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Abstract: Implementing single-channel speech enhancement under unknown noise conditions is a
challenging problem. Most existing time-frequency domain methods are based on the amplitude spec-
trogram, and these methods often ignore the phase mismatch between noisy speech and clean speech,
which largely limits the performance of speech enhancement. To solve the phase mismatch problem
and further improve enhancement performance, this paper proposes a dual-stream Generative Ad-
versarial Network (GAN) with phase awareness, named DPGAN. Our generator uses a dual-stream
structure to predict amplitude and phase separately and adds an information communication module
between the two streams to fully apply the phase information. To make the prediction more efficient,
we apply Transformer to build the generator, which can learn the sound’s structural properties more
easily. Finally, we designed a perceptually guided discriminator that quantitatively evaluates the
quality of speech, optimising the generator for specific evaluation metrics. We conducted experiments
on the most widely used Voicebank-DEMAND dataset and DPGAN achieved state-of-the-art on
most metrics.

Keywords: speech enhancement; GAN; transformer; phase; spectrogram; dual stream

1. Introduction

Speech plays a critical role in both human communication and human-machine inter-
action. However, speech captured in natural space using consumer-grade devices often
contains a variety of noise, reverberation, etc. It must be enhanced before it can be used
in research. Nowadays, a large number of denoising methods have been proposed and
applied in related fields [1–5]. Despite this, denoising in real environments still needs to
be solved and speech enhancement performance needs to be improved. The goal of this
paper is to enhance noisy speech to improve its recognisability and intelligibility.

Existing single-channel speech enhancement methods can be divided into two cate-
gories: time domain methods and time-frequency (T-F) domain methods [6,7]. The former
deals directly with the speech waveform, while the latter is done with a two-dimensional
spectrogram. T-F methods have now been applied in many speech enhancement algorithms,
and the most widely used of them is the T-F masking method. This method minimizes
noise by predicting the T-F mask of the input speech spectrogram. However, most of them
recover only the amplitude, combining it with the noise phase in order to recover the
waveform. This can create phase mismatch problems and lead to artifacts. The complex
ideal ratio mask (CIRM) [8] although adds phase information to the enhancement process
by means of complex arithmetic, the author of [9] demonstrated that simply changing
the training target to CIRM does not achieve the desired effect, while complex arithmetic
does not provide significant recovery of phase while greatly increasing the computational
effort. To address these issues, we were inspired by [10] and proposed a dual-stream
structure with phase awareness that uses a dual-stream network to recover amplitude and
phase separately. Since CIRM pointed out that there is no clearly identifiable structure
for phase in polar coordinates, this suggests that it is difficult for us to perform phase
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estimation independently. Therefore, we designed an information communication module
between the dual streams to enhance the recovery results through the interaction between
the two predictions.

Traditional deep neural networks are often sensitive to training data and difficult to
generalise to unknown noise. In contrast, the properties of generative adversarial networks
(GAN) dictate that they can improve the authenticity of the recovered audio by adversarial
loss [11,12]. When applying GAN to a speech enhancement task, enhancement is done
through the generator (G), and the discriminator (D) is used to discriminate between clean
and noisy speech. However, many experiments such as [13–17] have demonstrated that the
method used by the discriminator in most GANs to determine whether each sample is true
or not is not perfectly correlated with the metric considered for testing performance. Thus,
the discriminator should be designed to guide the generator towards the right goal. Inspired
by MetricGAN [18], we propose a discriminative model for this problem by converting the
discriminator’s target space from discrete (true 1 and false 0) to continuous (evaluation
metrics). The goal of optimisation is to give a perceptual evaluation score of the input
spectrogram. When selecting the generator, the convolutional neural networks (CNN) used
in traditional image processing often do not adequately capture the harmonic information
in the spectrogram (correlations in images are mostly local, while correlations along the
frequency axis in the speech spectrogram are mostly non-local [10]). While networks such
as recurrent neural networks (RNN) and long-short-term memory (LSTM), which are
more commonly used in speech enhancement, can better capture the features of speech
sequences, their structures are often homogeneous. This makes it challenging to learn
long-term and short-term dependencies at the same time. The emergence of Transformers
has addressed this problem to some extent [19].Unlike traditional deep neural networks, the
entire network structure of Transformer is composed entirely of the attention mechanism.
This mechanism helps us focus comprehensively on the input information in relevance.
Specifically, the Transformer consists of Self-Attenion and Feed Forward Neural Networks.
This multi-headed attention mechanism is able to better capture the relationships between
distant sequence elements. At the same time, the attention mechanism also determines
that it can focus on all elements in the sequence, which also makes it easier to achieve
Inter-contextual prediction to some extent. Compared with the familiar neural network
architectures (CNN, RNN, etc.), it greatly improves the efficiency and accuracy of machine
learning tasks. It also provides an alternative way of thinking about speech enhancement.
Considering that in our task we only need to extract features from the spectrogram of noisy
speech to obtain the corresponding mask, we decided to eliminate the decoder. Instead, we
used only the encoder to process the spectrogram.

In brief, we design a dual-stream GAN with phase awareness for speech enhancement,
called DPGAN. We summarize our contributions as follows:

1. In the generator stage, we propose a novel dual-stream structure that incorporates
phase into the enhancement process, effectively solving the phase mismatch problem
while being able to further improve enhancement performance.

2. In this dual stream structure, information communication (IC) between the two
prediction streams is added to improve the respective enhancement effects.

3. We propose Mask Estimated Blocks (MEB) based on Transformer, which can better
extract sound features to accomplish mask estimation.

4. In the discriminator stage, inspired by MetricGAN [18], we designed a perceptu-
ally guided discriminator to accomplish targeted optimisation by modelling specific
evaluation metrics.

5. We conducted more comprehensive experiments to justify the design structure. As
shown by the experimental results, DPGAN is capable of improving the performance
of speech enhancement to a certain extent compared with the current method.

The remainder of the paper is structured as follows. Section 2 presents related work,
Section 3 describes the implementation of our work, Section 4 lists experimental details and
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analyses of experimental results. Section 5 summarises the content of the paper, discussing
limitations and future research directions.

2. Related Work
2.1. T-F Domain Methods

Speech enhancement based on the T-F domain can be divided into two types: masking
and mapping, and we focus here on the widely used and more effective T-F domain-based
masking method. This method can be traced back to the spectral subtraction method
proposed by Boll in 1979 [20], which treats the spectrogram of noise as a special linear
mask. We first need to convert the waveform into amplitude and phase by short-time
Fourier transform (STFT). Then, the mask is inferred by learning from the noisy amplitude
spectrogram and applied to it to obtain the predicted amplitude. Finally, combined with
the phase of noisy speech, the predicted spectrogram is transformed back into the time
domain by the inverse short-time Fourier transform (ISTFT). The same steps are followed
for preprocessing deep learning tasks.

The choice of mask is closely related to the performance of speech enhancement. Most
of the current work only deals with the amplitude, using mostly ideal binary masking
(IBM) [21], ideal ratio masking (IRM) or ideal amplitude masking (IAM) [22,23], often
using the phase of noisy speech to complete the transformation of the speech waveform.
However, subsequent studies have demonstrated that phase plays a significant role in
improving speech quality and intelligibility [24]. As a result of this, phase sensitive masking
(PSM) [25] was proposed to improve IAM by simply adding phase information, which is still
essentially real-valued masking. CIRM has influenced most current speech enhancement
methods to some extent. As a complex-valued mask, CIRM takes the amplitude and
phase of speech as the real and imaginary parts respectively in the computation, and
is theoretically optimal under the assumption of additive noise. Since then, based on
the principle of plural arithmetic [26], Choi designed a complex convolution layer and
constructed a complex-valued U-Net [27]. Later Hu added complex-valued LSTM to further
improve the composition of complex networks [28]. In spite of this, experiments have also
shown that complex masking does not significantly improve speech enhancement as we
had hoped [10,29]; the problem of phase mismatch remains unresolved.

2.2. Time Domain Methods

Traditional time-domain speech enhancement methods include Wiener filtering [30],
Kalman filtering [31], etc. Similar to many traditional methods, these methods require
complex mathematical computation to complete, and are ineffective when dealing with
non-smooth noise. Time-domain-based deep learning uses waveforms as inputs, which
eliminates the need for waveform synthesis, as well as the challenge of phase prediction.
We can simply understand this process as waveform mapping. In contrast, RNNs and
LSTMs, which are widely used, are often unsuited to long sequences, and the gradient
disappearance problem occurs when speech signals are ultra-long. As a solution to this
problem, WaveNet was developed to learn mappings of sampled value sequences directly
and more efficiently [32]. Rethage improved WaveNet by using non-causal expansion
convolution to predict the target domain [33]. Later Stoller used the construction of a
one-dimensional convolution combined with U-Net to accomplish enhancement by means
of phonetic source separation [34]. The same idea was also proposed by [35], which mainly
consists of a U-Net structure and a bidirectional LSTM. Luo et al., on the other hand,
partitioned the long sequence input into smaller chunk chunks and iteratively applied
intra-chunk and inter-chunk RNNs, while the dependencies between the spectrum of
a single frame and consecutive frames were modeled, which leads to a large modeling
overhead while improving the enhancement effect [36]. The excellent performance of
Transformer [37] in the field of natural language processing has also led many researchers
to experiment with its introduction into the speech domain. The attempts in [38,39] have
demonstrated that the Transformer structure is comprehensively ahead of all previously
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used network structures in the field of speech separation and speech recognition. The
research on speech enhancement further proves the effectiveness of multi-head attention
mechanisms in modeling global context information [40,41]. However, although these
time-domain approaches address the estimation of phase to some extent, they also ignore
sound features that are more easily distinguishable in the T-F domain. As a result, there is
still room for further research into time-domain methods. Meanwhile, in order to further
explore the performance of speech enhancement, researchers have started to try to introduce
GAN into this field.

2.3. GAN-Based Method

SEGAN first imports GAN into the SE problem by minimizing the loss function
and training G to map noisy speech x to clean speech y [42]. As an end-to-end network
structure, its input and output are both time-domain signals. As its main operations
are performed by convolution, it consumes relatively little memory and time. On this
basis, SERGAN modified the discriminator to improve the enhancement by determining
the probability of the input data being true or false [43]. This also demonstrates the
importance of a well-performing discriminator for GAN. To improve the performance
of the discriminator, HiFi-GAN proposed a multi-scale discriminator, and constructed
discriminators in the frequency and time domains separately for joint training [44]. In order
to improve the performance of optimization even further. Researchers have attempted
to combine evaluation metrics with optimization directions. Kolbaek tries to construct
an objective function similar to STOI to optimize for this evaluation metric [45]. Fu, on
the other hand, constructs a loss function by combining STOI with MSE, which is able to
further improve speech intelligibility [46]. These methods also provide novel ideas for the
design of discriminators. However, since a part of the evaluation functions are not fully
differentiable (e.g., PESQ, ESTOI, etc.), their computation tends to be more complicated
compared with STOI, so we cannot directly use them as the objective function (in most
cases researchers manually produce simple differentiable functions to approximate the
evaluation metrics). MetricGAN, on the other hand, proposes a new solution idea, using a
black box approach, where the evaluation metric is used as a reward and a discriminator
is used to model the behavior of an objective metric that can predict the PESQ score of
the input speech in order to motivate the generator to further improve its performance on
this metric [18]. Additionally, the choice of generator model is also critical. On the one
hand, Longer data can significantly increase the computational effort of RNNs and LSTMs.
On the other hand, it is becoming increasingly common for CNNs and transformers to
be used as generators. We set up a comprehensive speech enhancement framework by
combining the Transformer, which is more suitable for extracting acoustic features, and
the perceptually guided discriminator in MetricGAN. Our discriminator can quantitatively
evaluate speech quality metrics that are closely related to human hearing. To further
enhance the enhancement effect, we blend phase information to complete the network
construction. Compared to other current GAN methods, we are able to exploit the phase
information more fully and still be adaptive to unfamiliar noise.

3. Methods
3.1. Overview

The overall architecture of our system is shown in Figure 1, with Training D and
Training G representing the training stages of the discriminator and generator, respectively.
The main body of the system consists of a generator G and an audio quality discriminator
D. During the discriminator stage, we design a perceptually guided discriminator inspired
by MetricGAN, which guides the optimisation of the generator by simulating a specific
evaluation metric function, such as Perceptual evaluation of speech quality (PESQ) [47]
or Short-Time Objective Intelligibility (STOI) [48]. We use the Q Function to represent
the evaluation metrics of speech, and D needs to simulate its behavior. So similarly, D
requires pairs of spectrograms as input (speech to be evaluated and clean target speech),
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and optimisation of the discriminator is accomplished by continuously reducing the loss
between the predicted score given by D and the true score given by the Q Function.

Figure 1. The overall framework of our system is shown here, with Training G and Training D
representing the training process for the generator and discriminator respectively. They are updated
alternately. Where Q Function is our target score, which we can choose to set as PESQ or STOI.
STFT and ISTFT refer to Short Time Fourier Transform and Inverse Short Time Fourier Transform
respectively. LG and LD denote the loss functions of the discriminator and the generator respectively.

In the training stage of the generator, we need to take both the amplitude spectrogram
and phase spectrogram as input. G can perform feature extraction on them respectively to
derive the most suitable amplitude and phase mask. This mask can be applied to the input
signal to obtain preliminary estimates of amplitude and phase. Then we can recover them
to the enhanced speech waveform by ISTFT. Finally, the final enhanced speech amplitude
spectrogram can be obtained by STFT. The amplitude spectrogram of the enhanced speech
is used as input together with the corresponding amplitude spectrogram of the target
speech. The optimisation of the generator is done by the loss between the predicted score
given by D and the target score. In practical experiments, the target score can generally
be set to the maximum score. To address the problem that static surrogates can easily be
deceived by adversarial examples [49] (estimated mass fraction increases but true fraction
decreases [50]), We update these two training stages alternately.

3.2. Dual Stream Generator with Phase Awareness

In our system, the main task of the generator is to estimate the mask for the spectro-
gram of noisy speech. We can apply it to perform the main task of speech enhancement. In
order to solve the phase mismatch problem that exists in most current work, as well as to
improve enhancement performance at the same time. We propose a dual-stream generator
with phase awareness. The basic structure is shown in Figure 2.

Our basic idea is to distinguish between the prediction of amplitude and phase, and
perform enhancement through two parallel streams. These two streams can be denoted by
SA and SP respectively, and their main structure is similar. We first complete the integration
of the input data by means of a fully connected (FC) layer of 256 channels. Afterwards the
Mask Estimated Blocks (MEB) module is connected to perform the initial feature extraction
operation. We need two such feature extraction operations to complete the final mask
estimation. In order to avoid oversize values affecting the training process, we introduced
the Learnable Sigmoid layer to complete the truncation of the data [51]. The mathematical
representation is shown in Equation (1).
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y = β/(1 + e−αx), (1)

where α is a learnable parameter, it will vary depending on the frequency band of the
training data. On the other hand, β can be configured with a variety of truncation intervals,
which is the range of values for our Mask. In most of the experiments, masks are typically
truncated between 0 and 1, but in the superposition of speech and noise, the problem of
inverse phase extinction can easily arise. Therefore, the amplitude and phase of the noise
may not necessarily be much higher than that of pure speech (i.e., it is possible that the
value of pure speech is higher than that of the noisy signal). Meanwhile, for the phase, most
of the phase mask does not produce many variations, and the phase wrapping problem
created by a certain degree of phase amplification just compensates for the lack of negative
values of our Mask. It is able to meet the needs of a small portion of the phase that needs to
change significantly. In order to determine the value of β, we randomly selected 1200 sets
of speech data from the train set and the test set, each containing the noisy speech and
the corresponding clean speech. We divided them to obtain the standard replication and
phase Mask, and plotted the distribution histograms separately, as shown in the following
Figure 3. Accordingly, we chose to set β to 1.2, the interval of 0–1.2 can contain the vast
majority of the data in it. In addition, inspired by [52], we pre-set the lower limit of mask to
0.05 before applying it to the spectrogram to avoid musical noise.

Figure 2. This is a dual stream generator structure with phase awareness. Stream A represents the
amplitude stream, while stream P represents the phase stream. Streams A and P provide amplitude
masks and phase masks, respectively. Each stream consists of two MEB modules.

Amplitude Mask Phase Mask

Figure 3. We randomly selected 1200 groups of speech and calculated the standard mask values of
amplitude and phase. It is intuitively apparent that some mask values are outside the range of 0 to 1.
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3.3. Information Communication

Information communication plays a crucial role in the dual-stream structure. Numer-
ous experiments have demonstrated that it is very difficult to recover phase information
singularly [8,10]. In order to make more complete use of the information in the phase
spectrogram, we set up an Information Interaction (IC) module between the dual streams.
We expect that the mask estimates of the dual streams can communicate with each other.
The phase prediction can be better guided by the amplitude stream. Likewise, the phase
prediction results can also be applied back to the amplitude streams, and the combination
of the two can further improve the enhancement performance. The implementation of this
module is shown in Equation (2).{

SA+1 : f (SA, SP) = SA � Tanh(SP)

SP+1 : f (SA, SP) = SP � Tanh(SA)
(2)

where � denotes element-wise multiplication and SA and SP denote the amplitude and
phase stream respectively. The SA + 1 and SP + 1 represent the amplitude and phase stream
of the next stage. After that, we need to complete all the information communication
operations through a fully connected layer. As shown in Figure 2, in the generator our IC
module is located between the two feature extraction operations.

3.4. Mask Estimated Blocks

In both Stream A and Stream P, the main operation is handled by Mask Estimated
Blocks, whose main function is to extract features from the amplitude or phase spectrogram.
We have chosen to use the Transformer to perform this function, as its unique multi-head
attention mechanism is better able to capture the dependencies in the speech information.
The basic Transformer is a codec structure, but we only need to perform feature extraction
on the spectrogram to get the estimated mask. Instead of improving the results, the decoder
module would make the consumption of computational resources increase significantly.
Therefore, we decided to use only Encoder to complete the construction of the MEB module.
As shown in Figure 4, the left side shows the basic structure of a MEB module, which
consists of eight Transformer encoders and a fully connected layer of 257 nodes. We set
a Dropout of 0.1 for each encoder in our experiments and set the residual connectivity
and normalization layers before Multi-Head Attention and Feed Forward, an operation
that improves the performance and stability of the training. The structure of multi-head
attention is shown on the right, which is also consistent with the structure of the base
Transformer. We set n to 16 in the figure, indicating the number of heads. The Feed
Forward layer is composed of a linear layer and a LeakyReLU layer, each with 512 nodes.

Figure 4. Structure of the MEB. Its main body is an 8-layer Transformer encoder with a fully connected
layer. In the experiment, we set the n to 16.
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3.5. Perception Guided Discriminator

Our discriminator guides the generator by giving a quality-aware score for the input
speech, and it only needs to model an evaluation metric that can be implemented by
simple feature extraction. The structure is shown in Figure 5. Usually, the discriminator
requires two inputs, namely the amplitude spectrogram of the speech being scored and
the amplitude spectrogram of the target speech. We need to concatenate them together
first, and standardize the data through the BatchNorm layer. Here we set the momentum
parameter to 0.01. The body of the discriminator is a CNN with four two-dimensional
convolutional layers. The number of channels in each layer is 15, and the kernel size is
5 × 5. A global averaging pooling layer was added to handle different lengths of speech
input. This resulted in a fixed dimensionality of 15 for the features (i.e., the number of
feature mappings in the previous layer). Three FC layers were added. The first two
layers had 50 and 10 linear nodes respectively, and a LeakyReLu layer was applied after
each layer for activation (the negative_slope of LeakyReLu was set to 0.3). The final layer
has only one linear node for outputting the final prediction score. We applied spectral
normalization with 1-Lipschitz continuity [53] to all layers used in the discriminator to
stabilize the training process, and we trained D as a smooth functional model that estimates
the amplitude spectrogram to derive the corresponding scores. Our discriminator can be
set up with different evaluation metrics to accomplish different optimisation goals. Here,
we tried two main evaluation metrics, PESQ and STOI, which take full account of human
auditory perception and are closer to subjective test results in most cases.

Figure 5. The proposed structure of the perceptually guided discriminator, whose body is four
two-dimensional CNNs, ultimately outputs a normalised prediction score through feature extraction.

3.6. Loss Function

We will present our loss function in two parts, the generator and the discriminator.
Similarly to MetricGAN [18], we abandon the traditional binary labeling strategy in the
design of the discriminator and simulate evaluation metrics instead. We can refer to Q(I)
as the normalised evaluation metric, where I represents the input to the metric. Since
PESQ takes values in the range of (−0.5, 4.5). In order to complete the experiment more
conveniently, we add it to 0.5 and divide by 5 to ensure that the final number finger
can be maintained between (0, 1). It is necessary to train the discriminator so that its
behavior conforms to Q(I). Following [51], we incorporate noisy speech into the training
of the discriminator, optimising it based on the loss between the true scores and the
predicted scores given by D. The final discriminator loss of DPGAN can be described as
the Equation (3):

LD(DPGAN) = Ex,y[(D(y, y)− Q(y, y))2 + (D(G(x), y)− Q(G(x), y))2)+

(D(x, y)− Q(x, y)2)],
(3)

where x and y denote noisy speech and clean speech, and G(x) represents enhanced
speech processed by the generator. Q refers to the optimisation evaluation metric we
set. D(.) and Q(.) denote the prediction score of the discriminator and the true objective
evaluation metric. The three terms in the equation represent the discriminator applied
to clean speech, enhanced speech and noisy speech, respectively. Similarly, we take the
amplitude spectrogram of the augmented speech and the amplitude spectrogram of the
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clean speech as input and use the discriminator to give a prediction score, using the loss
between this score and the target score to optimise the generator, as shown in Equation (4).

LG(DPGAN) = Ex[(D(G(x), y)− s)2], (4)

where s represents the desired optimisation score, which we can simply assign a value of 1
to generate the enhanced speech.

4. Results
4.1. Implementation Details

Voicebank+DEMAND: In order to provide a more meaningful comparison with other
existing methods, we used the publicly available VoiceBank-DEMAND dataset [54], which
is widely used in almost all speech enhancement (SE) systems. A predefined training set
and a test set are included. Clean speech was provided by 30 speakers from the VoiceBank
corpus. Of these, 28 were included in the training set and two were included in the test set.
Alternatively, noisy speech consists of clean speech mixed with noise from DEMAND [55].
In the training set, there are 40 different types of noise, with a total of 11,572 samples and
signal-to-noise ratios (SNRs) of 15, 10, 5 and 0 dB. 20 different kinds of noise are included
in the test set, with a total of 824 samples and signal to noise ratios of 17.5, 12.5, 7.5, and
2.5 (The noise and speakers in the test set are not visible in the training set). Detailed
parameters of the data can be found in the original literature.

Our full experiments were constructed in Pytorch, based on the Speechbrain toolkit [56].
All speech samples in the experiments were resampled to 16 kHz. The amplitude spectro-
gram and phase spectrogram were obtained by STFT, which was computed using Hamming
windows with a window length of 32 ms, a hop length of 16 ms, and FFT points set to 512.
The network models were all optimised using Adam [57]. We set β1 as 0.9 and β2 as 0.999,
the learning rates of G and D are set to 0.0001 and 0.0005. There are four phases of training
in each of our epochs. Of these, the first three training phases are for D. The following is a
brief description of the training process for D and G.

G: 100 data are randomly drawn from the training set to train.
D: Our G undergoes through three training phases. First, we also extract 100 sets

of real data from the training set to complete the initial training. According to the study
in [58], we also believe that the training of the discriminator can be improved by adding
data generated in previous epochs. Without this mechanism, the discriminator is likely
to forget the target behaviour, i.e., only optimise D, rather than bringing it closer to the
pattern of the evaluation metric. For this reason, A second stage of training has been
added to D. In each epoch, a random portion of the generated data is incorporated into
the historical dataset, and D is optimized with this portion of data. Our tests have shown
that the most effective results are obtained when the extraction ratio is set at 20%. Thus,
the historical dataset is increased by 20 data points per epoch. Following this, we will
randomly select 100 sets of data from the training set for optimization. This will further
improve the performance of D. To complete the training process, we set 850 epochs. The
experiment shows that the best convergence occurs around the 800th epoch.

LibriSpeech+PNL: To further test the performance and scalability of the network, we
constructed the corresponding training set, validation set and test set using the LibriSpeech
dataset [59]. In our experiments, we randomly selected 5000 clean discourses from the
train_clean100 subset of the LibriSpeech dataset. We mixed these discourses based on
10 noise types from [60] (two crowd noises, two machine noises, alarms and siren, traffic
and car noises, animal sound, wind, cough, and laugh) according to different levels of SNR
(0 dB, 5 dB, 10 dB and 15 dB). To form the final 20,000 training utterances. As a validation
set, we chose to incorporate another 1000 clean utterances and another 10 noisy samples
with 4 different SNRs (1 dB, 6 dB, 11 dB, and 16 dB), which totals 4000 examples. Finally, we
randomly selected the LibriSpeech dataset test_clean with 2000 speech as our test set, and
these discourses are mixed with five invisible noise types (bell, clap, cry, tooth brushing,
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and footsteps), with SNRs of The SNRs were 2.5 dB, 7.5 dB, 12.5 dB and 17.5 dB, respectively.
The training parameters on this dataset are the same as those mentioned above.

4.2. Quantitative Evaluation

In order to evaluate the performance of speech enhancement and to compare it with
other systems, the following five objective metrics were used: PESQ [47], STOI [48], CSIG,
CBAK and COVL [61].

PESQ: Perceptual evaluation of speech quality.which is the major optimisation objec-
tives for our proposed DPGAN. The wide-band version recommended in ITU-T P.862.2 is
used (from −0.5 to 4.5).

STOI: Short-time objective intelligibility, which indicates the intelligibility of speech
(from 0 to 1).

CSIG: Mean opinion score (MOS) prediction of signal distortion attending only to
speech signals (from 1 to 5).

CBAK: MOS prediction of the intrusiveness of background noise (from 1 to 5).
COVL: MOS prediction of the overall effect (from 1 to 5).
All the above metrics are the higher the better.
To analyze the performance of the system, we tried to reproduce some of the classical

speech enhancement algorithms, including SEGAN [42], iSEGAN, DSEGAN [62], Metric-
GAN [18], HiFiGAN [44], MetricGAN+ [51], and PHASEN [10]. iSEGAN and DSEGAN
are extensions of SEGAN training, which connect multiple generators in order to enhance
the enhancement effect. While HiFiGAN and MetricGAN+ are the networks with better
performance among different repair methods. Meanwhile, since Voicebank+DEMAND
has been limited to a training set, a validation set, and a test set, we cite some papers
based on this dataset (including SERGAN [43],CP-GAN [63],MMSE-GAN [64] and the
recently published PGGAN [65] and DCCRGAN [66]). Furthermore, we have selected
some of the better performing and classical non-GAN methods for comparison, including
DC-U-Net [27] and Wave-U-Net [67], both of which are built on the U-Net architecture,
and S-DCCRN [68] using the plural domain. (For the purpose of fair and representative
comparisons, all of these papers use training data from the original Voicebank+DEMAND
dataset for training). Table 1 shows the comparison results with the above baseline, where
DPGAN(S) and DPGAN(P) are the results of our discriminator’s fits to the STOI and PESQ,
respectively. As can be seen, compared to most GANs, our method has a breakthrough
performance lead in both the main evaluation metric PESQ, improving to 3.32, and some
degree of improvement in other metrics, which demonstrates the effectiveness of dual-
stream GAN with phase awareness in the field of speech enhancement, and the feasibility
of using only the Transformer encoder to build the generator. At the same time, we note
that the CSIG and CBAK scores in some of the models are slightly higher than ours, because
we set the lower limit of Mask to 0.05, which makes the speech more natural-sounding [51].
However, our repair for phase also introduces new noise to some extent, so it may cause
a decrease in these two metrics. We also show multiple sets of restoration effects in the
subsequent qualitative analysis, from which we can see that our restoration effect is im-
proved compared to some other methods. As for the decrease in these two indicators. We
also made the following attempts. We also experimented with truncating Mask to 0-1,
which proved to improve both metrics to some extent, but at the same time reduced the
performance of the main optimization metric, PESQ. Moreover, the analysis of the actual
enhanced audio shows that the slight reduction of these two metrics has an acceptable
impact on the final restoration results. We have also tried to use CBAK, CSIG, and COVL
to be the main optimization metrics, but more experiments show that the improvement
of these data tends to cause a large decrease in the remaining metrics and affects the the
final enhancement effect. In addition, our discriminator is currently trained to fit only
PESQ and STOI. In general, DPGAN is able to provide some enhancements to the current
SOTA system.
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Table 1. Comparison of DPGAN with the other top methods on Voicebank+DEMAND datasets, -
indicates that the corresponding results are not given in the text.

Network Domain PESQ STOI CSIG CBAK COVL

Noisy - 1.97 0.92 3.35 2.44 2.63
SEGAN [42] T 2.16 0.925 3.48 2.94 2.80

SERGAN [43] T 2.51 0.938 3.79 3.24 3.14
iSEGAN [62] T 2.24 0.933 3.23 2.95 2.69
DSEGAN [62] T 2.39 0.933 3.46 3.11 2.90

Wave-U-Net [67] T 2.62 - 3.91 3.35 3.27
CP-GAN [63] T 2.64 0.942 3.93 3.33 3.28

MMSE-GAN [64] TF 2.53 0.93 3.80 3.12 3.14
PGGAN [65] T 2.81 0.944 3.99 3.59 3.36

DCCRGAN [66] TF 2.82 0.949 4.01 3.48 3.40
S-DCCRN [68] TF 2.84 0.940 4.03 2.97 3.43

MetricGAN [18] TF 2.86 - 3.99 3.18 3.42
HiFi-GAN [44] T 2.94 - 4.07 3.07 3.49

DCU-Net-16 [27] TF 2.93 0.93 4.10 3.77 3.52
PHASEN [10] TF 2.99 - 4.18 3.45 3.50

MetricGAN+ [51] TF 3.15 0.927 4.14 3.12 3.52
DPGAN(S)(ours) TF 2.67 0.948 3.43 3.15 3.29
DPGAN(P)(ours) TF 3.32 0.908 3.93 3.07 3.54

The following Table 2 illustrates the effects of our restoration on the self-built Lib-
riSpeech+PNL dataset. We show here the comparative results of SEGAN, MetricGAN,
HiFiGAN, PHASEN, and MetricGAN+ with DPGAN. In the table, it can be seen that
DPGAN is able to improve the performance of PESQ more significantly while the difference
in STOI is relatively small. In addition, this study proves that phase information can be
incorporated into speech enhancement using DPGAN. As a result of combining the above
two parts of experiments, DPGAN can perform the enhancement task more effectively
when trained for PESQ. At the same time, it can also provide us with an idea for speech
enhancement task. We can target some more suitable evaluation metrics to train for a
comprehensive improvement of speech enhancement.

Table 2. Comparison of DPGAN with the other classical methods on LibriSpeech+PNL datasets.

Network Domain PESQ STOI

SEGAN [42] T 2.21 0.885
MetricGAN [18] TF 2.81 0.908
HiFiGAN [44] T 2.89 0.922
PHASEN [10] TF 2.95 0.931

MetricGAN+ [51] TF 3.08 0.928
DPGAN(S) TF 2.72 0.943
DPGAN(P) TF 3.21 0.915

4.3. Acoustic Analysis

In Figures 6–9 we show the enhancement effect for different kinds of noise. From
left to right and from top to bottom in the figures are clean speech, noisy speech, and
the enhanced effects of SERGAN, MetricGAN, PHASEN and DPGAN, respectively. We
visualise using waveforms and Mel spectrograms. For display purposes, we set the NFFT
to 512 and the hop width to 16 when obtaining the Mel spectrogram, using the hamming
window for the transformation. It can be seen that our method is able to remove most
of the high frequency noise or low frequency noise very well, without causing excessive
damage to the original sound information of the session.



Information 2023, 14, 221 12 of 21

Figure 6. A comparative waveform plot of the enhancement effect of low-frequency noise at higher
signal-to-noise ratios is shown. From left to right and top to bottom are pure speech, noisy speech,
and the enhanced effects of SERGAN, MetricGAN, PHASEN and DPGAN, respectively.

Figure 7. A comparative spectrogram of the enhancement effect of low frequency noise at higher
signal-to-noise ratios is shown. The noise is shown in the plot as the cluttered highlighted blocks at
the bottom.

Figure 8. A comparison of the waveforms of the enhancement effect for full-band noise at lower
signal-to-noise ratios is shown. Noise appears as cluttered pulses in waveform.
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Figure 9. A comparative spectrogram of the enhancement effect of full-band noise at lower signal-
to-noise ratios is shown. This contains most of the low frequency noise, which is shown as lighter
coloured blurred noise in the plot.

4.4. Image Analysis

To show our restoration results even further. We show a portion of the generated
image in the following Figures 10 and 11. It includes a comparison of the Mel spectrogram
and waveform plot of the noisy speech with the enhanced speech. It can be seen from
the images that DPGAN is able to perform the speech enhancement task better. However,
some distortion may also occur in the face of higher SNR. Overall, DPGAN is able to
remove most of the noise signal, while the phase change further improves the enhancement
performance.
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Figure 11. A comparison of the waveform plot of the noisy speech and the enhanced speech, where
the left is the noisy speech and the right image is the enhanced speech.

And we also show a part of the restoration process with amplitude mask and phase
mask. As shown in Figures 12 and 13. We can see that the amplitude has a large variation,
and extending the value of mask to 1.2 can enhance the action ability of mask more
effectively. At the same time, for most of the phases, The mask values are kept around 1,
there is actually not much variation, which also avoids the appearance of phase wrapping
to some extent, and also avoids generating more noise information.

Figure 11. Cont.
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Figure 11. A comparison of the waveform plot of the noisy speech and the enhanced speech, where
the left is the noisy speech and the right image is the enhanced speech.

And we also show a part of the restoration process with amplitude mask and phase
mask. As shown in Figures 12 and 13. We can see that the amplitude has a large variation,
and extending the value of mask to 1.2 can enhance the action ability of mask more
effectively. At the same time, for most of the phases, The mask values are kept around 1,
there is actually not much variation, which also avoids the appearance of phase wrapping
to some extent, and also avoids generating more noise information.

Figure 11. A comparison of the waveform plot of the noisy speech and the enhanced speech, where
the left is the noisy speech and the right image is the enhanced speech.

And we also show a part of the restoration process with amplitude mask and phase
mask. As shown in Figures 12 and 13. We can see that the amplitude has a large variation,
and extending the value of mask to 1.2 can enhance the action ability of mask more
effectively. At the same time, for most of the phases, The mask values are kept around 1,
there is actually not much variation, which also avoids the appearance of phase wrapping
to some extent, and also avoids generating more noise information.

Figure 12. Amplitude enhancement masks for different noise speech. Lighter colors represent
larger values.

Figure 13. Phase enhancement masks for different noise speech. Lighter colors represent larger values.

4.5. Ablation Study

To demonstrate the effectiveness of the structure, we conducted an ablation study on
networks with different settings. In Table 3 we show in detail the effect of the different
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training techniques introduced in Section 3 using a split SNR. The results in each row are
obtained by adding the settings of the previous row to the current technique. It can be
seen that most algorithms process best at SNRs of 12.5 dB and 7.5 dB, while the results
tend to decrease when faced with low SNR situations. In this case, our base uses two
bi-directional LSTM (BLSTM) designed generators, using noise phase to restore the speech
waveform and discriminators for PESQ simulation. Using the MEB instead of the BLSTM
(MEB is the replacement of BLSTM with Transformer Encoder), a substantial improvement
in the results was obtained, indicating the soundness of the design. Furthermore, as can be
seen from the table, the scores even show a degree of decrease after the inclusion of the
phase. This also confirms that it is not feasible to estimate the phase singularly without
going through the information communication. As we mentioned in Section 2, it is due
to the specificity of the phase structure itself that relatively scant work has been done to
optimise for phase. Therefore, we need some additional information to help predict the
phase. Experimental results also support this idea, and the effect is further improved by
adding a dual-stream information communication (IC), where communication between the
two predicted streams is necessary. Where P and S denote the simulation of PESQ and STOI
respectively. Combining the information in the table we can see that the use of PESQ to
construct the discriminator has a much better restoration effect. The main reason for this is
the design of the STOI scores themselves. Training on this metric does not fully exploit the
potential of the network; STOI only discriminates intelligibility and is not comprehensive
in its ability to assess the quality of speech. For example, speech that contains noise and
reverberation is just as likely to be more intelligible as speech with less noise. On the
other hand, our approach can also provide some indication of the comprehensiveness and
generalisability of the evaluation metrics. On balance, the choice to optimise for the PESQ
metric is more convincing.

Table 3. Ablation experiments.

Network PESQ STOI

SDR (dB)
AVE

SDR (dB)
AVE

17.5 12.5 7.5 2.5 17.5 12.5 7.5 2.5

DPGAN(BLSTM) 2.99 3.31 3.13 2.89 3.08 0.915 0.942 0.935 0.896 0.922

+phase 2.85 3.20 2.99 2.68 2.93 0.893 0.922 0.925 0.908 0.912

+IC(P) 3.08 3.36 3.19 2.93 3.14 0.902 0.925 0.918 0.900 0.911

+IC(S) 2.55 2.81 2.61 2.38 2.59 0.940 0.958 0.933 0.929 0.940

DPGAN(MEB) 3.16 3.50 3.22 2.97 3.21 0.921 0.947 0.935 0.909 0.928

+phase 2.95 3.28 3.06 2.79 3.02 0.908 0.935 0.926 0.895 0.916

+IC(P) 3.29 3.60 3.34 3.05 3.32 0.899 0.930 0.919 0.884 0.908

+IC(S) 2.61 2.90 2.75 2.42 2.67 0.940 0.965 0.957 0.930 0.948

5. Limitations

According to the above experimental results, our system is able to make better im-
provements to the optimization objectives in most cases. The PESQ scores have been
significantly improved. It should be noted, however, that some of the non-major optimiza-
tion metrics are degrading as well. As a result, we evaluate the limitations of the current
experiments and reflect on the future.

1. The analysis in Section 4 showed that, since the phase is more abstract information,
a small change will have a significant effect on the final enhanced result. However, there
have not been many attempts to recover the phase in speech enhancement. We recover
the phase spectrogram separately and use the similar mask as the amplitude spectrogram
when choosing the recovery method, without fully considering the phase information itself.
We should take it further and think about a more suitable mask for phase characteristics to
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improve dual-stream path optimization. On the other hand, as shown in Figure 3, although
we expanded the mask range to (0,1.2), some standard mask values still fell outside this
interval, and we tried to further expand the mask range, but the experimental results were
not satisfactory. This also requires us to readjust parameters to solve this problem.

2. In our experiments, we did not adequately address the phase wrapping problem.
We tried to use the more widely used complex domain to complete the recovery instead of
the phase spectrum. However, the experimental results were disappointing. Furthermore,
phase mismatch, which occurs frequently in speech enhancement, continues to exist. The
results of this study indicate that there is still room to improve the recovery of the phase
spectrogram. DPGAN provides an innovative solution for this purpose and also demon-
strates the need to add information communication between the recovery of phase and the
recovery of amplitude, but the experimental results also show that there is still room for
further exploration of this problem.

3. We present our experimental results using PESQ and STOI as optimization targets
(Tables 1–3). Moreover, we also used CSIG, CBAK, and COVL as optimization targets
during our experiments, but the final scores were much lower than the first two. To
some extent, we believe that this reflects the performance of the sound quality evaluation
metrics. Li [69] attempted to evaluate many new metrics, such as Speech intelligibility in
bits (SIIB) [70], Hearing-aid speech perception index (HASPI) [71], Extended short-time
objective intelligibility (ESTOI) [72], etc. It is also proposed to train jointly with several
metrics. In the future, we can try similar approaches to improve the performance.

4. Furthermore, we have only tested the network on single-channel speech with
different SNRs against common natural noise, and have not explored its performance
on de-reverberation or multi-channel speech. In order to improve the content of future
experiments, we are currently working on developing a more comprehensive noise dataset.
In addition, the English data does not adequately reflect the generalization abilities of the
network, and it is necessary to expand to data in other languages as well.

In summary, our method proposes a novel way of speech enhancement and provides
an innovative idea for phase recovery. However, given the decline in CSIG and CBAK
scores, further studies of phase characteristics and the selection of the main optimization
metrics are required.

6. Conclusions

In this paper, we design a dual-stream GAN with phase awareness for single-channel
speech enhancement tasks. To achieve better enhancement performance, our generator uses
a dual-stream network to recover amplitude and phase separately, and adds a bi-directional
information communication module to guide the two prediction streams to each other.
We also propose to use a more advanced Transformer structure to extract speech features
for mask estimation. The full-scale experiments also justify the design we have adopted
in DPGAN. Compared with the current SOTA system, DPGAN is able to improve its
performance to a certain extent. At the same time, however, the introduction of phase into
speech enhancement is still in its infancy and there is still room for further improvement
in our experimental results. In the future, we will attempt to try other networks that are
more suitable for phase features to further enhance the usefulness of the network. We will
also explore the potential of DPGAN in low-latency environments and mobile applications,
which often require faster response times, and we can also extend this architecture to other
speech-related tasks such as speech separation and multi-channel speech enhancement.
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