consequences in air
quality prediction assignments, air quality prediction tasks also require the combination
of certain characteristics of past data to predict future data, i.e., air quality data generally
have time series information, which are difficult to capture using traditional neural net-
works, such as the BP, CNN, etc. Similarly, a majority of existing deep-learning-based
air quality prediction methods have poor memory ability of time series, which affects the
precision of the prediction. Therefore, the support of a powerful neural network with a
time series memory is of utmost importance, potentially being able to provide better quality
prediction results.

With the aim of solving the problems related to existing neural-network-based meth-
ods that cannot closely combine previous air quality data and the prediction data always
containing one class of information, the long short-term memory (LSTM) network [26] can
resolve the above problems and improve the prediction accuracy. The long short-term mem-
ory (LSTM) network can also efficiently extract features in continuous time, and can carry
information across multiple time steps in order to avoid the disappearance of early signals
in the process. Therefore, we used the long short-term memory network (LSTM) [27–29] to
be our basic air quality prediction model.
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In this paper, we proposed an air pollutant grade prediction method based on the
hyperparameter-optimization-inspired long short-term memory network, which has
two characteristics. Firstly, the air quality data were disposed of as grade data, mean-
ing that the hourly concentration of air pollutants, such as SO2 and PM2.5, was divided into
grade data, i.e., we transformed the fitting problem into a classification task, which caused
the prediction of air quality to become easier to obtain. Furthermore, to better enhance
the prediction results, we uses the hunter–prey optimization algorithm to improve the
structure of the long short-term memory network, capable of obtaining the data-adaptive
network structure. Through this, the hyperparameter-optimization-inspired LSTM was
able to improve the efficiency of the prediction model and the accuracy of the air quality
grade prediction.

The composition of this paper is as follows: in Section 2, the background is introduced;
the details of the proposed method are illustrated in Section 3; Section 4 demonstrates the
experimental results; and the conclusions of this paper are described in Section 5.

2. Background
2.1. Long Short-Term Memory

The long Short-Term Memory network is a special kind of recurrent neural network
(RNN) [30]. The network model can solve the disadvantages of the RNN, i.e., the gra-
dient vanishing and the long-term dependency problem [31]. LSTM proposes a gating
mechanism, including the forget gate, input gate and output gate. With these three basic
gates, LSTM only remembers information that needs to be remembered for a long time
and forgets short-term and unimportant information. The basic unit structure of the LSTM
network is shown in Figure 1.
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Figure 1. The basic unit structure of the LSTM network. Figure 1. The basic unit structure of the LSTM network.

where “×” and “+” represent the matrix multiplication and matrix addition, respec-
tively. σ is the sigmoid activation function and tanh is the tanh activation function. ft is
the forget gate, it is the input gate, Ot is the output gate, ht−1 and ht are the hidden states,
xt denotes the input and Ct−1 and Ct are the cell states. As can be seen from Figure 1,
LSTM has three gates, namely, the forget gate ft, input gate it and output gate Ot. The
forget gate ft reads the information of the state of the previous moment ht−1 and the
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current state information xt. The forget gate ft outputs a value between 0 and 1 from the
previous cell via the sigmoid activation function σ. If the result is 0, the information of the
previous unit is completely forgotten. In addition, the information of the previous unit is
completely remembered.

The sigmoid activation function [32] takes any real value as the input and output
values in the range of 0 to 1, which are then used in the LSTM to process the input values.
The sigmoid function is used to convert the input to [0, 1] and to obtain the degree of forget
ft, as shown in Formula (1):

ft = σ(W f · [ht−1, xt] + b f ), (1)

where W f is the weight coefficient matrix and b f is the bias matrix.
After the data pass through the forget gate, the input gate it determines how much

input information xt to store in the current cell.
Firstly, the input gate it selects the information xt to update through the sigmoid

activation function σ, as shown in Formula (2):

it = σ(Wi · [ht−1, xt] + bi), (2)

where bi is the bias matrix and Wi is the weight coefficient matrix.
Then, using tanh activation function Tanh, the selected information is processed to

generate an alternative update vector C̃t, as shown in Formula (3):

C̃t = tanh(WC · [ht−1, xt] + bC), (3)

where WC is the weight coefficient matrix and bC is the bias matrix.
In addition, the above two steps can be combined to update the status of the current

unit and update the previous status information Ct−1. We let the previous status informa-
tion Ct−1 be multiplied by the degree of forget ft, which stands for the forgotten part. Then,
we could add the forgotten part and the product of the input gate information it, as well as
the alternative update vector C̃t, as shown in Formula (4):

Ct = ft ∗ Ct−1 + it ∗
∼
Ct, (4)

Finally, we let the output of the previous cell ht−1 and the input xt determine which
information to output with the sigmoid activation function σ and which multiplied infor-
mation was output, as well as the cell state, handled with the use of the tanh activation
function tanh, as shown in Formulas (5) and (6):

ot = σ(Wo · [ht−1, xt] + bo), (5)

ht = ot ∗ tanh(Ct), (6)

where Wo is the weight coefficient matrix and bo is the bias matrix.

2.2. Hunter–Prey Optimization Algorithm

The hunter–prey optimization (HPO) algorithm is a new optimization algorithm
used to solve optimization problems [33–35]. The algorithm was inspired by the hunting
behavior of some carnivores, such as lions, tigers and leopards, as well as prey, such as
deer and antelopes [36,37]. In the proposed method, hunters usually give priority to the
prey far away from its group. The hunter adjusts its position towards the prey far away
from its group whilst the prey adjusts its position towards the group. The search agent’s
position is considered as a safe place through the optimum value of the fitness function.

The steps of the hunter–prey optimizer are as follows:
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Firstly, same as most optimization algorithm structures, in each iteration, the position
of each hunter and prey is updated according to the rules of the algorithm, and the new
position of each member is re-evaluated using the objective function. The position of
each member in the initial group is randomly generated in the search space, as shown in
Formula (7):

xi = rand(1, d)× (ub− lb) + lb, (7)

where xi is the hunter’s position, lb is the minimum for the problem variables, ub is the
maximum value for the problem variables and d is the number of variables of the problem.

Secondly, the search mechanism of the hunter generally involves two steps: explo-
ration and exploitation. Exploration is the tendency of hunters to search in a highly random
manner to find the regions of more likely prey. After promising regions are found, exploita-
tion is applied, which is when a hunter must reduce random behavior in order to search for
prey around a promising area. The search mechanism of a hunter is shown in Formula (8):

x(t + 1) = x(t) +
[(2CZPpos − x(t)) + (2(1− C)Zµ− x(t)]

2
, (8)

where x(t) is the hunter’s current position, x(t + 1) is the hunter’s next position, Ppos is
the prey’s position, µ is the mean of all the positions, C is the balance parameter between
exploration and exploitation, its value decreasing from 1 to 0.02 during the iteration, as
shown in Formula (9), and Z is an adaptive parameter, as shown in Formula (10):

C = 1− it(
1− 0.98
MaxIt

), (9)

Z =
→
R1 ⊗ idx +

→
R2 ⊗ (∼ idx), (10)

where it is the number of the current iteration and MaxIt is the maximum number of
iterations, the value of which in this study was set to 100.

→
R1 and

→
R2 are random vectors

in the range [0, 1] and idx is the index number of the vector that satisfies the condition
→
R1 < C.

Then, according to the hunting scenario, when the hunter takes the prey, it dies, and
the next time, the hunter moves to the location of the dead prey. The iteration can be
continued with the prey’s position being the new hunter position. In addition, assuming
that the best safe location is the best global location, since it gives the prey a better chance
of survival, the hunter may choose another prey, as shown in Formula (11):

x(t + 1) = Tpos + CZ cos(2πR3)× (Tpos − x(t)), (11)

where x(t) is the hunter’s current position, x(t + 1) is the hunter’s next position, Tpos is
the global optimal position that has the best fitness from the first iteration to the current
iteration and R3 is a random number in the range [−1, 1].

Finally, it is important how the hunter and prey are chosen in this algorithm, as shown
in Formula (12):

x(t + 1) =
{

x(t) + 0.5[(2CZPpos − x(t)) + (2(1− C)Zµ− x(t)] R4 < β
Tpos + CZ cos(2πR3)× (Tpos − x(t)) R4 ≥ β

, (12)

where R4 is a random number in the range [0, 1] and β is an adjusting parameter, whose
value in this study was set to 0.15.

3. The Proposed Method

This section introduces the data preprocessing conducted before the air quality grade
prediction based on the LSTM network. We also represented the hunter–prey optimization
algorithm to optimize a more powerful LSTM network structure. The proposed method
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includes the three major steps: (1) data preprocessing, that is the air quality data are
disposed of as grade data; (2) the hunter–prey optimization algorithm that determines the
optimal hyperparameter of the LSTM network structure; and (3) the LSTM network via the
optimization of the hyperparameters employed for the training and testing of grade data.
The flowchart of the proposed method is shown in Figure 2.
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3.1. Data Preprocessing

To demonstrate the data preprocessing process, we took the real-time reported air
quality index 2018–2020 data recorded at the Central Square Station of the Xin Cheng
district, Xi’an city, as the sample. The average hourly concentrations of fine particulate
matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide
(NO2), carbon monoxide (CO) and ozone (O3) in 2018–2020 were selected to be included in
the original dataset. Dataset examples are shown in Table 1.

Table 1. Three-hour examples of air pollutant data from the Central Square Station of the Xi’an Xin
Cheng district in Xi’an city from 2018 to 2020.

Time PM10
(µg/m3)

PM2.5
(µg/m3)

SO2
(µg/m3)

NO2
(µg/m3)

CO
(µg/m3)

O3
(µg/m3)

2018-01-01 01:00 436 201 27 85 2.2 5
2018-01-01 02:00 403 261 24 77 2.5 6
2018-01-01 03:00 477 358 33 79 2.9 7

We divided the concentration of air pollutants in the original dataset into the corre-
sponding pollutant quality grade. This method not only achieved the prediction of air
pollution quality, but also transformed the problem of data fitting into a problem of data
classification, simplifying the difficulty of the problem and displaying the forecast results
visually. The partitions of air pollution quality grades are shown in Table 2.

Table 2. The partitions of air pollution quality grades.

Grade PM10
(µg/m3)

PM2.5
(µg/m3)

SO2
(µg/m3)

NO2
(µg/m3)

CO
(µg/m3)

O3
(µg/m3)

0 0–50 0–35 0–150 0–100 0–5 0–160
1 51–150 35–75 150–500 100–200 5–10 160–200
2 150–250 75–115 500–650 200–700 10–35 200–300
3 250–350 115–150 650–800 700–1200 35–60 300–400
4 350–420 150–250 800+ 1200–2340 60–90 400–800
5 420–500 250–350 - 2340–3090 90–120 800–1000
6 500–600 350–500 - 3090–3840 120–150 1000–1200
7 600+ 500+ - 3840+ 150+ 1200+
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Compared with Table 1, the quality grades of the air pollutant data examples at the
Central Square Station of the Xi’an Xin Cheng district in Xi’an city after Conversion are
shown in Table 3.

Table 3. An example of air pollutant grades at the Central Square Station of Xi’an Xin Cheng district
in Xi’an city from 2018 to 2020.

Time PM10
Grades

PM2.5
Grades

SO2
Grades

NO2
Grades

CO
Grades

O3
Grades

2018-01-01 01:00 5 4 0 0 0 0
2018-01-01 02:00 4 5 0 0 0 0
2018-01-01 03:00 5 6 0 0 0 0

After classifying the concentration value interval of air pollutants according to Table 3,
some classified pollutant quality grade data were concentrated in grade 0. To solve this
problem, we redivided the pollutant concentration intervals into corresponding pollutant
quality grades based on Table 2, according to the data distribution of pollutants whose
concentration values were concentrated in category 0, as shown in Table 4.

Table 4. Air pollutant concentration value interval division after redivision.

Grade PM10
(µg/m3)

PM2.5
(µg/m3)

SO2
(µg/m3)

NO2
(µg/m3)

CO
(µg/m3)

O3
(µg/m3)

0 0–50 0–35 0–5 0–30 0–0.6 0–25
1 50–150 35–75 5–10 30–50 0.6–1.0 25–50
2 150–250 75–115 10–15 50–100 1.0–1.5 50–100
3 250–350 115–150 15–150 100–200 1.5–5 100–160
4 350–420 150–250 150–500 200–700 - 160–200
5 420–500 250–350 - - - 200–300
6 500–600 350–500 - - - 300–400
7 600+ - - - - -

After the second division classifying the concentration value interval of the air pollu-
tants, according to Table 4, an example of air pollutant grades at the Central Square Station
of Xi’an Xin Cheng district in Xi’an city from 2018 to 2020 is shown in Table 5.

Table 5. An example of air pollutant grades at the Central Square Station of the Xi’an Xin Cheng
district in Xi’an city from 2018 to 2020 after redivision classification.

Time PM10
Grades

PM2.5
Grades

SO2
Grades

NO2
Grades

CO
Grades

O3
Grades

2018-01-01 01:00 5 4 3 2 3 0
2018-01-01 02:00 4 5 3 2 3 0
2018-01-01 03:00 5 6 3 2 3 0

After the second division classifying the concentration value of air pollutants, accord-
ing to Table 4, Figure 3 shows the distribution of air quality grade data and the number of
data contained in the corresponding category.

3.2. The Network Hyperparameters of LSTM Optimized via HPO Algorithm

In this paper, according to the air quality monitoring station, we used air pollutant
quality grade data (xi

1, xi
2, . . . , xi

h) in the first h hours to predict the air pollutant quality
level data xi

h+1 in h + 1 hour. The formula used was Formula (13):

xi
h+1 = f ((xi

1, xi
2, . . . , xi

h)), (13)
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where f is the mapping function. The LSTM network model is shown in Figure 4.
We designed six hyperparameters of the LSTM network to determine the predictions

because there were six types of air pollutants. The LSTM network model is shown in
Figure 5. Here, xi

24 is the input of the LSTM network, 24 is the serial amount of data of one
air pollutant in 24 h and the n-th element of the X denotes n as the output of the network.
LSTM1 and LSTM2 are the LSTM network cell layers; Dense1, Dense2 and Dense3 are the
fully connected layers. Meanwhile, we also designed the hyperparameters of the LSTM
structure, i.e., the number of layers of the LSTM network a0, the number of LSTM units a1,
the number of fully connected layers a2, the number of fully connected units a3, the batch
size a4, the value of dropouts a5 and the value of recurrent dropouts a6.

Then, we used the hunter–prey optimization algorithm to optimize the LSTM network
to obtain the optimized network structure via optimizing the hyperparameters. The process
of the specific algorithm model was as follows:

Firstly, we built the hunter–prey optimization algorithm model and initialized the
algorithm, including initializing the adjusting parameter β and setting the maximum
number of iterations MaxIt.
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Secondly, we used the list [a0, a1, a2, a3, a4, a5, a6] as the input for the HPO algorithm.
We then calculated the fitness, recorded the global optimality Tpos and updated the adaptive
parameter Z.

Thirdly, the predator or prey locations were updated using Formula (12), after which
we recalculated the fitness and current optimal value Ppos.
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Then, the hunter–prey optimizer model looped to the maximum number of iterations
and obtained the optimal solution [a0

′
, a1

′
, a2

′
, a3

′
, a4

′
, a5

′
, a6

′
] as the new LSTM network

hyperparameters. The process for the hyperparameters of the LSTM network structure
optimized using the HPO algorithm is shown in Algorithm 1.

Finally, we used the new LSTM network adapted to the new network hyperparameters
for training and testing.

Algorithm 1: The process for the hyperparameters of the LSTM network structure optimized
using the HPO algorithm.

1: Input: The number of layers of the LSTM network a0, the number of LSTM units a1, the
number of fully connected layers a2, the number of fully connected units a3, the batch size a4, the
value of dropouts a5 and the value of recurrent dropouts a6;
2: Initialization: Adjusting parameter β, the maximum number of iterations MaxIt and the
global optimal value Tpos;
3: For t = 1, 2, 3, . . . , T do
4: If range parameter < β, update the predator or prey location according to Formula (8);
5: If range parameter ≥β, update the predator or prey location according to Formula (11);
6: Calculating the fitness and the current optimal value Ppos;
7: Updating the adaptive parameter Z;
8: End for;
9: Output: The final optimal solution. [a0

′
, a1

′
, a2

′
, a3

′
, a4

′
, a5

′
, a6

′
].

3.3. Training and Testing

For each dataset, the LSTM network was implemented in the training set correspond-
ing with the dataset. In the process of the LSTM network, we set the number of iterations
as 100, and the input was 24 h for the air quality grade. Next, the hunter–prey optimization
algorithm was used to optimize the hyperparameters of the LSTM network. Finally, we
obtained an air pollutant grade prediction method based on the LSTM network’s structure
optimized via the hunter–prey optimization algorithm, i.e., the LSTM structure had the
best hyperparameters in all individuals.

In this experiment, we used network structures to train datasets of air quality grade to
obtain the final optimal predicted results. The network after 100 training iterations was
obtained via the training set, and the predicted results were obtained by inputting the
testing data.
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4. Experiments and Analysis

In order to verify the validity of the air pollutant grade prediction based on the LSTM
network structure optimized with the use of the hunter–prey optimization algorithm, the
actual data of three observation stations in Xi’an city were used for the experiments. The
datasets, the experimental environment, experimental results and analyses used for the
experiments are described below.

4.1. Datasets

In this paper, real-time air quality information collected at three air quality observation
stations in Xi’an city was shown as the original dataset. We obtained the experimental
dataset after grading all the data, as shown in Table 4. Dataset one: air quality data from
the Central Station in Xi’an Xin Cheng Square from 2018 to 2020; dataset two: Xi’an Cao
Tang Base air quality data; dataset three: Xi’an Gao Xin West Station air quality data.

The air quality dataset from the Xi’an Xin Cheng Center Square Station from 2018
to 2020 included 25,545 pieces of data; the Xi’an Cao Tang Base included 14,543 pieces
of data; the Xi’an Gao Xin West Station had 14,544 pieces of data. These datasets were
turned into reconstructed datasets after removing duplicates, outliers and null values. The
reconstructed datasets from the Xi’an Xin Cheng Center Square Station from 2018 to 2020
included 25,064 pieces of data; the Xi’an Cao Tang Base included 14,321 pieces of data;
the Xi’an Gao Xin West Station had 13,711 pieces of data. The quantity of data in the
three datasets are shown in Table 6.

Table 6. The quantity of data in three datasets.

Dataset Name Xin Cheng Center Square Station Cao Tang Base Gao Xin West Station

Number Dataset 1 Dataset 2 Dataset 3

Original Datasets 25,545 14,543 14,544
Reconstructed Datasets 25,064 14,321 13,711

In this paper, every 25 consecutive hours of data were considered a sample. The input
data were the data of the first 24 h in the data of 25 consecutive hours, and the data of the
last 1 h were considered the target.

In addition, dataset one for 2018 and 2019 was used as the training set and dataset one
for 2020 was used as the testing set. Both dataset two and dataset three were divided into
the training and testing sets using a ratio of 1:1.

The training set and testing set numbers divided from each reconstructed dataset are
shown in Table 7.

Table 7. The number of samples in the training set and testing set of three datasets.

Dataset
Number of Samples

Training Set Testing Set

Dataset 1 17,120 7896
Dataset 2 6976 6976
Dataset 3 6476 6476

4.2. The Experimental Environment

The number of iterations for the LSTM was set to 100. The learning rate is a tuning
parameter in back propagation that determines the step size at each iteration while moving
toward the minimum of a loss function. In this experiment, the learning rate was set to
0.02. The number of LSTM network layers, the number of LSTM units, the number of fully
connected layers, the number of fully connected units, the batch size, the value of dropouts
and the value of recurrent dropouts were random.
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4.3. The Experimental Evaluation Index

In order to evaluate the effectiveness of the air quality grade prediction model pro-
posed in this paper, we calculated the accuracy by comparing the predicted category with
the true category. The calculation of accuracy is shown in Formula (14):

accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (14)

where TN, FN, TP and FP are the true negative, false negative, true positive and false
positive, respectively.

4.4. The LSTM Network

In order to prove the efficiency of the LSTM network used in this paper, we, respec-
tively, applied the LSTM network in three datasets.

To prove the effectiveness of the LSTM network, we compared it with another two tra-
ditional network structures in three datasets. The details for the comparison of the struc-
tures for the three different networks were as follows:

BP: Included six fully connected layers;
RNN: Included three features in the hidden state and three hidden layers;
LSTM: Included three features in the hidden state and three hidden layers.
The accuracies of dataset one are shown in Table 8.

Table 8. The accuracies of LSTM network compared with traditional networks in dataset 1.

Methods PM10 PM2.5 SO2 NO2 CO O3

BP 84.3% 89.9% 72.8% 76.4% 74.9% 66.2%
RNN 84.6% 88.8% 85.5% 81.6% 83.7% 82.0%
LSTM 87.2% 90.0% 88.5% 83.2% 85.7% 83.3%

As shown in Table 9, the LSTM network structure obtained the best prediction results
for all air pollutants. Especially in the prediction of the PM10 and SO2 pollutant quality
levels, the long short-term memory network method outperformed the next-best recurrent
neural network method by nearly 3%.

Table 9. The accuracies of LSTM network compared with traditional networks in dataset 2.

Methods PM10 PM2.5 SO2 NO2 CO O3

BP 85.2% 90.8% 75.0% 82.2% 82.3% 78.3%
RNN 81.2% 87.2% 71.2% 79.3% 82.2% 74.6%
LSTM 86.2% 91.3% 83.9% 83.8% 86.0% 83.2%

The accuracies of dataset two are shown in Table 9.
As shown in Table 10, the accuracies obtained in the air quality grade prediction of six

pollutants were the best in dataset two, whose PM10, PM2.5, SO2, NO2, CO and O3 were
86.2%, 91.3%, 83.9%, 83.8%, 86.0% and 83.2%, respectively. Especially in the prediction of
the sulfur dioxide (SO2) pollutant quality level, the accuracy of the LSTM method was 9%
higher than that of the BP neural network method.

Table 10. The accuracies of LSTM network compared with traditional networks in dataset 3.

Methods PM10 PM2.5 SO2 NO2 CO O3

BP 87.2% 77.7% 84.4% 81.0% 81.0% 84.2%
RNN 84.4% 77.6% 70.3% 78.3% 72.3% 84.5%
LSTM 86.9% 85.6% 85.2% 82.9% 83.3% 85.1%
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The results of dataset three are shown in Table 10.
As shown in Table 11, the LSTM network structure obtained the best prediction results

for five kinds of air pollutants. In PM10, the LSTM achieved the second best predicted
accuracy, which was almost equal to the best one.

Table 11. The variations of fitness and corresponding network hyperparameters in dataset 1.

Iterations Fitness Network Hyperparameters

00 0.019 {1, 24, 2, 6, 128, 0.1, 0.1}
01 0.073 {1, 24, 2, 6, 128, 0.1, 0.1}
03 0.096 {1, 24, 2, 6, 128, 0.1, 0.1}
05 0.102 {1, 24, 2, 6, 128, 0.1, 0.1}
10 0.548 {2, 24, 2, 6, 128, 0.1, 0.1}
20 0.955 {3, 24, 2, 6, 128, 0.1, 0.2}
30 1.312 {3, 24, 3, 6, 128, 0.1, 0.3}
50 4.823 {3, 24, 3, 12, 128, 0.12, 0.3}
80 9.753 {3, 24, 3, 12, 128, 0.15, 0.3}

100 9.753 {3, 24, 3, 12, 128, 0.15, 0.3}

4.5. The LSTM Optimized via Hunter–Prey Optimization Algorithm

In order to prove the effectiveness of the hunter–prey optimization algorithm in
optimizing the LSTM network, we, respectively, applied the hunter–prey optimization
algorithm to process the LSTM network structure in three datasets. The bigger fitness
showed that the LSTM network structure was better.

The iteration and corresponding best fitness of dataset one are shown in Figure 5.
The fitness and corresponding network hyperparameters at each iteration are shown

in Table 11.
The iteration and corresponding fitness of dataset two are shown in Figure 6.

Information 2023, 14, x FOR PEER REVIEW 15 of 21 
 

 

4.5. The LSTM Optimized via Hunter–Prey Optimization Algorithm 
In order to prove the effectiveness of the hunter–prey optimization algorithm in 

optimizing the LSTM network, we, respectively, applied the hunter–prey optimization 
algorithm to process the LSTM network structure in three datasets. The bigger fitness 
showed that the LSTM network structure was better. 

The iteration and corresponding best fitness of dataset one are shown in Figure 5. 
The fitness and corresponding network hyperparameters at each iteration are shown 

in Table 11. 

The iteration and corresponding fitness of dataset two are shown in Figure 6. 

 
Figure 6. The iteration and corresponding fitness in dataset 2. 

The fitness and corresponding network hyperparameter at each iteration are shown 
in Table 12. 

Table 12. The variations of fitness and corresponding network hyperparameters in dataset 2. 

Iterations Fitness Network Hyperparameters 
00 0.026 {1, 24, 2, 6, 128, 0.1, 0.1} 
01 0.035 {1, 24, 2, 6, 128, 0.1, 0.1} 
03 0.059 {1, 24, 2, 6, 128, 0.1, 0.1} 
05 0.082 {1, 24, 2, 6, 128, 0.1, 0.1} 
10 0.211 {2, 24, 2, 6, 128, 0.1, 0.1} 
20 0.929 {3, 24, 2, 6, 128, 0.1, 0.1} 
30 0.929 {3, 24, 2, 6, 128, 0.1, 0.1} 
50 0.929 {3, 24, 2, 6, 128, 0.1, 0.1} 
80 8.675 {3, 24, 3, 16, 128, 0.2, 0.25} 
100 8.675 {3, 24, 3, 16, 128, 0.2, 0.25} 

The iteration and corresponding fitness of dataset three are shown in Figure 7. 

Figure 6. The iteration and corresponding fitness in dataset 2.

The fitness and corresponding network hyperparameter at each iteration are shown
in Table 12.
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Table 12. The variations of fitness and corresponding network hyperparameters in dataset 2.

Iterations Fitness Network Hyperparameters

00 0.026 {1, 24, 2, 6, 128, 0.1, 0.1}
01 0.035 {1, 24, 2, 6, 128, 0.1, 0.1}
03 0.059 {1, 24, 2, 6, 128, 0.1, 0.1}
05 0.082 {1, 24, 2, 6, 128, 0.1, 0.1}
10 0.211 {2, 24, 2, 6, 128, 0.1, 0.1}
20 0.929 {3, 24, 2, 6, 128, 0.1, 0.1}
30 0.929 {3, 24, 2, 6, 128, 0.1, 0.1}
50 0.929 {3, 24, 2, 6, 128, 0.1, 0.1}
80 8.675 {3, 24, 3, 16, 128, 0.2, 0.25}

100 8.675 {3, 24, 3, 16, 128, 0.2, 0.25}

The iteration and corresponding fitness of dataset three are shown in Figure 7.
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The fitness and corresponding network hyperparameters at each iteration are shown
in Table 13.

Table 13. The best fitness and corresponding network hyperparameters in dataset 3.

Iterations Fitness Network Hyperparameters

00 0.047 {1, 24, 2, 6, 128, 0.1, 0.1}
01 0.083 {1, 24, 2, 6, 128, 0.1, 0.1}
03 0.356 {1, 24, 2, 6, 128, 0.1, 0.1}
05 0.643 {1, 24, 2, 6, 128, 0.1, 0.1}
10 2.711 {2, 24, 2, 6, 128, 0.15, 0.2}
20 9.743 {3, 24, 3, 12, 128, 0.2, 0.2}
30 14.349 {3, 24, 3, 16, 128, 0.2, 0.35}
50 15.652 {3, 24, 3, 16, 128, 0.2, 0.3}
80 18.238 {3, 24, 3, 16, 128, 0.2, 0.35}

100 18.238 {3, 24, 3, 16, 128, 0.2, 0.35}

As shown in Figures 4–6, we focused on the changes in the optimal fitness and
corresponding iterations in detail.
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As can be seen from Tables 12–14, the best fitness always appeared in the ultimate
generation; therefore, the best network hyperparameters were in the last generation of the
HPO algorithm.

Table 14. The accuracies of the LSTM_HPO compared with LSTM and LSTM_WOA in dataset 1.

Methods PM10 PM2.5 SO2 NO2 CO O3

LSTM 87.2% 90.0% 88.5% 83.2% 85.7% 83.3%
LSTM_WOA 89.0% 91.1% 90.3% 87.0% 86.8% 86.2%
LSTM_HPO 90.4% 91.7% 92.1% 88.9% 88.3% 87.7%

Finally, the optimal number of layers of the LSTM, the number of fully connected
layers, the number of fully connected units, the dropouts and the recurrent dropouts in
dataset one were 3, 3, 12, 0.15 and 0.3, respectively. The optimal number of layers of the
LSTM, the number of fully connected layers, the number of fully connected units, the
dropouts and the recurrent dropouts in dataset two were 3, 3, 16, 0.2 and 0.25, respectively.
Additionally, the optimal number of layers of the LSTM, the number of fully connected
layers, the number of fully connected units, the dropouts and the recurrent dropouts in
dataset three were 3, 3, 16, 0.2 and 0.35, respectively.

4.6. The Proposed Method Compared with LSTM and LSTM Optimized via WOA

In this paper, the HPO algorithm was used to optimize the seven parameter dimensions
of the LSTM network: the number of layers, the number of LSTM units, the number of fully
connected layers, the number of fully connected units, the batch size, the value of dropouts
and the value of recurrent dropouts.

To prove the effectiveness of these seven parameter dimensions via HPO algorithm,
we compared the LSTM_HPO with the LSTM optimized via the whale optimization
(LATM_WOA) algorithm and the LSTM. These three LSTM network structures were
designed as follows:

LSTM: Three features in the hidden state, three hidden layers and three fully con-
nected layers;

LSTM_WOA [38,39]: The LSTM optimized via the whale optimization algorithm;
LSTM_HPO: The LSTM optimized via the hunter–prey optimization algorithm.
The results in dataset one are shown in Table 14.
As shown in Table 14, the accuracy of the LSTM_HPO was higher than that of the

LSTM and LSTM_WOA in predicting the quality grades of PM10, PM2.5, SO2, NO2, CO
and O3.

The results in dataset two are shown in Table 15.

Table 15. The accuracies of the LSTM_HPO compared with LSTM and LSTM_WOA in dataset 2.

Methods PM10 PM2.5 SO2 NO2 CO O3

LSTM 86.2% 91.3% 83.9% 83.8% 86.0% 83.2%
LSTM_WOA 89.6% 91.6% 87.0% 85.4% 87.1% 85.4%
LSTM_HPO 89.4% 92.2% 88.1% 86.9% 89.1% 86.4%

As shown in Table 15, the LSTM_HPO performed better than the other LSTM network
structures in five air pollutants in dataset two. In PM10, the LSTM_HPO obtained the
second best prediction results, which was almost equal to the best one.

The accuracies in dataset three are shown in Table 16.
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Table 16. The accuracies of the LSTM_HPO compared with LSTM and LSTM_WOA in dataset 3.

Methods PM10 PM2.5 SO2 NO2 CO O3

LSTM 86.9% 85.6% 85.2% 82.9% 83.3% 85.1%
LSTM_WOA 88.9% 89.5% 88.9% 83.2% 86.4% 86.9%
LSTM_HPO 90.1% 90.1% 89.0% 85.7% 87.3% 88.2%

As can be seen from Table 16, the LSTM_HPO achieved the best prediction results
compared with the other two network structure in dataset three.

It was apparent that the LSTM network optimized via the hunter–prey optimization
algorithm derived from the proposed method on the three datasets could perform better
than the LSTM network structures for most air pollutants.

5. Discussion

In this article, the lead time in prediction refers to the duration between the execute
prediction and the occurrence of the actual result, which is of great significance for the
practical application of air quality prediction. The lead time can provide more sufficient
time for the government and the public to conduct relevant countermeasures; thus, the
lead time in prediction is worth discussing. We verified the influence of different lead times
in prediction in three datasets. The results for 6 h are shown in Tables 17–19.

Table 17. The accuracies of the LSTM_HPO for 6 h in dataset 1.

Lead Time PM10 PM2.5 SO2 NO2 CO O3

First hour 90.4% 91.7% 92.1% 88.9% 88.3% 87.7%
Second hour 87.3% 89.1% 90.5% 86.3% 86.3% 86.6%
Third hour 84.7% 86.5% 88.2% 83.6% 83.2% 85.1%

Fourth hour 83.7% 84.3% 86.3% 79.1% 80.6% 84.2%
Fifth hour 81.9% 82.0% 83.9% 76.4% 75.0% 82.8%
Sixth hour 77.5% 80.1% 81.5% 73.8% 71.4% 81.3%

Table 18. The accuracies of the LSTM_HPO for 6 h in dataset 2.

Lead Time PM10 PM2.5 SO2 NO2 CO O3

First hour 89.4% 92.2% 88.1% 86.9% 89.1% 86.4%
Second hour 86.3% 90.4% 85.9% 84.2% 86.4% 84.7%
Third hour 83.7% 88.5% 83.2% 81.3% 83.5% 83.1%

Fourth hour 79.7% 86.7% 81.6% 78.6% 80.6% 80.8%
Fifth hour 76.9% 82.0% 78.4% 74.2% 77.4% 78.9%
Sixth hour 72.5% 79.5% 74.9% 71.0% 73.8% 76.3%

Table 19. The accuracies of the LSTM_HPO for 6 h in dataset 3.

Lead Time PM10 PM2.5 SO2 NO2 CO O3

First hour 90.1% 90.1% 89.0% 85.7% 87.3% 88.2%
Second hour 86.3% 88.3% 87.6% 82.2% 85.1% 86.7%
Third hour 83.8% 85.7% 85.6% 79.3% 82.5% 84.5%

Fourth hour 80.9% 82.4% 83.2% 76.9% 78.6% 82.3%
Fifth hour 77.5% 79.5% 80.8% 72.6% 73.4% 80.1%
Sixth hour 74.8% 77.4% 78.1% 69.7% 68.6% 77.9%

As we can see, it is apparent that the proposed method used on the three datasets could
provide benefits in real-life applications. Additionally, a higher lead time led to a higher
number of predicted faults, resulting in this phenomenon looking like weather prediction.
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6. Conclusions

In this paper, we proposed an air pollutant quality grade prediction method based
on the hyperparameter-optimization-inspired long short-term memory (LSTM) network.
Firstly, the air quality data were transformed into grade data, which meant that the air
quality data were partitioned into grades, i.e., we turned the fitting problem into a classifi-
cation task. Secondly, we chose LSTM to address the task of obtaining an air quality grade
prediction. Furthermore, the LSTM network hyperparameters optimized through the use of
the hunter–prey optimization algorithm obtained better results. Compared with the other
air quality grade prediction methods, our proposed method showed effective performance
for the air quality grade prediction task in three datasets. Our method especially improved
the accuracy by 4.1%, 4% and 3.8%, when predicting the air quality grade of SO2, CO and
O3, respectively.

In future experiments, future studies can improve the accuracy of the results by
increasing the amount of data and optimizing the performance of the model in terms of
analyzing the influencing factors.

Due to the limitation of the detection range, differences in the level of urban develop-
ment and the diversity of climatic conditions, our prediction results may not be applicable
to air quality changes in other regions. Therefore, it is recommended to establish multiple
air quality monitoring stations to monitor air quality and to lay a solid foundation for
perfect air quality level predictions.
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Nomenclature

Symbol Property Units
PM10 Particulate matter smaller than 10 microns µg/m3

PM2.5 Particulate matter smaller than 2.5 microns µg/m3

SO2 Sulfur dioxide µg/m3

NO2 Nitrogen dioxide µg/m3

CO Carbon monoxide µg/m3

O3 Ozone µg/m3

BP Back-propagation network -
CNN Convolutional neural network -
LSTM Long short-term memory network -
HPO Hunter–prey optimization algorithm -
WOA Whale optimization algorithm -
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