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Abstract: The field of automated machine learning (AutoML) has gained significant attention in recent
years due to its ability to automate the process of building and optimizing machine learning models.
However, the increasing amount of big data being generated has presented new challenges for
AutoML systems in terms of big data management. In this paper, we introduce Fabolas and learning
curve extrapolation as two methods for accelerating hyperparameter optimization. Four methods
for quickening training were presented including Bag of Little Bootstraps, k-means clustering for
Support Vector Machines, subsample size selection for gradient descent, and subsampling for logistic
regression. Additionally, we also discuss the use of Markov Chain Monte Carlo (MCMC) methods and
other stochastic optimization techniques to improve the efficiency of AutoML systems in managing
big data. These methods enhance various facets of the training process, making it feasible to combine
them in diverse ways to gain further speedups. We review several combinations that have potential
and provide a comprehensive understanding of the current state of AutoML and its potential for
managing big data in various industries. Furthermore, we also mention the importance of parallel
computing and distributed systems to improve the scalability of the AutoML systems while working
with big data.

Keywords: big data management; stochastic data engineering; automated machine learning

1. Introduction

Automated Machine Learning (AutoML) can be applied to Big Data processing, man-
agement, and systems in several ways. One way is by using AutoML to automatically
optimize the performance of machine learning models on large datasets. This can include
selecting the most appropriate algorithm, tuning hyperparameters, and selecting features.
Another way is to use AutoML to automate the process of building and deploying ma-
chine learning models in a big data environment. For example, AutoML can be used to
automatically scale and distribute models across a cluster of machines or to automatically
select the best storage and processing options for a given dataset. Additionally, AutoML
can also be used for automating feature engineering on big data. This can help to reduce
the time and effort required to prepare large datasets for machine learning. Automated
Machine Learning (AutoML) refers to the process of automating the entire machine learning
pipeline, from data preprocessing to model selection, training, and deployment. There are
several techniques used in AutoML to achieve this automation. Some of the most common
techniques include:

• Hyperparameter tuning: This involves automatically searching for the best combina-
tion of hyperparameters for a given machine-learning model. This can be done using
techniques such as grid search, random search, or Bayesian optimization.

• Feature selection and engineering: AutoML can be used to automatically select the
most relevant features for a given dataset and to perform feature engineering tasks
such as scaling, normalization, and dimensionality reduction.
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• Model selection: AutoML can be used to automatically select the best machine learning
model for a given dataset. This can be done by comparing the performance of different
models on the dataset, or by using techniques such as ensembling or stacking to
combine the predictions of multiple models.

• Neural Architecture Search (NAS): This is a subfield of AutoML that aims to automate
the design of neural network architectures. The goal is to find the best neural network
architecture for a given task and dataset [1–4].

• Automated Deployment: AutoML can be used to automate the process of deploying
machine learning models into production. This can include tasks such as model
versioning, monitoring, and scaling.

Overall, the goal of AutoML is to make the process of building and deploying machine
learning models faster, easier, and more accessible to non-experts by automating many of
the time-consuming and tedious tasks involved in the machine learning pipeline.

Big Data processing has grown in significance over the previous few years across a
wide range of industries. For machine learning applications, this growth in data volume
presents new challenges. In most cases, the size of the training dataset has a polynomial
effect on how long learners require to train Dtrain, i.e., O(|Dtrain|α), α ≥ 1. Always utilizing
the complete dataset rapidly becomes impractical since cross-validation and hyperparame-
ter search iterations require that training be repeated. This paper provides an overview of
methods for addressing this issue with an emphasis on classification challenges.

Finding a hypothesis may often be divided into three stages:

1. Model selection: It is necessary to first use a model to identify the class of hypothesis
spaces from which the final hypothesis will be selected. The model of choice is typi-
cally embedded implicitly in the class of hypothesis spaces of a learner L. Automating
this procedure is challenging. The model is chosen, in practice, by experts who have a
thorough grasp of the problem at hand.

2. Hyperparameter search: Optimizing a vector λ in the hyperparameter space ΛL of
the learner L representing a hypothesis spaceHλ. A naïve approach to do this is to
systematically try configurations using a grid search or a random search over ΛL. To
evaluate the quality of a given λ, L is usually trained on a training dataset Dtrain using
λ. This yields a hypothesis ĥλ ∈ Hλ that is evaluated using a validation dataset Dvalid.
The goal of hyperparameter optimization is to minimize the loss l(λ) of ĥλ on Dvalid,
i.e., to find an approximation:

[λ̂ = λ∗ := argminλ l(λ)] (1)

3. Training or parameter search: Let w be a vector in the parameter space WHλ
, de-

scribing a hypothesis hλ,w ∈ Hλ given a hyperparameter configuration λ. The
goal of parameter search is to find an approximation ĥλ of the hypothesis h∗λ :=
arg minhλ,w

`(Dtrain|hλ,w), with `(Dtrain|hλ,w) being the empirical loss of hλ,w on a
given training dataset Dtrain according to some loss function `. Depending on the
learner L, various kinds of optimization methods are used to find this minimum, e.g.,
Bayesian optimization, quadratic programming or, if ∇we(Dtrain|hλ,w) is computable,
gradient descent. The quality l of ĥλ is measured by the loss on a validation or test
dataset, i.e.,

[l(λ) = `(Dvalid | ĥλ)] (2)

This article is organized in accordance that the learner L is provided. The methods
for accelerating the hyperparameter search are described in Section 3. Furthermore, in
Section 4, it is explained how to enhance the way current learners are trained. In Section 5
the discussion and contribution of this work compared to the state-of-the-art methods
take place and finally, in Section 6 the Conclusions and Future Directions are presented.
Ultimately, the majority of the methods presented in this paper enhance separate steps in
the hypothesis-seeking process, enabling their effective combination.
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2. Related Work

In this section, we have provided an overview of related work in various aspects
of AutoML, such as feature engineering, meta-learning, neural architecture search, and
combined model selection and hyperparameter optimization. We have also discussed the
CASH problem, Bayesian optimization, and model-free techniques for hyperparameter
optimization. Furthermore, we have presented recent studies and surveys in TinyML, Au-
toML for anomaly detection, and medical applications, as well as various hyperparameter
optimization methods and studies.

2.1. Automated Machine Learning in Industry

Machine learning has become more widely applied in several industries in recent years.
Businesses may be more proactive and boost productivity by using industrial applications
like defect detection [5] and predictive maintenance [6,7]. Patient data have aided in the
treatment of complex diseases like multiple sclerosis and helped doctors choose the most
suitable drug in the healthcare industry, to reference [8]. In the insurance and banking
sectors, it is feasible to forecast the risks involved with loan applications [9] and claims
processing [10,11], allowing for the automatic identification of fraudulent behaviours.
Last but not least, improvements in sales and revenue forecasts support supply chain
optimization, according to [12].

It takes time and is prone to errors to manually build these actionable machine learn-
ing models that may have economic value. Instead, the performance of several models
should be assessed while considering diverse methods, hyperparameter tuning, and feature
selection into consideration. An ideal option for automation is this incredibly iterative
process. The data scientist may now focus on more creative tasks thanks to AutoML, which
frees them up from this tedious task and increases the value of the business. By using fast
prototyping, new business cases may be found, assessed, and validated.

In the real world, AutoML could provide many insights. Early feedback on the data’s
appropriateness for anticipating the given target may come by running a variety of models
on the input data. There may be an indication of insufficient predictive power in the data
if there are several models built using a wide range of methodologies and they perform
similarly to the baseline. In theory, however, reliable models will be produced, giving the
data scientist the choice of using the best model that was generated or building an ensemble
of several models [13]. The optimization of the feature set via AutoML has a by-product,
too: A feature relevance estimate based on the characteristics used as model inputs may be
produced via statistical analysis of model quality.

2.2. Feature Engineering and Selection

Researchers have been driven to automate various steps in the machine learning
pipeline as a result of the problem of manual hyperparameter tuning [14], including feature
engineering [15], meta-learning [16], architecture search [17], and full Combined Model
Selection and Hyperparameter optimization [18]. We examine these topics below.

Feature engineering: The research discusses the challenges associated with represen-
tation learning, feature preprocessing, and selecting the best discriminating features for
a given classification or regression task. Gaudel and Sebag [19] approach feature engi-
neering as a single-player game and train a reinforcement learning-based agent to select
the most beneficial traits. To do this, they first model the feature selection problem as a
Markov Decision Process (MDP). They also imply a connection between a reward and the
eventual status generalization error. The agent develops a tactic that reduces the overall
generalization error. Overall, Gaudel’s and Sebag’s approaches to feature engineering
using reinforcement learning show promise in improving the performance of classification
and regression models by selecting the most informative features.

To find the most discriminating features, Explorekit [20] not only selects the features
repeatedly but also creates new candidate features. Katz et al. create unary features by
using a single feature with normalization and discrimination operations. They not only
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combine two or more features to create new candidates, but they also use meta-features
collected from the datasets and candidates to train a feature rank estimator. The feature
with the highest rank that improves classification accuracy beyond a certain threshold is
added to the selected feature set in each cycle.

The Learning Feature Engineering (LFE) approach is a technique aimed at reducing
the computational cost associated with iterative feature selection procedures by learning
from previous trials the effectiveness of different modifications. The primary objective of
the LFE approach is to derive a discriminant feature representation that can improve the
performance of classification or regression models. Learning Feature Engineering (LFE) [21]
learns from previous trials the efficacy of a modification in order to minimize the computing
cost of iterative feature selection procedures. A discriminant feature representation is
calculated after mapping the original feature space with the best transformation.

An automated feature selection method based on regression is called AutoLearn [22].
Filtering the initial features and eliminating those that offer little information gain is the
first step of the recommended method. Then feature pairs are filtered based on distance
correlation to remove dependent pairings. The new features are developed based on the
remaining pairs using ridge regression. The best characteristics are those that provide the
most stability and knowledge gain, according to [23]. Gene expression data is one of the
datasets with which AutoLearn has been used.

2.3. Meta-Learning

By employing metadata about the problem at hand, such as the dataset and the avail-
able algorithms and their settings, meta-learning techniques try to improve the performance
of an AutoML system. The field is often applied to itself by employing machine learning
techniques to acquire and analyze this metainformation. The performance statistics of
straightforward algorithms frequently make up the metadata cited in [24], which is the
metadata connected with datasets.

The goal of prediction of the learning curve is to develop a model that forecasts
how much a learner’s performance will improve with further training time [25]. Another
approach to this idea is to make an attempt to predict how long an algorithm [26] will take
to execute. It has occasionally been helpful to predict a ranking of the available algorithms
rather than forecasting absolute performance outcomes [27].

In the context of neural networks, meta-learners try to improve the optimizer of a
deep or shallow (convolutional) neural network (CNN) by automatically adjusting hyper-
parameters to reach a minimum as rapidly as is practical. The best hyperparameters for
optimizing neural networks are found in [28], utilizing gradients and a Long Short-Term
Memory network [29,30]. Similar to how Chen et al. [31] train an optimizer for fundamental
synthetic functions like Gaussian Processes. They demonstrate how the optimizer may
be used to solve a wide range of black-box problems. For instance, without accessing the
gradients of the loss function relative to the hyperparameters, the trained optimizer is used
to change the hyperparameters of a Support Vector Machine [32].

2.4. Neural Architecture Search (NAS)

The design search literature investigates methods for robotically choosing neural
network architectures without human involvement. Neural Architecture Search by Hill-
climbing (NASH) is recommended by Elsken et al. [33] utilizing the local search. The
method starts with a high-performance convolutional architecture that has been trained, if
possible (parent). The original parent network is then randomly subjected to two types of
network morphisms (transformations) in order to produce children with either a deeper
or broader design. The young architects are instructed, and the one who performs best
moves on to the next level. The process repeats until the validation’s accuracy reaches its
maximum. Real et al. [34] indicate an evolutionary architecture search based on pairwise
comparisons within the population. The algorithm starts with an initial population as
parents, and each network goes through random mutations such as adding and removing
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convolutional layers and skipping connections to produce offspring. The winning parent
and offspring then perform a pairwise comparison, with the losing parent and offspring
being removed.

He et al. [35] search automatically for compressing a given CNN for mobile and
embedded applications, in contrast to evolutionary approaches, which ask for bigger and
more exact structures. Their AutoML for Model Compression (AMC) method directs a
reinforcement learning agent to evaluate each layer’s sparsity ratio and compress each layer
one at a time. The issue of combined model selection and hyperparameter optimization,
which can be resolved by combining the aforementioned building pieces, is the main focus
of this work. Ultimately, a thorough solution determines the best machine-learning pipeline
for unprocessed (raw) feature vectors in the shortest time possible for a fixed quantity of
computer resources. This has led to a number of Automated Machine Learning (AutoML)
contests since 2015 [36]. To obtain excellent performance on unseen test data, a complete
pipeline includes data cleaning, feature engineering (selection and construction), model
selection, hyperparameter optimization, and finally the building of an ensemble of the best-
trained models. A challenging challenge is optimizing the entire machine learning pipeline,
which is not necessarily differentiable end-to-end, and many methods and procedures have
been investigated.

2.5. The CASH Problem

Theorem 1 (CASH Problem). Given a machine learning model f and a dataset D, find the set
of hyperparameters H that minimizes the expected loss L( fH(D)), where L is a loss function that
measures the performance of the model on the dataset. Formally, we can write:

H∗ = arg min
H

E[L( fH(D))] (3)

where H∗ is the optimal set of hyperparameters, and the expectation is taken over all possible datasets
that could be generated from the underlying data distribution.

The CASH problem is inherently difficult due to several factors. Firstly, the space
of possible hyperparameters H for a machine learning model can be extremely large and
complex, leading to a combinatorial explosion in the number of possible configurations
to evaluate. Secondly, the optimal hyperparameters can be highly dependent on the
specific dataset D and the task at hand, making it difficult to find a “one-size-fits-all” set
of hyperparameters. In addition, evaluating the loss function L can be computationally
expensive, especially when dealing with large and complex models or datasets. This can
limit the number of possible hyperparameter configurations that can be evaluated, making
it difficult to exhaustively search the space of possible hyperparameters.

2.6. Optimization Techniques

The most noteworthy example of the numerous techniques for optimizing hyperpa-
rameters is Bayesian optimization [37], which is a crucial step towards resolving the CASH
problem as a whole. Building a model of projected loss and variance for each input is
the goal. The model (or current belief) is updated using posteriori data following each
optimization step (hence the name Bayesian). A defined acquisition function trades off
locations with low predicted loss (exploitation) with those with significant variance to
decide where to sample the next real loss (exploration). Although Random Forests have
been used to model the loss surface of the hyperparameters as a Gaussian distribution in Se-
quential Model-based optimization for general Algorithm Configuration (SMAC) [38] and
the Tree-structured Parzen Estimator [39], Gaussian Processes are typically the preferred
model in Bayesian optimization.

Model-free techniques include Successive Halving [40], developed on Hyperband [14]
exploits the progress of real-time optimization to eliminate a collection of competing
hyperparameter configurations throughout the course of a whole optimization run, maybe
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with several restarts. Evolutionary strategies, which also permit perturbations of the
individual configurations during training [41], are a modest modification of this. Multiple
iterations of the optimizer may be unrolled in the particular situation when both the
optimize and the optimizer are differentiable, and an update for the hyperparameters can
be calculated using gradient descent and backpropagation [42].

2.7. Tiny Machine Learning

Additionally, there has been a growing interest in the field of Tiny Machine Learn-
ing (TinyML), which focuses on implementing machine learning algorithms on resource-
constrained devices such as IoT sensors and edge devices. In our previous work, we
proposed an intelligent microprocessor integrating TinyML in Smart Hotels for rapid ac-
cident prevention [43]. Moreover, we have conducted a comprehensive survey on the
state-of-the-art techniques and challenges in the field of Automated Machine Learning
for TinyML [44]. Our survey provides an overview of the various approaches used for
model compression, acceleration, and quantization and their trade-offs. It also highlights
the challenges and future research directions in this field.

2.8. AutoML

Overall, AutoML is an active area of research, aimed at automating the process
of model selection, hyperparameter optimization, and feature engineering. Nagarajah
and Poravi [45] provided a comprehensive review of AutoML systems and highlighted
their advantages and limitations. Bahri et al. [46] presented a state-of-the-art review of
AutoML with a focus on anomaly detection, challenges, and research directions. Reme-
seiro and Bolon-Canedo [47] reviewed feature selection methods in medical applications.
Isabona et al. [48] proposed a machine learning-based boosted regression ensemble com-
bined with hyperparameter tuning for optimal adaptive learning. Guo et al. [49] presented
a federated hyperparameter optimization approach for multi-institutional medical image
segmentation. Li et al. [50] proposed Hyper-Tune, an efficient hyperparameter tuning
framework. Passos and Mishra [51] provided a tutorial on automatic hyperparameter
tuning of deep spectral modeling for regression and classification tasks. Yu and Zhu [52]
reviewed hyperparameter optimization algorithms and their applications. Bischl et al. [53]
provided an overview of the foundations, algorithms, best practices, and open challenges of
hyperparameter optimization. Sipper [54] conducted a large-scale study of hyperparameter
tuning for machine learning algorithms. Giotopoulos et al. [55] presented a neuro-fuzzy em-
ployee ranking system in the public sector that incorporates machine learning techniques.

Although each of the preceding works has a lot to contribute to the field, they do
not incorporate many different parameters or methods as we propose here. Therefore,
the contribution of this work is effective hyperparameter optimization and training using
various datasets, methods, and sampling schemes for accelerating training in large datasets.

3. Hyperparameter Optimization

Finding a global minimum of l(λ) is the aim of hyperparameter optimization, as stated
in the introduction. In most cases, analytical techniques like gradient descent cannot be
used since l(λ) is an unknown quantity. The only method to determine the value of l(λ)
is to assess it on each individual configuration (λ), which is expensive. There are several
approaches to cutting the overall cost of those assessments:

1. Number T of evaluations of l: During optimization multiple hyperparameter con-
figurations λ1, . . . , λT will be evaluated using l. T is usually fixed when using a grid
search or a random search. After evaluating T configurations, the best one is chosen.
Those naïve approaches assume that l(λ) is independent of l(λ′) for all pairs λ 6= λ′.
We will see that this strong assumption of independence is not necessarily true which
in turn allows us to reduce T.
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2. Training dataset size S: The performance of a given configuration l(λ) is computed
by training the learner on Dtrain which is expensive for big datasets. By training on S
instead of |Dtrain| datapoints the evaluation can be sped up.

3. Number of training iterations E: Training is frequently an iterative process, e.g.,
gradient descent, depending on the learner. The training phase of hyperparameter
optimization might end before convergence.

3.1. FABOLAS

The first approach we will discuss is called Fabolas (Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets) [56]. It can be applied to any
learner L and is based upon two main ideas:

1. The validation loss l is modeled as a Gaussian process (GP) f based on the assumption
that two configurations λ and λ′ will perform similarly if they are similar according
to some kernel k(λ, λ′). The Gaussian process f is used as a surrogate to estimate the
expected value and variance of l given λ. Using Bayesian optimization l will be sam-
pled at promising positions to iteratively improve f . Hyperparameter configurations
that are expected to perform worse than the current optimum will not be sampled.
This effectively reduces T.

2. The optimizer is given an additional degree of freedom by modeling the training
dataset size S as an additional hyperparameter of f . When trained on the whole
dataset, this enables projecting the value of l while only probing smaller sections,
thereby reducing the size of S.

We will now describe how those two ideas can be applied.

3.1.1. Gaussian Processes

A Gaussian process is a family of random variables (RVs) (Xθ)θ∈Θ, s. t. every finite subset
of them follows a multivariate normal distribution. More intuitively it can be understood
as a probability distribution over functions f : Θ→ R where Xθ =̂ f (θ). Prior knowledge
about the likelihood of each f is described by a prior mean function µ0(θ) = E[ f (θ)] and
a positive-definite kernel k(θ, θ′) = Cov( f (θ), f (θ′)). The covariance kernel models how
informative it is to know f (θ) to determine f (θ′).

Let Dn = {(θi, yi)}n
i=1 denote a set of observations. Those observations can be used to

update the means and variances of the RVs via GP regression. This collapses the space of
possible functions f to those functions that align with Dn (see Figure 1):

m := (µ0(θ1), . . . , µ0(θn))
T

k(θ) := (k(θ1, θ), . . . , k(θn, θ))T

K ∈ Rn×n, Kij := k(θi, θj)

E[ f (θ) | Dn] := µn(θ) = µ0(θ) + k(θ)TK−1(y−m) (4)

Cov( f (θ), f (θ′) | Dn) := k(θ, θ′)− k(θ)TK−1k(θ′) (5)

Figure 1. (Left) Comparison between different covariance kernels. (Middle) Randomly sampled
functions f using those kernels. (Right) Random samples after two f values were observed and
incorporated into the model via GP regression.
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Equation (4) can be extended to include an additional term that accounts for the
uncertainty in the predictions, resulting in an alternative equation as in Equation (6).

E[ f (θ), |,Dn] := µn(θ) = µ0(θ) + k(θ)TK−1(y−m) + k(θ)TK−1(y∗ −m∗) (6)

where k∗(θ) is a vector of function evaluations at the point θ using the same kernel function
as before, K is the kernel matrix of the test points, y is the corresponding vector of function
values at the test points, and m∗ is the corresponding vector of prior means at the test points.

Another alternative equation that can be used is the predictive distribution of the
function at a new point θ given the observed data:

p( f (θ), |,Dn, θ) = N (µn(θ), σ2
n(θ)) (7)

where N (µn(θ), σ2
n(θ)) is a Gaussian distribution with mean µn(θ) and variance σ2

n(θ)
given by Equation (8).

µn(θ) = k(θ)TK−1yσ2
n(θ) = k(θ, θ)− k(θ)TK−1k(θ) (8)

The difference between Equations (6) and (7) is that the latter gives the probability
distribution of the function value at a new point, given the data, rather than just the
expected value. It is worth noting that when the kernel matrix is not invertible, one can use
techniques such as regularization or a more expressive kernel function. Additionally, the
above equations assume that the noise in the observations is Gaussian distributed, which is
not always the case in practice.

Equation (5) can be also extended to calculate the joint posterior distribution of the
function at multiple points. The joint posterior distribution of the function at a set of points
Θ = θ1, θ2, . . . , θm is a multivariate Gaussian distribution with mean vector calculated as in
Equation (9) and covariance matrix calculated as in Equation (10).

E[ f (Θ), |,Dn] = µn(Θ) = µ0(Θ) + K(Θ, θ1)
TK−1(y−m) (9)

Cov( f (Θ), f (Θ), |,Dn) = K(Θ, Θ)− K(Θ, θ1)
TK−1K(θ1, Θ) (10)

where K(Θ, θ1) and K(θ1, Θ) are sub-matrices of the kernel matrix K with elements k(θi, θj)
and k(θi, θj) respectively, and K(Θ, Θ) is a sub-matrix of the kernel matrix with elements
k(θi, θj).

Given this mean vector and covariance matrix, one can calculate any desired statistics
of the function such as the probability of function values lying within a certain range
or the expected value of a function at a particular point. It is also worth mentioning
that the above equations assume that the kernel matrix is invertible, which is not always
the case in practice, for instance when there is a linear dependence among the input
points. To overcome this issue, one can use techniques like regularization, to make the
matrix invertible.

Fabolas works by modeling the loss function l as a Gaussian process f ∼ GP(m, k)
with parameter set Θ := Λ× [0, 1] where µ0(λ, s) = E[ f (λ, s)] = E[l(λ) | training size s].
The product kernel that is being used in this case is a combination of two different kernel
functions, one for the hyperparameters and one for the training set sizes. The kernel
function for the hyperparameters is kMATÉRN5(dM(λ, λ′)), where dM is a distance metric in
the hyperparameter space and kMATÉRN5 is the Matérn 5/2 kernel function. The Matérn
5/2 kernel is a widely used kernel function in Gaussian process regression, it is a member
of the Matérn family of kernels and it is characterized by a smoothness parameter and a
length scale parameter. It allows the model to capture the smoothness of the underlying
function in the hyperparameter space while also allowing for some flexibility. To model the
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covariances between different combinations of hyperparameters and training set sizes, the
following product kernel is used:

k((λ, s), (λ′, s′)) := kMATÉRN5(dM(λ, λ′)) · klin(s, s′) (11)

Here kMATÉRN5 denotes the stationary Matérn kernel (ν = 5/2) with dM being the
Mahalanobis distance between the two compared hyperparameter configurations. klin
essentially is a simple linear kernel modeling the assumption that l monotonically decreases
when s is increased. This product kernel allows the model to capture the interactions
between the different dimensions of the parameter space (hyperparameters and training
set sizes) while also preserving the ability to model the individual dimensions separately.
The Matérn 5/2 kernel is used to model the smoothness of the underlying function in the
hyperparameter space and the linear kernel is used to model the relationship between the
training set sizes.

Equation (11) can be further extended by adding more kernel functions and combining
them in different ways to better model the underlying function and its interactions in the
parameter space. One alternative equation could be Equation (12).

k((λ, s), (λ′, s′)) := kMATÉRN5(dM(λ, λ′))

·klin(s, s′) + kRATIONALQUADRATIC(dR(λ, λ′))

·kPeriodic(s, s′)

(12)

The Equation (12) is using a combination of Matérn kernel, linear kernel, Rational
Quadratic kernel, and a periodic kernel. The Matérn kernel captures the smoothness and
the Rational Quadratic kernel allows for a more flexible model by allowing for different
variances in different regions of the input space. The linear kernel models the linear
relationship between the training set sizes, and the periodic kernel captures the periodicity
of the underlying function in the training set size dimension. Another alternative extension
could be Equation (13).

k((λ, s), (λ′, s′)) := kSE(dE(λ, λ′)) · kRBF(s, s′) (13)

The Equation (13) is using a combination of Squared Exponential kernel and Radial
Basis Function kernel. The SE kernel is a popular choice for GP models because it’s infinitely
differentiable, and it’s able to model smooth functions. The RBF kernel is a versatile kernel
that can capture a wide range of behaviors, it is defined as the exponentiation of the
negative squared distance between two inputs. It is worth noting that the choice of kernel
functions and their combination depends on the specific problem and assumptions made
about the underlying function, the use of appropriate kernel functions and the combination
of them can improve the performance of the model. We will now give an intuition for this
choice of kernel and refer to Klein et al. [56] for the details. The Mahalanobis distance dM
is used instead of the Euclidean distance because the hyperparameters in a configuration
typically use very different scales and are in some cases also correlated.

Based on the Mahalanobis distance between two configurations λ, λ′ the MATÉRN5
kernel is used to compute a covariance. The class of Matérn kernels interpolates between
the Gaussian (SQ-EXP) and the exponential (MATÉRN1) kernel (see Figure 1). Because the
exponential kernel drops off quickly, configurations quickly become uncorrelated which
causes noisy samples. The Gaussian kernel drops off less quickly causing smoother samples.
Fabolas uses MATÉRN5 as it empirically fits the smoothness of typical loss functions l quite
well. Please refer to Schön et al. [57] for an explanation of why this is the case.

The product kernel of Equation 11 can be extended by incorporating the Mahalanobis
distance, (dM) in the kernel functions. Hence, it can be written as in Equation (14).

k((λ, s), (λ′, s′)) := kSE-MAHAL(dM(λ, λ′)) · kRBF−Mahal(s, s′) (14)
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where the Squared Exponential kernel is defined as in Equation (15).

kSE-MAHAL(dM(λ, λ′)) = exp
(
−1

2
dM(λ, λ′)2

)
(15)

And the Radial Basis Function kernel is defined as in Equation (16).

kRBF−Mahal(s, s′) = exp
(
−1

2
dM(s, s′)2

)
(16)

The Equation (16) is using a combination of Squared Exponential kernel and Radial
Basis Function kernel where both of them are based on the Mahalanobis distance. The
Mahalanobis distance is a measure of distance between two points in a multivariate space,
it’s particularly useful when the data has correlations between features. An alternative
equation could be as in Equation (17).

k((λ, s), (λ′, s′)) := kMATÉRN1-MAHAL(dM(λ, λ′)) · kPeriodic−Mahal(s, s′) (17)

where the Matérn 1/2 kernel is defined as in Equation (18).

kMATÉRN1-MAHAL(dM(λ, λ′)) =
1
2
(1 +

√
3dM(λ, λ′))exp

(
−
√

3dM(λ, λ′)
)

(18)

And the Periodic kernel is defined as in Equation (19)

kPeriodic−Mahal(s, s′) = exp
(
−2 sin2

(
πdM(s, s′)

p

))
(19)

The Equation (19) is using a combination of Matérn 1/2 kernel, and Periodic kernel
where both of which are based on the Mahalanobis distance. The Matérn 1/2 kernel is a
member of the Matérn family of kernels and it’s characterized by a smoothness parameter,
it allows for modeling functions with less smoothness than the Matérn 5/2 kernel, also the
periodic kernel captures the periodicity of the underlying function in the training set size
dimension based on the Mahalanobis distance.

3.1.2. Bayesian Optimization

To find arg minλ l(λ) the bias and variance of f have to be reduced by probing l at
promising positions. This is called Bayesian optimization. The estimated minimum after
n samples are described by arg minλ µn(λ, s = 1), i.e., the configuration with the smallest
predicted error on the full test dataset. To reduce the number of samples required until this
minimum converges, an acquisition function is used. Its role is to trade-off exploration vs.
exploitation of l by describing the expected utility of probing (λn+1, sn+1) given a set of
previous samples Dn. Fabolas uses an aquisition function that rates configurations by their
information gain per computation time:

aF(λ, s) :=
1

c(λ, s)
Ey
[
p(y | λ, s,Dn) ·KLλ̂(pmin(λ̂ | Dn ∪ {(λ, s, y)}) ‖ u(λ̂))

]
(20)

pmin(λ | D) := p(λ ∈ arg min
λ′

f (λ′, s = 1) | D)

Based on the Kullback-Leibler (KL) of Equation (20), the promising position according
to aF is as shown in Figure 2. KL divergence, also known as relative entropy, is a measure
of the difference between two probability distributions. It measures how much information
is lost when approximating one distribution with another.
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Figure 2. Promising position, according to aF.

Equation (20) is using the expected value of the probability of observing the loss value
y at configuration (λ, s) given the previous samples Dn and subtracting from it a term
that represents the variance of the probability of observing the loss value y. This term is
multiplied by a trade-off parameter β. This acquisition function is trying to balance the
exploration and exploitation by emphasizing the configurations that have low variance in
their predicted loss value. An alternative representation could be as in Equation (21).

aF(λ, s) :=
1

c(λ, s)
Ey
[
(p(y, |, λ, s,Dn))2 ·KLλ̂(pmin(λ̂, |,Dn ∪ (λ, s, y)), |, u(λ̂))

]
(21)

Equation (21) is using the square of the probability of observing the loss value y at
configuration (λ, s) given the previous samples Dn and multiplying it with the KL diver-
gence term. This acquisition function is trying to balance the exploration and exploitation
by emphasizing the configurations that have low loss values and high information gain.
An alternative representation could be as in Equation (22).

aF(λ, s) :=
1

c(λ, s)
Ey

[
(p(y, |, λ, s,Dn))

2 ·UCB(λ, s)
]

(22)

where UCB(λ, s) is the Upper Confidence Bound of the expected loss value at configuration
(λ, s). This acquisition function is trying to balance the exploration and exploitation by
emphasizing the configurations that have low loss values and high upper bound of expected
loss values. This can also be expressed as in Equation (23).

aF(λ, s) :=
1

c(λ, s)

[
Ey[p(y, |, λ, s,Dn)]− β · Entropyy[p(y, |, λ, s,Dn)]

]
(23)

where Entropyy[p(y, |, λ, s,Dn)] is the entropy of the probability of observing the loss
value y at configuration (λ, s) given the previous samples Dn. This equation is using
the expected value of the probability of observing the loss value y at configuration (λ, s)
given the previous samples Dn and subtracting from it a term that represents the entropy
of the probability of observing the loss value y. This term is multiplied by a trade-off
parameter β. This acquisition function is trying to balance the exploration and exploitation
by emphasizing the configurations that have low entropy in their predicted loss value.

Solving for Ey[p(y, |, λ, s,Dn)] in the acquisition function of Equation (21) requires
knowledge of the underlying probability distribution of the loss value y given the con-
figuration (λ, s) and the previous samples Dn. Depending on the specific problem and
assumptions made about the underlying function, different probability distributions can
be used. An approximation of Ey[p(y, |, λ, s,Dn)] could be as in Equation (24).

Ey[p(y, |, λ, s,Dn)] = Ey

[
N(y, |, µn(λ, s), σ2

n(λ, s))
]

(24)

where N(y, |, µn(λ, s), σ2
n(λ, s)) is the normal distribution with mean µn(λ, s) and variance

σ2
n(λ, s). This equation assumes that the loss value y follows a normal distribution given
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the configuration (λ, s) and the previous samples Dn. Another approximation could be as
in Equation (25).

Ey[p(y, |, λ, s,Dn)] = Ey[U(y, |, an(λ, s), bn(λ, s))] (25)

where U(y, |, an(λ, s), bn(λ, s)) is the uniform distribution with lower bound an(λ, s) and
upper bound bn(λ, s). This equation assumes that the loss value y follows a uniform
distribution given the configuration (λ, s) and the previous samples Dn.

Since it is infeasible to compute aF numerically, its maximum is estimated using
Markov-Chain Monte Carlo (MCMC). As with other Monte Carlo approaches, MCMC ex-
ploits the law of large numbers via repeated random sampling. Samples are produced by
executing a Markov Chain whose stationary distribution is designed to match the input
function, for which a proposal distribution is used [58]. One popular variation of MCMC is
distributed Gibbs sampling, which allows for parallelization and improves computational
efficiency [59]. This method may be used for optimization tasks, approximating solutions
to non-deterministic polynomial time problems, and bayesian optimizations. Maximum
likelihood estimation can also be performed using MCMC methods to estimate the model
parameters [60]. The estimated most promising configuration will be sampled. The result-
ing loss value and runtime are then used to update the loss model f and cost model c via
GP regression.

3.2. Simulation Interface and Datasets
3.2.1. Simulation Interface

The simulations presented in Sections 3.2.3, 3.3.2, 4.1.2, 4.2.2, 4.3.4 and 4.4.1 are all
under the same Hardware, Software, and Setup. The specific configurations are shown in
Table 1.

Table 1. Simulation Interface Components.

CPU Memory Programming Language Operating System

i9-10850k 32GB Python 3.10 Windows 11

3.2.2. Datasets

For the evaluation of Fabolas, Bag of Little Bootstraps (BLB), Local Case-Control (LCC),
OSMAC, KM-SVM, and WKM-SVM different datasets are used. These are summarized in
Table 2.

Table 2. Dataset information for each method and the number of samples contained in it.

Dataset Evaluation for Method No. of Samples

CIFAR-10 Fabolas 60,000

MNIST Fabolas 70,000

Randomly Generated BLB 20,000

Randomly Generated OSMAC 10,000

PimaIndiansDiabetes2 KM-SVM and WKM-SVM 768

3.2.3. Evaluation

Fabolas was evaluated in support vector machine (SVM) and convolutional neural
network (CNN) optimization tasks on the MNIST and CIFAR-10 dataset respectively.
Figure 3 compares Fabolas (The average over 10 runs are depicted) to the following other
hyperparameter optimization approaches:

• Random Search: Simple random hyperparameter search. Each configuration is evalu-
ated on the full dataset.
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• Entropy Search & Expected Improvement: Bayesian optimization methods always
evaluate the full dataset. Expected Improvement uses an acquisition function that
simply samples at the current expected optimum. Entropy Search uses an acquisition
function similar to the one used by Fabolas but without the cost model.

• MTBO-N (Multi-Task Bayesian Optimization [61]): Like Fabolas but restricts sam-
ples to two sizes s ∈ {1/N, 1}, i.e., either a small subsample or the entire dataset is
used. Multiple values for N are evaluated: 4, 32, and 512.

Figure 3. SVM optimization on the MNIST dataset. (Left) Comparison of the test performance over
time of different optimizers. (Middle) Comparison of Fabolas with different MTBO subsample sizes.
(Right) Comparison of the subsample sizes s that MTBO and Fabolas choose for their samples.

Random search is at least one order of magnitude slower than any Bayesian optimiza-
tion technique. Two probing sizes are supported by MTBO, which makes it an additional
order of magnitude quicker. Depending on the choice of N, MTBO occasionally advances
more quickly than Fabolas at first. Fabolas does, however, locate a suitable configuration
somewhat more quickly than MTBO once it begins to advance. Both Fabolas and MTBO
discover the ideal arrangement at around the same time. In comparison to random search,
Fabolas identifies a suitable configuration between 100 and 1000 times quicker. When
CNNs are optimized using CIFAR-10, similar outcomes are found.

3.3. Learning Curve Extrapolation

Reduced training iterations E are the main goal of the second strategy for accelerating
hyperparameter tuning. It may theoretically be incorporated into any hyperparameter
optimizer and applied to any gradient descent-based learner. The goal is to use a hyperpa-
rameter configuration called λ to track a learner’s learning curve as they progress through
training. Training will end before convergence if it is doubtful that a good accuracy will be
achieved with λ.

The method was first described by Domhan et al. [62] in the context of hyperparameter
optimization for deep neural networks (DNNs) that are trained using stochastic gradient
descent (SGD). Since no strong assumptions specific to DNNs are made, it can however
also be used for other learners. DNNs were used because their gradient descent steps are
comparatively expensive.

3.3.1. Extrapolation Method

Let y1:n denote the observed learning curve of SGD after n iterations, i.e., the sequence
of training accuracies yi ∈ [0, 1]. Normally SGD iterations would be run for each hyperpa-
rameter configuration λ until convergence or until a maximum number of iterations E has
been reached. The learning curve extrapolation optimization works by predicting yE every
p iteration. This is further shown in Algorithm 1.
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Algorithm 1 Extrapolation Method.

1: ŷ← −∞
2: for λ← next hyperparameter configuration to evaluate do
3: n← 0
4: repeat
5: Run p SGD iterations using λ with resulting accuracies y(n+1):(n+p).
6: n← n + p
7: Estimate P(yE < ŷ | y1:n).
8: until SGD converged∨ n ≥ E ∨ P(yE < ŷ | y1:n) > δ
9: if yn > ŷ then ŷ← yn end if

10: end for

Algorithm 1 starts by initializing the best accuracy achieved so far, represented by the
variable ŷ, to the lowest possible value (−∞). The algorithm then iterates over the next
hyperparameter configuration to evaluate. For each configuration, the algorithm initializes
a counter variable n to 0 and enters a loop. In each iteration of the loop, the algorithm
runs p SGD iterations using the current hyperparameter configuration and records the
resulting accuracy in the set y(n+1):(n+p). The counter variable n is incremented by p. The
algorithm then estimates the probability P(yE < ŷ, |, y1:n) (Line 6) of the model achieving
better accuracy than the best accuracy achieved so far, given the accuracy values observed
so far. The loop continues until either SGD converged, the number of iterations reaches a
maximum value of E, or the estimated probability of achieving better accuracy than the best
accuracy achieved so far is greater than a threshold value δ. If the accuracy of the current
iteration yn is greater than the best accuracy achieved so far ŷ, the algorithm updates the
value of ŷ with the current accuracy value yn. After evaluating all the hyperparameter
configurations, the algorithm returns the best accuracy achieved so far, represented by the
variable ŷ.

The prediction step (line 7) uses a probabilistic model. Similar to Fabolas, a distribution
over candidate functions is fitted to the observations y1:n. Unlike Fabolas however, which
uses a flexible non-parametric GP model, we use prior knowledge about the shape of
learning curves to restrict the model to parameterized, increasing, and saturating functions.
More specifically, the learning curve y1:n is modeled as a linear combination fcomb of a
family of given functions.

fcomb(t | ξ) :=
K

∑
k=1

wk fk(t | θk), ξ = (w1, . . . , wk, θ1, . . . , θk, σ2) (26)

yt ∼ N ( fcomb(t | ξ), σ2) (27)

Domhan et al. [62] use K = 11 types of functions { f1, . . . , fK} that are each parameter-
ized by {θ1, . . . , θK}. Equation (26) can also be modeled as in Equation (28) which includes
additional terms to the linear combination.

fcomb(t, |, ξ) :=
K

∑
k=1

wk fk(t, |, θk) + wK+1t2 + wK+2 sin(t) (28)

Or we can use a different probability distribution for the noise, such as a Student-t
distribution instead of the normal distribution. This could be useful if the observations
have heavier tails. It is also possible to include regularization terms in the model, such as
L1 or L2 regularization, to prevent overfitting and to obtain more robust estimates of the
model parameters. This is further shown in Equation (29).

fcomb(t, |, ξ) :=
K

∑
k=1

wk fk(t, |, θk) + λ
K

∑
k=1
|wk| (29)
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Another alternative is to use a more complex model for the learning curve, such as a
neural network. This could allow for more flexibility in modeling the underlying function,
but also requires more data and more computational resources to train. This is further
shown in Equation (30).

fcomb(t, |, ξ) := NeuralNetwork(t, θ) (30)

where neuralNetwork is a deep neural network with parameter set θ.
Figure 4 shows the best accuracy achieved by Algorithm 1. The assumption is that

every function type captures certain aspects of learning curves. By allowing linear combi-
nations a more powerful model can be obtained. Figure 5 illustrates this idea.

Figure 4. Learning Curve Extrapolation. Best Accuracy Achieved by Algorithm 1.

Figure 5. Comparison of an observed learning curve (black) with 11 types of learning curve models
and a linear combination of them. Each type is parameterized to fit the first 50 observations y1:50.

As can be seen in the legend on the left, the linear combination has the smallest
deviation ∆y from the observed data after 300 iterations. To estimate the probability
P(yE < ŷ | y1:n) MCMC is used to sample S learning curves {ξ1, . . . , ξS} from the posterior:

P(ξ | y1:n) ∝ P(y1:n | ξ)P(ξ) (31)

P(y1:n | ξ) =
n

∏
t=1
N (yt; fcomb(t | ξ), σ2) (32)

P(ξ) ∝ 1[ fcomb(1 | ξ) < fcomb(E | ξ) ∧ ∀k : wk > 0] (33)

From Equation (31) we can define P(ξ) using a prior distribution on the parameters, such
as a normal distribution for the weights and a uniform distribution for the parameters of
each function type. An example is given in Equation (34).

P(wk) = N (wk; 0, 1) P(θk) = Uniform(θk; θk,min, θk,max) P(σ2) = Inv-Gamma(σ2; a, b) (34)
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where P(wk), P(θk) and P(σ2) are the prior distributions for the weights, function parame-
ters, and variance respectively. Another alternative is to use a non-informative prior like
Jeffreys prior, which is the square root of the determinant of the Fisher information matrix.
This is further shown in Equation (35).

P(wk) =
1√

I(wk)
, P(θk) =

1√
I(θk)

, P(σ2) =
1√

I(σ2)
(35)

where I(wk), I(θk) and I(σ2) are the Fisher information for the respective parameter. The
prior P(ξ) is used to model the fact that learning curves do not typically decrease over time.
Given the learning curve samples, we can now estimate from Equation (31) the following.

P(yE < ŷ | y1:n) =
∫

P(ξ | y1:n)P(yE < ŷ | ξ)dξ (36)

≈ 1
S

S

∑
s=1

Φ(ŷ; fcomb(E | ξs), σ2)

Alternatively, the prior P(ξ) can be modeled as a hierarchical prior with a hierarchical
structure for the weights w and the parameters θ.

P(ξ) ∝
K

∏
k=1

P(wk)P(θk) P(wk) ∝ Gamma(wk|a, b) P(θk) ∝ Normal(θk|µ, σ) (37)

This allows for more control over the shape of the prior for the weights and parameters
and can help encourage certain properties, such as sparsity in the weights. Additionally,
instead of using MCMC for sampling from the posterior, other methods such as Variational
Inference or Hamiltonian Monte Carlo can be used for faster and more efficient sampling.

An alternative equation for P(wk) could be a Dirichlet distribution, which is a multi-
variate generalization of the Gamma distribution.

P(wk) ∝ Dirichlet(wk|α1, . . . , αK) (38)

Another alternative equation for P(θk) could be a Laplace distribution, which is
a continuous probability distribution that is similar to the normal distribution but has
heavier tails.

P(θk) ∝ Laplace(θk|µ, b) (39)

Additionally, other alternatives for P(θk) could be a Student-t distribution or a Cauchy
distribution, which are both distributions with heavy tails and can be used to model outliers
in the data.

P(θk) ∝ Student-t(θk|µ, σ, ν)orP(θk) ∝ Cauchy(θk|µ, σ) (40)

For Variational Inference, one could use a mean-field approximation to approximate
the true posterior (P(ξ|y1:n)) with a simpler family of distributions (q(ξ)) that are easy to
optimize. One would optimize the evidence lower bound (ELBO) of the log marginal likeli-
hood (logP(y1:n)) using gradient-based optimization methods such as stochastic gradient
descent. For Hamiltonian Monte Carlo, one could use the Metropolis-Hastings algorithm or
the No-U-Turn Sampler to obtain samples from the true posterior (P(ξ|y1:n)) by construct-
ing a Markov chain that has the desired distribution as its stationary distribution. This
method uses gradient information of the log-posterior to guide the proposal distribution
and improve the efficiency of the sampling process.

For Variational Inference, the prior (P(ξ)) is approximated by a simpler distribution
(Q(ξ)) that is easier to manipulate. The goal is to find the (Q) that minimizes the Kullback-
Leibler divergence between (Q) and (P), which is equivalent to maximizing the Evidence
Lower Bound (ELBO):
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ELBO =
∫

Q(ξ) log
P(ξ | y1:n)

Q(ξ)
dξ = EQ(ξ)[log P(ξ | y1 : n)]−KL(Q(ξ)||P(ξ)) (41)

For Hamiltonian Monte Carlo, the prior (P(ξ)) is sampled using a Markov Chain Monte
Carlo (MCMC) method. In HMC, a fictitious “momentum” variable is introduced and the
sampling is done using Hamiltonian dynamics. This allows for more efficient exploration
of the parameter space and can avoid getting stuck in local optima. The equations for
updating the position and momentum variables at each iteration are as follows:

p(i) ∼ N (0, m) ξ(i+1/2) = ξ(i) +
ε

2
p(i) p(i+1) =

p(i) − ε∇ξ log P(ξ(i+1/2)) ξ(i+1) = ξ(i+1/2) +
ε

2
p(i+1)

(42)

where (p) is the momentum variable, (m) is the mass matrix, and (ε) is the step size.
For Hamiltonian Monte Carlo, the first step is to define the target distribution (P(ξ|y1:n))

which is the posterior distribution that we want to sample from. We can then de-
fine a proposal distribution (Q(ξ ′|ξ)) which is used to generate new samples. The
Metropolis-Hastings algorithm is then used to accept or reject new samples based on the
acceptance probability:

A(ξ → ξ ′) = min
[

1,
P(ξ ′|y1:n)Q(ξ|ξ ′)
P(ξ|y1:n)Q(ξ ′|ξ)

]
(43)

In Hamiltonian Monte Carlo, the proposal distribution is defined based on the gradient
of the target distribution, and the algorithm makes use of Hamiltonian dynamics to generate
samples. The Hamiltonian dynamics are defined by the Hamiltonian function (H(ξ, p))
which is a combination of the potential energy (U(ξ) = − log P(ξ|y1:n)) and the kinetic
energy (K(p) = 1

2 pT p). The Hamiltonian dynamics are governed by Hamilton’s equations:

dξ

dt
=

∂H
∂p

and
dp
dt

= −∂H
∂ξ

(44)

The algorithm then proceeds by initializing the position and momentum, and using the
Hamiltonian dynamics to generate new samples. The acceptance probability is defined as

A(ξ → ξ ′) = min
[
1, e−∆H

]
(45)

where ∆H is the change in the Hamiltonian between the current and proposed states.

3.3.2. Evaluation

The CIFAR-10, CIFAR-100, and MNIST datasets were used to assess the early termina-
tion strategy that we just discussed. The behavior of early termination and the speedup
obtained on CIFAR-10 are shown in Figure 6. As anticipated, early termination occurs for
setups with learning curves that have the propensity to approach low accuracies. High-
accuracy configurations are tested till convergence. Across the studied datasets, our method
consistently doubles the speed of the hyperparameter optimization while maintaining the
same level of quality.
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Figure 6. Evaluation of early termination on CIFAR-10. The (left) graph shows the learning curves of
all hyperparameter configurations evaluated. The (right) graph shows the average validation error
over time.

3.4. Fine-Tuning

In this subsection, we propose fine-tuning algorithmic schemes on what we have seen
already. Below, we present Algorithm 2 which is an optimized version of Algorithm 1.

Algorithm 2 Extrapolation Method Optimized.

Require: p, E, δ
Ensure: best_acc

1: best_acc← −∞
2: for λ ∈ next_hyperparameter_configuration() do
3: n← 0
4: while True do
5: run_p_SGD_iterations (λ)
6: n← n + p
7: estimate_prob_better_acc(best_acc, y)
8: if SGD_converged() or n ≥ E or prob_better_acc > δ then
9: break

10: end if
11: end while
12: if current_acc > best_acc then
13: best_acc← current_acc
14: end if
15: end for
16: return best_acc

This version of the algorithm uses a function next_hyperparameter_con f iguration()
to generate the next hyperparameter configuration for evaluation. The following func-
tion run_p_SGD_iterations(λ) runs the specified number of SGD iterations using the
current hyperparameter configuration and records the resulting accuracy. The function
estimate_prob_better_acc(best_acc, y) estimates the probability of achieving better accuracy
than the current best accuracy. The function SGD_converged() checks if the training has
converged. If the current accuracy is greater than the best accuracy so far, the best accuracy
is updated.

However, we can further optimize the algorithm by running it in a parallel way. This
is shown in Algorithm 3.
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Algorithm 3 Extrapolation Method Optimized (Parallel).

1: import multiprocessing.Pool
Require: p, E, δ, num_processes
Ensure: best_acc

2: best_acc← −∞
3: pool ← Pool(num_processes)
4: for λ ∈ next_hyperparameter_configuration() do
5: n← 0
6: while True do
7: accs← pool.map(run_p_SGD_iterations, [λ] * p)
8: n← n + p
9: estimate_prob_better_acc(best_acc, accs)

10: if SGD_converged() or n ≥ E or prob_better_acc > δ then
11: break
12: end if
13: end while
14: if max(accs) > best_acc then
15: best_acc←max(accs)
16: end if
17: end for
18: pool.close()
19: pool.join()
20: return best_acc

This version of the algorithm uses the multiprocessing library to parallelize the eval-
uation of different hyperparameter configurations. A Pool of worker processes is cre-
ated with the specified number of processes. The map() function is used to apply the
run_p_SGD_iterations function to a list of lambda values in parallel, and the resulting
accuracy values are collected in a list accs.

Another hyperparameter optimization that utilizes simple gradient descent is shown
in Algorithm 4.

Algorithm 4 Gradient Descent.

Require: α, max_iter, λ
Ensure: λ

1: n← 0
2: while n < max_iter do
3: grad← compute_gradient(λ)
4: λ← λ− α× grad
5: n← n + 1
6: end while
7: return λ

This algorithm takes in three parameters: the learning rate alpha, the maximum
number of iterations max_iter, and the current hyperparameter configuration λ. In each
iteration, the gradient of the loss function with respect to the hyperparameters is computed
using the compute_gradient() function, and the hyperparameters are updated in the di-
rection of the negative gradient by subtracting α× grad from the current configuration.
The optimization process stops once the maximum number of iterations is reached, and
the final hyperparameter configuration is returned. Algorithm 4 can be incorporated with
Adaptive Moment Estimation (ADAM) optimizer which leads to Algorithm 5.
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Algorithm 5 Adaptive Stochastic Gradient Descent.

Require: α, max_iter, λ, β1 = 0.9, β2 = 0.999, ε = 1 × 10−8

Ensure: λ
1: n← 0, m← 0, v← 0
2: while n < max_iter do
3: grad← compute_gradient(λ)
4: n← n + 1
5: m← β1 ×m + (1− β1)× grad
6: v← β2 × v + (1− β2)× (grad× grad)
7: m_hat← m/(1− βn

1)
8: v_hat← v/(1− βn

2)

9: λ← λ− α×m_hat/(
√

v_hat + ε)
10: end while
11: return λ

This algorithm also takes in three parameters: the learning rate alpha, the maximum
number of iterations max_iter, and the current hyperparameter configuration λ. In addition
to that, the algorithm also takes in three other parameters that are the defaults for the Adam
optimizer: β1, β2, and ε. In each iteration, the gradient of the loss function with respect to
the hyperparameters is computed using the compute_gradient() function, and the Adam
optimizer updates the hyperparameters using the moving averages of the gradient and
the squared gradient as well as the learning rate. Similar to Adam optimization algorithm,
Adagrad, and RMSprop are also optimization algorithms that can be used to optimize the
hyperparameters, they also have their own set of hyperparameters to tweak and fine-tune
the optimization process, and the implementation of these algorithms can be found in their
respective papers or in common deep learning libraries.

Next, we present an Algorithm for hyperparameter optimization in Apache Spark.
This is further shown in Listing 1.

Listing 1: PySpark Linear Regression Cross-Validation.

import pyspark . ml . tuning . CrossVal idator
import pyspark . ml . eva luat ion . Regress ionEvaluator
import pyspark . ml . r e g r e s s i o n . LinearRegress ion
import pyspark . ml . f e a t u r e . VectorAssembler

df = spark . read . csv ( " path/to/data . csv " , header=True )
assembler = VectorAssembler ( inputCols =[ " co l1 " , " co l2 " , " co l3 " ] ,
outputCol =" f e a t u r e s " )

l r = LinearRegress ion ( )

paramGrid = ParamGridBuilder ( )
. addGrid ( l r . regParam , [ 0 . 1 , 0 . 0 1 , 0 . 0 0 1 ] )
. addGrid ( l r . f i t I n t e r c e p t , [ False , True ] )
. bui ld ( )

cv = CrossVal idator ( es t imator= l r ,
estimatorParamMaps=paramGrid , eva luator=Regress ionEvaluator ( ) ,
numFolds=5)

cvModel = cv . f i t ( df )

This algorithm uses the CrossValidator class of Apache Spark to perform hyperpa-
rameter tuning using k-fold cross-validation. It defines a Linear Regression model and a
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hyperparameter grid to search over, as well as an evaluation metric. The algorithm then
fits the model on the input dataframe and returns the best model found.

Next, we present an Algorithm for Random Search. This algorithm randomly samples
hyperparameters from a predefined range and trains a model for each combination of
hyperparameters. It then selects the best model based on some evaluation metric. This is
further shown in Listing 2.

Listing 2: Random Grid Search for Logistic Regression.

import pyspark . ml . tuning . RandomGridSearch

model = L o g i s t i c R e g r e s s i o n ( )

paramGrid = RandomGridSearch ( model . regParam , [ 0 . 1 , 0 . 0 1 , 0 . 0 0 1 ] )
. add ( model . elast icNetParam , [ 0 . 0 , 0 . 5 , 1 . 0 ] )

eva luator = B i n a r y C l a s s i f i c a t i o n E v a l u a t o r ( )

cv = CrossVal idator ( es t imator=model , estimatorParamMaps=paramGrid ,
eva luator=evaluator , numFolds=5)
cvModel = cv . f i t ( t r a i n _ d a t a )

Next, we present an algorithm for Bayesian optimization using a probabilistic model,
usually a Gaussian process, to model the unknown function that maps hyperparameters
to the evaluation metric. The algorithm then uses this model to select the next set of
hyperparameters to evaluate by maximizing an acquisition function, such as expected
improvement or upper confidence bound. This is further shown in Listing 3.

Listing 3: Bayesian Optimization for Logistic Regression.

from pyspark . ml . tuning import BayesianOptimization

model = L o g i s t i c R e g r e s s i o n ( )

paramSpace = { ‘ regParam ’ : ( 0 . 1 , 0 . 0 1 ) , ‘ elast icNetParam ’ : ( 0 . 0 , 1 . 0 ) }

eva luator = B i n a r y C l a s s i f i c a t i o n E v a l u a t o r ( )

bo = BayesianOptimization ( es t imator=model , paramSpace=paramSpace ,
eva luator=evaluator , maxIter =10)

boModel = bo . f i t ( t r a i n _ d a t a )

re turn boModel

4. Optimizing Training

Here is a summary of methods for accelerating the training process. We will discuss
four strategies:

1. A general-purpose approach that fuses bootstrapping with subsampling.
2. A technique that iteratively chooses the best subsample size for gradient descent.
3. Weighting the samples will enhance the quality of the logistic regression subsampling.
4. Through k-means clustering, accelerating the training of SVMs.
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4.1. Bag of Little Bootstraps

The first approach we will discuss is called Bag of Little Bootstraps (BLB) [63,64]. It
is a bagging method that combines subsampling with bootstrapping and is particularly
well-suited for parallelized implementations.

In the context of Big Data training typically cannot be performed on the entire dataset.
A naïve way to solve this problem is to simply train on a random b out of n subsample of the
dataDtrain = {X1, . . . , Xn}. This approach is highly sensitive to noise in the training dataset,
especially if b� n. To overcome this problem bootstrapping can be used. The regular n out
of n bootstrapping technique for variance reduction is not suitable for big datasets because
it uses 63% of the training data on average. However the b out of n bootstrapping (BOFN)
approach can in principle be applied. It uses s samples {X̌(i) = (X̌(i)

1 , . . . , X̌(i)
b ) | 1 ≤ i ≤ s}

of b datapoints each. Since this approach independently learns s hypotheses hi on small
datasets X̌(i), their parameterizations θi tend to have large confidence intervals. Because of
that, the quality of the combined hypothesis is strongly dependent on b [65]. BLB reduces
this dependence.

4.1.1. Intuition

BLB is a simple extension of BOFN that is consistently more robust regarding the
choice b across datasets. The basic idea is to add another sampling step. BLB uses
each subsample X̌(i) as a seed for n out of b sampling. This yields bigger resamples
{X∗(i,k) = (X∗(i,k)1 , . . . , X∗(i,k)n ) | 1 ≤ i ≤ s, 1 ≤ k ≤ r} that each contain at most b different
elements. Training is then run on the resamples X∗ instead of the small seed samples X̌.
The learned hypothesis parameterizations are finally combined into a single hypothesis
parameterization θ∗ via a model-specific combination function, e.g., by simply taking
the average. Figure 7 (left) shows the first step of BLB, which can reduce variance but it
does not guarantee speedup. Figure 7 (right) shows the next step of BLB, where it can
speedup training if O(sbα) < O(nα), α ≥ 1. However, it is sensitive to the choice of b.
Lastly, Figure 8 illustrates all steps represented by counts in O(b log n).

Figure 7. Overview of BOFN and BOOT steps of BLB.

Figure 8. Overview of all steps of BLB.
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Even though BLB trains classifiers on resamples of size n its time and space complexity
effectively still depends on b, not n. This is because each resample X∗ only contains, at
most, b different elements which means that it can be efficiently represented by a list of b
multiplicity counts (c1, . . . , cb) ∈ Nb, i.e., space = O(b log n). Training on such a dataset is
equivalent to training on a dataset of size b with weights wi =

ci
n . Since most commonly

used classifiers support weighted samples, BLB is widely applicable.

4.1.2. Evaluation

To show the advantages of BLB for classification it was evaluated with logistic regres-
sion on a randomly generated dataset. Figure 9 shows that BLB converges on a solution
much faster than the regular n out of n bootstrapping (BOOT) with comparable results.
It also shows that BLB is less sensitive to the choice of b than BOFN. BLB reached good
results with b ≥ n0.6 whereas BOFN required at least b ≥ n0.7.

Figure 9. Single-threaded results on a subset of the data. b = nγ for multiple values of γ ∈ [0.5, 1]
and r = 100 is used. s is not fixed and grows over time.

Since training is over proportionally quicker on tiny samples, BLB already outperforms
BOOT without parallelism, but it becomes clearer how scalable it is when it is done in
parallel. Figure 10 shows that BLB significantly outperforms BOOT on a Spark cluster
with 10 workers. This is because each worker node assigned to a BLB sample can store it
in memory. Contrarily, the significantly larger BOOT samples need disk reads for large
datasets, which accounts for the significant variation in runtime. However, BLB still
performs better even if the BOOT samples are cached in RAM since training on the compact
BLB samples is over proportionally faster than training on standard bootstrap samples.

Figure 10. Parallelized results on the entire dataset. b = n0.7, s = 5 and r = 50 is used for BLB. For
BOOT, s grows over time.
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4.2. Subsample Size Selection for Gradient Descent

Next, we will discuss an optimization technique for stochastic gradient descent (SGD).
The size of the subsample S that is considered in a single gradient descent step heavily
influences the optimizer’s behavior:

• In the stochastic approximation regime small samples, typically |S| = 1, are used.
This causes fast but noisy steps.

• In the batch regime large samples are used, typically |S| = N with N := |Dtrain|. Steps
are expensive to compute but more reliable.

Typically, neither extreme is appropriate for Big Data applications. The compute
clusters that are normally available today are not a good fit for very tiny samples since they
cannot be parallelized adequately. The gradients for very big samples however are often
too slow to compute. |S| should ideally lie somewhere in between.

4.2.1. Size Selection Method

Byrd et al. [66] describe an iterative algorithm that dynamically increases the size of
S as long as this promises to significantly reduce the gradient noise. Let S ⊆ {1, . . . , N}
describe a random subsample of Dtrain = {(xi, yi) | 1 ≤ i ≤ N}. SGD will take a step in the
descent direction d = −∇JS (w) where JS (w) := 1

|S| ∑i∈S `(hw(xi), yi) is the differentiable
average loss on S given the current configuration w. Let J(w) be the average loss on the
entire dataset Dtrain. J(w) is the objective function we want to minimize. Our goal is to
trade off |S| s. t. it is as small as possible while ∇JS (w) still tends to converge with the
objective gradient ∇J(w), or more formally:

min |S| s. t. ‖∇JS (w)−∇J(w)‖2 ≤ θ‖∇JS (w)‖2, θ ∈ [0, 1) (46)

The above equation can also be expressed using a different norm instead of the L2
norm, such as the L1 norm. This can be represented as follows.

min |S| s. t. |∇JS (w)−∇J(w)|1 ≤ θ|∇JS(w)|1, θ ∈ [0, 1) (47)

Another way is to incorporate a learning rate schedule, where the subsample size is
adjusted based on the current learning rate. This can be represented as follows.

min |S| s. t. |∇JS(w)−∇J(w)|2 ≤ θ|∇JS(w)|2, θ ∈ [0, 1), where θ = f (ηt) (48)

where ( f ) is a function that maps the current learning rate (ηt) to a value of (θ) and (ηt) is
the learning rate at iteration t.

A value of θ = 0 means that ∇JS (w) always has to be equal to ∇J(w), whereas θ = 1
would allow steps that directy oppose ∇J(w). Since it is infeasible to compute ∇J(w),
condition (46) can however not be checked directly. We will instead resort to an estimate
and check whether the condition is satisfied in expectation:

ES [‖∇JS (w)−∇J(w)‖2
2]︸ ︷︷ ︸

=‖VarS (∇JS (w))‖1

≤ θ2‖∇JS (w)‖2
2 (49)

Computing VarS (∇JS (w)) directly is also infeasible because it would require considering
all samples of a certain size. Given a sample S , the variance of all samples of that size can
instead be approximated by Equation (50).

‖VarS (∇JS (w))‖1 ≈
1

|S|(|S| − 1) ∑
i∈S
‖∇`(hw(xi), yi)−∇JS (w)‖2

2 (50)
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This approximation assumes that |S| � N. Using (50) we can now estimate (49) which in
turn estimates (46). In order to estimate the expectation in the constraint (46), we need to
compute the variance of the subsampled gradient.

VarS(∇JS(w)) =
1
|S| ∑

i∈S
(∇JS (w)−E[∇JS (w)])2 (51)

We can now use the above equation to estimate the size of the subsample that we need to
use.

|S| = |∇JS (w)|22

VarS(∇JS (w))
≤ θ2

1− θ2 |∇JS (w)|22 (52)

If we estimate that (49) is not satisfied for a given S , i.e., that the sample gradient is likely
to deviate significantly from the objective gradient, a larger sample Ŝ has to be used. In
principle we could simply increase the sample size by a constant amount repeatedly and
recheck (49) but this is slow if |S| is far off from satisfying the condition. Instead we will
adaptively choose |Ŝ | s. t. it is expected to satisfy (49) directly:

|Ŝ | = |S| ‖VarS (∇JS (w))‖1

θ2‖∇JS(w)‖2
2

(53)

Please refer to Byrd et al. [66] chapter 3 for a more detailed explanation of (50) and (53).
To incorporate the ideas described above into the regular SGD algorithm, (49) has to be
checked after each gradient descent step. If the check fails, the size of the following samples
has to be increased according to (53). Good values for the initial sample size |S0| and for θ
have to be found via hyperparameter optimization.

The idea outlined above can similarly also be applied to other gradient-based op-
timization methods like the curvature-aware Newton Conjugate Gradient (NCG) method.
It not only uses ∇JS (w) but also information from the Hessian ∇2 JS (w) to compute the
direction d of the next step. We refer to Byrd et al. [66] chapter 5 for the details.

4.2.2. Evaluation

Subsample size selection was evaluated on a multi-class logistic regression problem
using NCG for optimization. At first we look at the accuracy of the estimation of (46) via
(50) and (49). On average ‖VarS (∇JS (w))‖1 deviates about 4% from ‖∇JS (w)−∇J(w)‖2
on the evaluation dataset if |S| � N [66] tbl.5.1.

Figure 11 shows that this accuracy is sufficient. Dynamic subsample size selection
reaches the same quality as the batch method (fixed |S| = N) while using significantly
fewer data points. This in turn makes it significantly faster. The speed of convergence
however does depend on the choice of θ. If θ is too small (see θ = 0.1), |S| is increased
quickly which slows down the optimization. If θ is too big (see θ = 0.75),∇JS (w) is allowed
to deviate significantly from ∇J(w) which causes more erratic gradient steps.
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Figure 11. Results on a multi-class logistic regression task using NCG. (Left) Comparison of dynamic
subsample size selection with fixed sample sizes. (Right) Comparison of different values for θ.

4.3. Subsampling for Logistic Regression

We will now look at a method that optimizes the subsample selection process for logis-
tic regression. Subsampling usually increases the mean squared error (MSE) of the resulting
hypothesis compared to one that is trained on the full dataset Dtrain. Let S := {(x∗i , y∗i )}

r
i=1

be a random subsample of Dtrain that is drawn with or without replacement according to
the probabilities {πi}N

i=1 where N = |Dtrain| and ∑N
i=1 πi = 1. Usually S is drawn from

a uniform distribution, i.e., each datapoint xi is drawn with probability πi = N−1. Then
a maximum likelihood estimate (MLE) βS = (β

(1)
S , . . . , β

(d)
S ) is calculated as an estimate of

the objective parameter vector βDtrain that maximizes the likelihood of the entire dataset.
This strategy is often not optimal since some data points might have a smaller influence on
βDtrain than others. The core idea now is to choose the probabilities πi s. t. more informative
data points are more likely to be sampled.

4.3.1. Case Control

A simple idea to adjust the sampling probabilities πi is to use Case-Control subsampling
(CC) in which a roughly equal amount of positive and negative samples is drawn. Let
D+

train := {(x, y) ∈ Dtrain | y = 1} and D−train := {(x, y) ∈ Dtrain | y = 0}. CC samples would
be then chosen without replacement with probabilities

πi =

{
|D+

train|
−1 if yi = 1

|D−train|
−1 if yi = 0

(54)

4.3.2. Local Case Control

Fithian and Hastie [67] proposed Local Case-Control subsampling (LCC) to remove
the bias from CC. LCC determines the sampling probabilities πi via a pilot estimate β0.
The estimate β0 is the MLE of a small pilot sample S0 that is drawn with uniform or CC
sample probabilities. CC sampling should only be used for the pilot if Dtrain contains an
imbalanced amount of positive and negative samples. After determining the pilot estimate
β0, datapoints are weighted by the error of the pilot estimator on them:

πi =
|yi − p(xi | β0)|

∑N
j=1 |yj − p(xj | β0)|

with p(x | β) = 1
1 + exp(βTx)

(55)

Then a greater sample SLCC is drawn using those probabilities, typically with replacement
since this is computationally less expensive. This produces an estimate βSLCC that is
consistent with βDtrain , i.e., ‖βSLCC − βDtrain‖2 → 0 as r → ∞. Additionally, LCC prioritizes
data points that are close to the decision boundary estimated by the pilot. This tends
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to reduce the variance of the estimate βSLCC , especially if Dtrain contains an imbalanced
amount of positive and negative samples.

4.3.3. OSMAC

While LCC tends to reduce the estimate’s variance, it does not necessarily minimize it.
The Optimal Subsampling Motivated by the A-Optimality Criterion (OSMAC) [68,69] method
improves upon LCC by minimizing the expected variance. Like LCC it also uses a pilot
estimate β0 but the sampling probabilities πi are then calculated differently.

Let V := Cov(βS − βDtrain) be the covariance matrix of the difference between the
sample estimate and the complete dataset estimate. Given E[βS − βDtrain ] = 0, V can be
interpreted as a measure of the expected error introduced by subsampling. Using the
A-optimality criterion of optimal design, OSMAC sets the sampling probabilities πi so that
tr(V) is minimized in expectation. More intuitively this minimizes the sum of the MSEs on
the regression coefficients β

(k)
S , i.e., ∑d

k=1 E[(β
(k)
S − β

(k)
Dtrain

)2].
It turns out that finding the minimizing probabilities πi of tr(V) is computationally

expensive. However the optimal values for πi can be approximated using

πi =
|yi − p(xi | β0)| · ‖xi‖2

∑N
j=1 |yj − p(xj | β0)| · ‖xj‖2

(56)

The main difference to LCC here is the added ‖xi‖2 factor. The intuition behind this
is that samples with large norms tend to be further away from the decision boundary
(this intuition is not entirely correct since it does not consider the offset and rotation of
the decision boundary. Those aspects are ignored because (56) only approximates the
A-optimal probabilities). An incorrectly classified sample that is far from the decision
boundary is more surprising than an incorrectly classified sample close to it. Since the
sigmoidal p function saturates quickly this fact is often not captured by LCC sampling.

4.3.4. Evaluation

We will now compare uniform, LCC, and OSMAC sampling on two datasets. The data
points xi are randomly sampled from different distributions. The corresponding classes
yi ∈ {0, 1} are then assigned using a fixed coefficient vector β. These two datasets are used:

• mzNormal: Uses a multivariate normal distribution N (0, Σ) with mean 0 and
Σij = 0.5δi 6=j . Contains a roughly equal amount of positive and negative samples.

• nzNormal: Uses a multivariate normal distribution N (1.5, Σ) with mean 1.5. About
95% of the samples are positive.

Figure 12 shows the MSEs ‖βS − β‖2
2 for different subsample sizes r. OSMAC consis-

tently gives the closest approximation of β, confirming its theoretical A-optimality. The
reduced coefficient approximation error in turn results in a reduced error of OSMAC
on Dtrain.
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Figure 12. MSEs on β for different subsample sizes r.

4.4. Clustering for SVMs

To speed up the training of SVMs De Almeida et al. [70] proposed a simple method
that reduces the dataset size via k-means clustering. It can be described as a simple
three-step procedure:

1. Group the training samples Dtrain into k clusters C1, . . . , Ck with centers c1, . . . , ck
where k should be determined via hyperparameter optimization.

2. Check for each cluster Ci whether all associated data points belong to the same class,
i.e., ∃ z ∈ {+1,−1} : ∀(x, y) ∈ Ci : y = z. If yes, all datapoints in Ci are removed from
Dtrain and replaced by ci. If not, they are kept in the dataset. The intuition behind this
is that clusters with points from multiple classes might be near the decision boundary
so they are kept to serve as potential support vectors.

3. Finally standard SVM training is performed on the reduced training dataset.

The effectiveness of this method is comparable to SVM training on the entire dataset.
The decreased dataset size, however, is incredibly variable. We won’t attempt to minimize
the dataset size by using large homogenous clusters with just a few noisy outliers belonging
to a different class. Because of this, depending on the dataset, the effective speedup and
memory requirements may vary substantially.

Lee et al. [71] proposed KM-SVM, an alternative approach that solves this problem by
performing clustering on the data points of each class separately. This method has more
predictable time and memory requirements, but it also tends to modify the structure of
the dataset. WKM-SVM [72] improves upon KM-SVM by weighting each cluster center ci
by the amount of datapoints |Ci| it represents. This solves the problem that small clusters
of outliers have the same influence on the decision boundary as big clusters of more
representative data points in KM-SVM.

4.4.1. Evaluation

We will now compare KM-SVM and WKM-SVM using different compression rates
R ∈ {1, 3, 5, 10} that describe the number of clusters k = |Dtrain|

R . A compression rate
of R = 1 corresponds to an SVM that is trained on the entire dataset. For Dtrain the
PimaIndiansDiabetes2 dataset is used. Figure 13 shows that WKM-SVM consistently per-
forms better than KM-SVM with a roughly identical training time. Both clustering methods
improve the runtime significantly without any significant increases in the test error.
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Figure 13. Comparison of KM-SVM and WKM-SVM.

5. Discussion

The field of automated machine learning (AutoML) has gained significant attention
due to its potential to automate the process of building and optimizing machine learning
models. As the amount of big data being generated continues to grow, new challenges for
AutoML systems arise in terms of big data management. This paper introduces a compre-
hensive framework that combines multiple techniques for hyperparameter optimization
and training acceleration, which are essential components in AutoML systems.

Our proposed framework distinguishes itself from existing literature by integrating
various techniques, such as Fabolas and learning curve extrapolation for hyperparameter
optimization, and Bag of Little Bootstraps, k-means clustering for Support Vector Machines,
subsample size selection for gradient descent, and subsampling for logistic regression for
training acceleration. This multi-faceted approach allows for a more efficient and adaptable
training process that can be tailored to different learning scenarios.

The contributions of our paper are twofold. First, we provide an in-depth investigation
of Fabolas and learning curve extrapolation as methods for accelerating hyperparameter
optimization, reducing the computational costs associated with hyperparameter tuning.
Second, we explore four training acceleration techniques and demonstrate how they can
be combined with the hyperparameter optimization methods for even greater speedups
in training. Feature selection and dimensionality reduction are important AutoML tech-
niques that warrant further exploration. While our framework focuses on hyperparameter
optimization and training acceleration, future work could investigate adaptive selection
and weighting of features for dimensionality reduction and performance improvement, as
suggested by the recent literature [73–75].

In conclusion, this paper contributes to the field by proposing a comprehensive and
adaptable framework for accelerating training on large datasets. We have demonstrated the
effectiveness of combining hyperparameter optimization and training optimization tech-
niques and acknowledge the potential for further exploration in feature selection and dimen-
sionality reduction. By leveraging these advanced techniques, practitioners and researchers
can effectively tackle the challenges of training complex models on large datasets, ulti-
mately contributing to the development of more powerful and efficient machine-learning
solutions in the AutoML domain.

6. Conclusions and Future Work

In this article, we investigated Fabolas and learning curve extrapolation as two meth-
ods for accelerating hyperparameter optimization. Both employ probabilistic models to
gauge the error values of the function. The following four methods for accelerating training
were then presented: Bag of Little Bootstraps, k-means clustering for SVMs, subsample
size selection for gradient descent, and subsampling for logistic regression. All of the
methodologies discussed can greatly speed up training on large datasets. These methods
enhance various facets of the training process, making it feasible to combine them in diverse
ways to gain further speedups.
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We reviewed several combinations that have potential: Fabolas may be easily cou-
pled with any of the training optimization strategies described in Section 4 since it is a
hyperparameter optimizer that does not make learner assumptions. The learner utilizing
gradient descent is necessary for the learning curve extrapolation approach mentioned
in Section 3.3. Thus, it may be used in conjunction with the technique for choosing the
subsample size given in Section 4.2. Fabolas and learning curve extrapolation might also
be used together to direct the hyperparameter search, however, in order to do this, the
covariance kernel of the cost model c would need to be changed. This is because samples
placed in less desirable locations are more likely to be terminated early, which reduces their
cost and increases their attractiveness to the acquisition function aF. Including a depen-
dency on the loss model f is one way to modify the cost model. This would essentially
merge the two Gaussian processes c and f into a single cost-loss model over the parameter
space Θ = Λ× [0, 1]× {cost, loss} where information about the loss of a configuration is
indicative about its cost. Finding a suitable kernel function for this joint GP model could be
a subject of further research.

Since it is a general-purpose bagging technique, Bag of Little Bootstraps (Section 4.1)
may theoretically be coupled with the other three training optimization techniques. The
latter, however, relies on dynamically adjusting the sample size during training in order to
lower the anticipated variance, making the coupling of BLB with subsample size selection
for gradient descent difficult. This approach does not work well if the training data is a
resampled BLB bootstrap that does not allow for significant variance reduction since it only
contains a small fraction of data points. The combinations of BLB with OSMAC and BLB
with WKM-SVM are more promising. In the case of OSMAC the sampling weights (πi)
could be used to sample the small bootstraps X̌. Subsample size optimization (Section 4.2)
and OSMAC (Section 4.3) are two more potential combinations. Since gradient descent is
frequently used to execute logistic regression, both approaches can be coupled by utilizing
OSMAC to obtain the subsample for each SGD step.

In addition to these combinations, several other possible approaches can be used to
further speed up training on large datasets. One such approach is to utilize distributed
computing frameworks such as Apache Spark or Apache Kafka. These frameworks allow
for the parallel processing of large datasets, which can greatly speed up the training process.
Another possible future direction is to utilize MCMC (Markov Chain Monte Carlo) methods
or Hamiltonian Monte Carlo (HMC) for hyperparameter optimization. These methods can
be used to efficiently explore the parameter space, and have been shown to be effective in a
variety of applications. Additionally, Using Hidden Markov Models (HMM) is a possible
approach, as they are particularly well suited for sequential data such as time series, signals,
speech, and image data. They can be used to model the underlying structure of the data,
which can be useful in training models with large datasets. Furthermore, they can also be
used to implement online learning, which allows for models to be updated in real-time as
new data is acquired.

In summary, the proposed techniques presented in this paper have significant practical
implications for processing large datasets and efficient large-scale training. The use of
probabilistic models for hyperparameter optimization, such as Fabolas and learning curve
extrapolation, can be combined with techniques like Bag of Little Bootstraps, k-means
clustering for SVMs, subsample size selection for gradient descent, and subsampling
for logistic regression for even greater speedups. Additionally, distributed computing
frameworks, MCMC methods, HMC, and HMM are possible future directions for further
speedup. Future research may focus on evaluating these combinations of various techniques
and exploring the potential of these other approaches to accelerate the training process on
large datasets and future research should explore additional methods for speedup.
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AMC Model Compression and Acceleration
SMAC Sequential model-based Algorithm Configuration
Fabolas Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
RV Random Variables
GP Gaussian Process
SE kernel Squared Exponential kernel
SQ-EXP Squared Exponential
UCB Upper Confidence Bound
MTBO Multi-Task Bayesian Optimization
DNNs Deep Neural Networks
SGD Stochastic Gradient Descent
HMC Hamiltonian Monte Carlo
ELBO Evidence Lower Bound
ADAM Adaptive Moment Estimation Optimizer
BLB Bag of Little Bootstraps
BOFN B out of N Bootstrapping
BOOT Bootstrapping
NCG Newton Conjugate Gradient
MSE Mean Squared Error
NCG Nonlinear Conjugate Gradient
CC Case-Control
LCC Local Case-Control
OSMAC Optimal Subsampling Motivated by the A-Optimality Criterion
KM-SVM K-means support vector machine
WKM-SVM Weighted K-means support vector machine
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