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Abstract: Pedestrian tracking and detection have become critical aspects of advanced driver assistance
systems (ADASs), due to their academic and commercial potential. Their objective is to locate various
pedestrians in videos and assign them unique identities. The data association task is problematic,
particularly when dealing with inter-pedestrian occlusion. This occurs when multiple pedestrians
cross paths or move too close together, making it difficult for the system to identify and track
individual pedestrians. Inaccurate tracking can lead to false alarms, missed detections, and incorrect
decisions. To overcome this challenge, our paper focuses on improving data association in our
pedestrian detection system’s Deep-SORT tracking algorithm, which is solved as a linear optimization
problem using a newly generated cost matrix. We introduce a set of new data association cost matrices
that rely on metrics such as intersections, distances, and bounding boxes. To evaluate trackers in real
time, we use YOLOv5 to identify pedestrians in images. We also perform experimental evaluations on
the Multiple Object Tracking 17 (MOT17) challenge dataset. The proposed cost matrices demonstrate
promising results, showing an improvement in most MOT performance metrics compared to the
default intersection over union (IOU) data association cost matrix.

Keywords: multi-object tracking; Deep-SORT; YOLO v5; cost matrix; Hungarian algorithm; data
association; pedestrian tracking

1. Introduction

In recent years, the number of deaths caused by traffic accidents has significantly in-
creased, in part due to the growth of the number of vehicles in use. Therefore, considerable
efforts have been dedicated to detecting [1–7] and tracking [8–12] pedestrians at crosswalks,
enabling drivers to exercise greater caution.

Multiple-object tracking (MOT) is a computer vision task that seeks to locate vari-
ous objects in videos and assign them unique identities [13,14]. Over the years, many
MOT methods have been proposed and widely used in various applications, including
autonomous driving [15] and object collision avoidance [16]. However, MOT performance
may be compromised by configuration issues in crowded environments, as well as partial
or full object occlusions, which can limit its effectiveness in such scenarios. Despite being
a crucial task that finds applications in a wide range of areas [13,14,17], MOT remains a
challenging problem.

To develop our pedestrian detection and tracking system, a variety of algorithms
are required. The YOLOv5 [18–21] network is used to identify pedestrians in the images,
while the Kalman Filter algorithm [22] is used to predict the position of pedestrians in the
current frame. The results obtained by these algorithms are fed into the data association
module. The SORT [23] method utilizes the overlap of bounding boxes to match detections
to predicted tracks. However, SORT has difficulty tracking objects through occlusions,

Information 2023, 14, 218. https://doi.org/10.3390/info14040218 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14040218
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-4795-8569
https://doi.org/10.3390/info14040218
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14040218?type=check_update&version=1


Information 2023, 14, 218 2 of 16

which are common in frontal view camera scenes. To address this issue, Deep-SORT [24]
replaces the association metric with a more informed metric such as appearance features
extracted from bounding box images using a separate convolutional neural network (CNN).

Data association metrics [25–31] play a crucial role in object tracking and have a rich
history in computer vision and related fields. The problem of data association dates back to
the early days of computer vision, where it was initially used to solve problems related to
matching points and lines in two images. Over time, it has become a fundamental problem
in object tracking, where the goal is to associate object detections across multiple frames of
a video or image sequence. A variety of data association metrics have been developed over
the years, including simple geometric metrics such as Euclidean distance and overlap-based
metrics such as intersection over union (IoU), as well as more complex metrics based on
appearance and motion cues. Data association metrics are crucial for robust and accurate
tracking, as they determine how object detections are linked across time and how tracks
are maintained in the face of occlusions, clutter, and other challenges.

This work presents our evaluation study of Deep-SORT for multi-pedestrian tracking
by detection, utilizing novel data association metrics. Our objective is to demonstrate
the importance of utilizing such metrics for achieving optimal tracking and detection
performance. Our updated version of Deep-SORT was assessed on the MOT17 [32] dataset.

This paper is organized as follows: Section 2 provides a review of related work;
Section 3 presents a detailed explanation of the basic algorithms we used, along with our
proposed cost matrices; Section 4 thoroughly discusses the results obtained; Section 5
presents the conclusion.

2. Related Work
2.1. Object Tracking

Object tracking is the process of following a particular object or multiple objects in a
sequence of frames from a video or image sequence. The goal of object tracking is to locate
the object of interest and monitor its movement over time, while dealing with potential
challenges such as object occlusion, illumination variations, and changes in scale, orientation,
or appearance. There are various approaches to object tracking, including correlation filters,
optical flow, and deep learning-based approaches. Each approach has its strengths and
weaknesses and may be better suited for different types of objects or tracking scenarios.

Object tracking can be defined by two levels: single-object tracking (SOT) [33–37] and
multiple-object tracking (MOT) [38,39]. The objective of single-object tracking is to estimate the
trajectory of a target object over time, given its initial location in the first frame of a video se-
quence, while multiple-object tracking (MOT) involves tracking multiple objects simultaneously.

Online tracking and offline tracking are two distinct approaches to the problem of
object tracking in computer vision. In online tracking, the goal is to track an object of
interest in real time as new frames of a video sequence become available. This requires fast
and efficient algorithms that can process the data as they are acquired, with limited com-
putational resources and minimal delay. In contrast, offline tracking involves processing
an entire video sequence after it has been recorded, with the goal of accurately tracking
the object’s trajectory and other properties over the entire sequence. This approach is more
computationally intensive and may involve techniques such as batch processing, global
optimization, or data-driven models.

Recent developments in the MOT literature have focused on two distinct strategies:
tracking by detection and joint tracking and detection.

2.2. Tracking by Detection

Tracking by detection (TBD) is a widely used approach in computer vision that relies
on detecting objects in each frame of a video sequence and then linking the detections
across frames to track the objects.

In 1979, D. Reid [40] proposed a method for tracking multiple objects that uses multiple
hypothesis tracking (MHT) to handle occlusions and track objects in complex scenes. The



Information 2023, 14, 218 3 of 16

MHT algorithm generates multiple hypotheses for each object in each frame, and then uses
a Bayesian filter to select the most likely hypothesis.

In 2008, a novel approach to multiple-object tracking was presented by Li Zhang [41],
which utilizes all available observations for optimizing global data association. The pro-
posed framework takes into account factors such as false alarms, occlusions, and trajectory
initialization and termination. By using min-cost network flow algorithms, the framework
offers an optimal solution, which was found to be efficient in practical use. The results of
the experiments demonstrated that global data association enhances trajectory consistency
while reducing trajectory fragments. Furthermore, the framework is adaptable to track any
object class with suitable detectors and is highly versatile.

In 2009, B. Babenko et al. [42] proposed a tracking method that uses online multiple
instance learning (MIL) to track objects in a video sequence. The method learns to classify
object patches as either positive or negative examples on the basis of their appearance, and
then uses this classifier to track the object across frames.

In 2012, Z. Kalal et al. [43] proposed a framework called Tracking–Learning–Detection
(TLD) that combines detection and tracking in a single algorithm. The TLD algorithm uses a
detector to locate the object in each frame and then uses a classifier to learn the appearance
of the object over time, enabling it to track the object even when it becomes occluded.

In 2014, B. Wang et al. [44] proposed a method for associating tracklets (short trajecto-
ries) of objects in a video sequence. The method uses online discriminative metric learning
to learn a distance metric that can distinguish between the appearance of different objects,
enabling it to match tracklets even when they have different appearances.

In 2017, N. Wojke et al. [24] proposed Deep-SORT, a deep learning-based method for
tracking objects in a video sequence. Deep-SORT uses a combination of a deep neural
network for feature extraction and a simple online tracking algorithm for object association,
enabling it to achieve state-of-the-art results on multiple benchmarks.

In 2018, J. Zhu et al. [45] proposed a novel approach for online multi-object tracking
that uses dual matching attention networks to match object detections across frames. The
method achieves state-of-the-art results on multiple datasets, demonstrating the effective-
ness of attention-based approaches for the tracking by detection problem.

2.3. Joint Tracking

On the other hand, joint tracking and detection methods aim to achieve detection and
tracking simultaneously in a single stage.

In 2002, N. J. Gordon et al. [46] proposed a joint tracking method using particle filters
to estimate the positions of multiple targets. The method takes into account the interactions
between objects and demonstrates the effectiveness of particle filter-based approaches for
the joint tracking problem.

In 2004, T. Vercauteren et al. [47] proposed a collaborative tracking method for multiple
targets using sensor networks. The method combines data from multiple sensors to estimate
the positions of the targets, taking into account the interactions between them.

In 2012, Zheng Wu et al. [48] presents a new approach for multiple-object tracking
using a single objective function that combines object detection and data association. The
framework uses Lagrange dual decomposition and a coupling formulation to avoid error
propagation that traditional detection–tracking approaches suffer from. The joint image
likelihood is modeled instead of applying independent likelihood assumptions, and the
method can handle partial or complete occlusions without severe scalability issues. The
experiments demonstrate that the approach can achieve results comparable to state-of-the-
art approaches even without a heavily trained object detector.

In 2021, Y. Wang et al. [49] put forth a novel approach for joint multi-object tracking
(MOT) that utilizes graph neural networks (GNNs). Their approach leverages the ability of
GNNs to capture the relationships between objects of varying sizes across both spatial and
temporal domains, which is critical for obtaining meaningful features for detection and data
association. By conducting thorough experiments on the MOT15/16/17/20 datasets, the
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researchers proved the efficacy of their GNN-based joint MOT approach and established
its superior performance for both detection and MOT tasks.

2.4. Tracking Applied in Pedestrian Detection Systems

Tracking methods applied to pedestrian detection often rely on detecting the pedes-
trian in each frame of a video sequence and then linking the detections across frames to
track the pedestrian.

In 2006, D. M. Gavrila et al. [50] proposed a real-time multi-cue vision system for the
detection and tracking of pedestrians from a moving vehicle. The detection component
consists of a series of modules that use complementary visual criteria to progressively re-
duce the image search space. The consecutive modules including (sparse) stereo-based ROI
generation, shape-based detection, texture-based classification, and (dense) stereo-based
verification. An example of the integration is the activation of a weighted combination
of texture-based classifiers by shape-based detection, with each classifier attuned to a
specific body pose. Extensive experiments in difficult urban traffic conditions showed that
the system reaches a correct recognition percentage of 62–100% at the cost of 0.3–5 false
classifications per minute. The performance of the stereo version of the system was signifi-
cantly better than the mono version, and this was further improved by limiting the sensor
coverage area and increasing the processing time.

In 2011, M. D. Breitenstein et al. [51] addressed the issue of automatically detecting and
tracking a variable number of individuals in complex environments with an uncalibrated,
potentially moving camera. To achieve this, they introduced a new approach for multi-person
tracking using particle filtering. In addition to utilizing final high-confidence detections, the
algorithm incorporates the continuous confidence of pedestrian detectors and online-trained,
instance-specific classifiers as a graded observation model. The algorithm can detect and
track many individuals who are dynamically moving in complex scenes with occlusions,
without relying on background modeling, requiring a camera or ground-plane calibration,
and only using past information. As a result, it is well suited for online applications with
minimal restrictions. Experiments demonstrated that their approach performs well in various
highly dynamic scenarios, including typical surveillance videos, webcam footage, and sports
sequences. Additionally, they compared the method with other approaches that rely on
additional information and showed that it outperforms them.

In 2013, F. Basso et al. [52] proposed a method for multi-person tracking using RGB-D
data. The method uses a combination of appearance and depth features to detect and track
pedestrians. The methodology includes a proficient clustering method based on depth
information from point clouds, a classification algorithm resembling HOG for reliable
person tracking initialization, and a person identification classifier that incorporates online
learning to enable accurate matching of individuals even in cases of complete occlusion.
The algorithm demonstrated a high level of accuracy, correctly tracking 96% of individuals
with minimal ID switches and a low incidence of false positives. The algorithm also
maintained an average frame rate of 25 fps.

In 2018, M. Thoreau et al. [53] proposed a method for pedestrian tracking using
deep neural networks. The method uses a combination of a deep neural network for
feature extraction and a simple online tracking algorithm for object association, achieving
state-of-the-art results on multiple benchmarks.

In 2021, X. Zhang et al. [54] demonstrated how the use of a deep similarity metric can
enhance three crucial aspects of pedestrian tracking in a multiple-object tracking bench-
mark. Their approach involves training a convolutional neural network to acquire an
embedding function in a Siamese configuration, using a vast dataset focused on person
re-identification. The embedding network, which is trained offline, is subsequently in-
tegrated into the tracking framework to improve performance while retaining real-time
processing capabilities. The proposed tracking mechanism involves storing appearance
metrics during periods of strong detections, which enables the system to avoid identity
switches, link tracklets during occlusion, and identify new detections in instances where
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the detector confidence is low. These techniques result in competitive results, particularly
when compared to other online, real-time approaches.

Both joint tracking and tracking by detection methods can be used for online tracking in
pedestrian detection. Joint tracking methods typically use a single model for both pedestrian
detection and tracking, and they aim to simultaneously detect and track pedestrians in a
video stream. These methods can be effective in situations where the number of pedestrians
is relatively small and the pedestrian appearance varies little over time. On the other hand,
tracking by detection methods use a separate pedestrian detector to identify pedestrians in
each frame, and then use a tracking algorithm to link the detections into tracks over time.
These methods are more robust to changes in pedestrian appearance and can handle a larger
number of pedestrians, but they may require more computational resources.

In practice, the choice of tracking method depends on the specific application and the
requirements for accuracy, speed, and robustness. Some researchers have proposed hybrid
methods that combine joint tracking and tracking by detection to leverage the strengths
of both approaches. Ultimately, the best approach depends on the specific needs of the
application and the available resources for computation and data processing. Hence, for
the purpose of this work, tracking by detection methods are more suitable.

3. Methodology
3.1. YOLOv5

The YOLO [19] algorithm, which stands for “You Only Look Once,” is an object
detection algorithm that divides images into grids. Each grid cell is responsible for detecting
objects within itself. Due to its speed and accuracy, YOLO is one of the most well-known
object detection algorithms.

Glenn Jocher introduced YOLOv5 [18] shortly after the release of YOLOv4 [20], using
the PyTorch framework. The small size and fast calculation speed of the model are at the
heart of the YOLO target detection algorithm. YOLO’s structure is straightforward, and its
neural network can directly output the position and category of the bounding box, enabling
YOLO to perform real-time detection in videos. By detecting objects directly using the
global image, YOLO can encode global information and reduce the likelihood of detecting
the background as an object. The structure of YOLOv5 is illustrated in Figure 1.
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3.2. SORT

The Simple Online and Real-Time Tracking (SORT) [23] algorithm is a widely used
method for tracking objects in video streams. It is a multi-object tracker that uses a
combination of a Kalman filter and a Hungarian algorithm [55] to estimate the position
and velocity of objects in each frame and match them across multiple frames. The Kalman
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filter helps to smooth out the noisy measurements obtained from the video stream and
make accurate predictions of object positions, while the Hungarian algorithm solves the
data association problem by finding the optimal assignment of object tracks to detections.
SORT can handle complex scenarios such as occlusion, appearance changes, and variable
object speeds, making it highly effective in various computer vision applications such
as surveillance, autonomous driving, and robotics. SORT is known for its high accuracy,
efficiency, and ability to track multiple objects in real-time. Figure 2 depicts a detailed
overview of the SORT algorithm.
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The matching of the predicted bounding boxes from the Kalman filter (KF) with
the measured bounding boxes from the object detector in the image is handled by the
SORT data association module. This module plays a crucial role in the SORT algorithm by
associating detections with existing object tracks and improving the tracking performance
in real time.

This module accepts N-detected bounding boxes and M-predicted bounding boxes
as input (acquired from their respective KF). By computing a cost matrix between each
detected bounding box and all predicted bounding boxes, the module formulates a linear
assignment problem (Di, i∈{1 . . . N}, and Pj, j∈{1 . . . M}, respectively), with the intersection
over union (IOU) as a metric:

IOU(D, P) =


iou(D1, P1) · · · iou(D1, PM)
iou(D2, P1) · · · iou(D2, PM)

...
. . .

...
iou(DN, P1) · · · iou(DN, PM)

. (1)

To formulate the issue as a minimization problem, to be solved using the Hungarian
algorithm, the IOU between a detected bounding box and a predicted bounding box is
given by

iou(Di, Pj) = 1− Di ∩ Pj
Di ∪ Pj

. (2)

The Hungarian algorithm is used to associate the bounding boxes after computing
the cost matrix. The obtained associations are represented in an N × M array, with N
measurements corresponding to M tracks. Associations are also filtered by considering a
minimum IOU threshold. All associations with IOU less than the threshold are discarded.

The module responsible for KF estimation employs a linear constant velocity model
to represent the motion of each object. When an object is associated with a tracked object
or “track”, the state of the track is updated using the object’s bounding box. If there is no
association between an object and a track, the track’s state is only predicted.

The tracking management module is tasked with creating and deleting tracks. When
detections do not overlap or do so with tracks that have an IOU (intersection over union)
value below a certain threshold, new tracks are created. The bounding box of the detection
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is used to initialize the KF state. Since the object’s bounding box is the only available data,
the velocity of the object in the KF is set to zero, and its covariance is set to high to signal
the uncertainty of the state.

If a new track does not receive any updates due to the lack of associations, or if a track
stops receiving associations, it is deleted to avoid retaining a large number of tracks that
could be false positives or objects that are no longer in the scene.

3.3. Deep-SORT

Deep-SORT [24] is an advanced object tracking algorithm that uses deep learning
to improve the accuracy and robustness of object tracking in real-time video streams. It
is an extension of the SORT algorithm, which is a simple and efficient online tracking
algorithm. However, SORT has limitations in tracking multiple objects that are close to
each other or occluded. Deep-SORT addresses these limitations by using deep learning to
associate detections of the same object across frames. The algorithm extracts features from
the object detection output and calculates the similarity between detections. This enables
Deep-SORT to accurately track multiple objects that are in close proximity to each other
and are occluded, allowing the reidentification of tracks, after a long period of occlusion.
The use of deep learning also makes Deep-SORT more robust to changes in appearance
and lighting conditions, resulting in more accurate object tracking. The corresponding
Deep-SORT modules are similar to the KF estimation and track management modules. An
overview of the method is presented in Figure 3.
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Similar to SORT, the Hungarian algorithm employs a two-stage matching cascade to
assign detected bounding boxes to tracks. In the first stage, the Deep-SORT technique is
employed to match valid tracks on the basis of motion and appearance metrics.

Using the same data association strategy as SORT, the second stage links unpaired
and tentative tracks (which were recently established) with unpaired detections.

The incorporation of motion information involves calculating the (squared) Maha-
lanobis distance between predicted states and detections. Along with this distance metric,
a second metric that utilizes the smallest cosine distance is used to measure the distance
between each track and the appearance features of each measurement.

3.4. Data Association

The data associations [56–58] on the SORT algorithm and the second stage of the
Deep-SORT algorithm are fundamental components of object tracking in computer vision.
They can be represented as a linear assignment problem, which is a critical step in solving
the tracking problem. The linear assignment problem is typically formulated using a cost
matrix, and there are multiple approaches for constructing these matrices with proposed
bounding box metrics. As such, understanding these methods is crucial in developing
accurate and efficient object tracking systems.
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The Sorensen metric, also called the Sorensen–Dice coefficient, is a similarity measure
used in various applications, particularly in image segmentation and object detection. It
quantifies the similarity between two sets by computing the ratio of twice the intersection
and the sum of the sizes of the sets. The Sorensen metric is closely related to the intersection
over union (IOU), which is also widely used in object detection and segmentation tasks.
However, the Sorensen metric is considered more sensitive to small or detailed objects, as it
emphasizes the overlap between the sets more than the IoU metric. Our proposed Sorensen
cost matrix is defined by

Sorensen(D, P) =


Sorensen(D1, P1) · · · Sorensen(D1, PM)
Sorensen(D2, P1) · · · Sorensen(D2, PM)

...
. . .

...
Sorensen(DN, P1) · · · Sorensen(DN, PM)

. (3)

In order to express the problem as a minimization task that can be solved with the Hun-
garian algorithm, the Sorensen metric between a predicted bounding box and a detected
bounding box is defined as

Sorensen
(
Di, Pj

)
= 1− 2·

Di ∩ Pj

Di + Pj
. (4)

The cosine metric based on intersection, known as the Otsuka–Ochiai coefficient or
Ochiai index, is calculated as the ratio of the size of the intersection of two sets to the square
root of the product of their sizes. This makes it a useful tool for evaluating the accuracy of
image segmentation algorithms, as well as for measuring the similarity of sets of data in
other fields. Our proposed Cosinei cost matrix is defined by

Cosinei(D, P) =


Cosinei(D1, P1) · · · Cosinei(D1, PM)
Cosinei(D2, P1) · · · Cosinei(D2, PM)

...
. . .

...
Cosinei(DN, P1) · · · Cosinei(DN, PM)

. (5)

The problem can be reformulated as a minimization problem, which can be solved
using the Hungarian algorithm. In this formulation, the Cosinei metric between a detected
bounding box and a predicted bounding box is given by

Cosinei
(
Di, Pj

)
= 1−

Di ∩ Pj√
Di ×

√
Pj

. (6)

The overlap coefficient or Szymkiewicz–Simpson coefficient is a statistical measure
used to evaluate the similarity between two sets of data. It is defined as the ratio of the
size of the intersection of two sets to the size of the smaller set. Our proposed overlap cost
matrix is defined by

Overlap(D, P) =


Overlap(D1, P1) · · · Overlap(D1, PM)
Overlap(D2, P1) · · · Overlap(D2, PM)

...
. . .

...
Overlap(DN, P1) · · · Overlap(DN, PM)

. (7)

The overlap metric between a detected bounding box and a predicted bounding box is
given by

Overlap
(
Di, Pj

)
= 1−

Di ∩ Pj

min
(
Di, Pj

) . (8)
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We propose a new metric called the overlap ratio based on the overlap metric, which
is defined as the size of the intersection divided by the biggest size of the two sets. Our
proposed Overlapr cost matrix is defined by

Overlapr(D, P) =


Overlapr(D1, P1) · · · Overlapr(D1, PM)
Overlapr(D2, P1) · · · Overlapr(D2, PM)

...
. . .

...
Overlapr(DN, P1) · · · Overlapr(DN, PM)

. (9)

The Overlapr metric between a detected bounding box and a predicted bounding box
is given by

Overlapr
(
Di, Pj

)
= 1−

Di ∩ Pj

max
(
Di, Pj

) . (10)

Let us examine a bounding box, which is denoted by the image coordinates of its
center (xc, yc) as well as its width and height (w, h). Additionally, we work with a detection
set D, comprising N bounding boxes, and a prediction set P, consisting of M bounding
boxes. To compare the bounding boxes in these sets, we propose the below cost matrix
formulations.

Euclidean distance based cost matrix (Euclidean (D,P)):

Euclidean(D, P) =


Euclidean(D1, P1) · · · Euclidean(D1, PM)
Euclidean(D2, P1) · · · Euclidean(D2, PM)

...
. . .

...
Euclidean(DN, P1) · · · Euclidean(DN, PM)

, (11)

through which the Euclidean distance metric between a detected bounding box and a
predicted bounding box can be obtained by calculating the distance between their central
points, which is normalized to half of the image dimension:

Euclidean
(
Di, Pj

)
=

√(
xcDi − xcPj

)2
+
(

ycDi − ycPj

)2

1
2 ·
√

W2 + H2
, (12)

where W and H represent the width and height of the input image, while Di and Pi refer
to a bounding box from the detection set and a bounding box from the prediction set,
respectively.

Manhattan distance-based cost matrix (Manhattan (D,P)):

Manhattan(D, P) =


Manhattan(D1, P1) · · · Manhattan(D1, PM)
Manhattan(D2, P1) · · · Manhattan(D2, PM)

...
. . .

...
Manhattan(DN, P1) · · · Manhattan(DN, PM)

, (13)

which represents the distance between the bounding box’s central points. It is the sum of
the lengths of the line segment projections between the points onto the coordinate axes.
The Manhattan distance between bounding box central points is normalized into the half
sum of the image dimension, as follows:

Manhattan
(
Di, Pj

)
=

∣∣xcDi − xcPj
∣∣+ ∣∣∣ycDi − ycPj

∣∣∣
1
2 ·(W + H)

. (14)

Chebychev distance-based cost matrix (Chebychev (D,P)):
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Chebychev(D, P) =


Chebychev(D1, P1) · · · Chebychev(D1, PM)
Chebychev(D2, P1) · · · Chebychev(D2, PM)

...
. . .

...
Chebychev(DN, P1) · · · Chebychev(DN, PM)

. (15)

The Chebychev distance is a distance metric which is the maximum absolute distance
in one dimension of two bounding box central points as follows:

Chebychev
(
Di, Pj

)
= max(

∣∣xcDi − xcPj
∣∣

1
2 ·W

,

∣∣∣ycDi − ycPj

∣∣∣
1
2 ·H

). (16)

Cosine distance-based cost matrix (Cosine (D,P)):

Cosine(D, P) =


Cosine(D1, P1) · · · Cosine(D1, PM)
Cosine(D2, P1) · · · Cosine(D2, PM)

...
. . .

...
Cosine(DN, P1) · · · Cosine(DN, PM)

. (17)

The cosine similarity is simply the cosine of the angle between two vectors made by
bounding box central points. The cosine distance is defined as follows:

Cosine
(
Di, Pj

)
= 1−

xcDi·xcPj + ycDi·ycPj√
xcDi

2 + ycDi
2·
√

xcPi
2 + ycPi

2
. (18)

The bounding box ratio-based cost matrix (R(D,P)), proposed by Ricardo Pereira [59],
is implemented as a ratio between the product of each width and height:

R(D, P) =


r(D1, P1) · · · r(D1, PM)
r(D2, P1) · · · r(D2, PM)

...
. . .

...
r(DN, P1) · · · r(DN, PM)

, (19)

r
(
Di, Pj

)
= 1−min

(
wDi·hDi

wPj·hPj
,

wPj·hPj

wDi·hDi

)
. (20)

In addition, for boxes with similar shapes, this metric outcome with a value closer to
1 contrasts values close to 0 or much greater than 1. For that reason, the minimum between the
bounding box ratio and its inverse is applied to get a value that falls within the [0,1] range.

We proposed two modified bounding box ratio-based cost matrices (R1(D,P)) and (R2(D,P)):

R1(D, P) =


r1(D1, P1) · · · r1(D1, PM)
r1(D2, P1) · · · r1(D2, PM)

...
. . .

...
r1(DN, P1) · · · r1(DN, PM)

, (21)

r1
(
Di, Pj

)
= 1−min(

wDi + hDi

wPj + hPj
,

wPj + hPj

wDi + hDi
), (22)

R2(D, P) =


r2(D1, P1) · · · r2(D1, PM)
r2(D2, P1) · · · r2(D2, PM)

...
. . .

...
r2(DN, P1) · · · r2(DN, PM)

, (23)

r2
(
Di, Pj

)
= 1−min

(
0.5×

(
wDi

wPj
+

hDi

hPj

)
, 0.5×

(
wPj

wDi
+

hPj

hDi

))
. (24)
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We also propose different cost matrices based on a combination of the above-listed
cost matrices:

C1(D, P) = 1− (1−Chebychev(D, P))× (1−Overlapr(D, P)), (25)

C2(D, P) = 1− (1−Overlapr(D, P))× (1−Cosine(D, P)), (26)

C3(D, P) = 1− (1−Overlapr(D, P))× (1− R1(D, P)), (27)

C4(D, P) = 1− (1−Overlapr(D, P))× (1− R(D, P)), (28)

C5(D, P) = 1− (1− IOU(D, P))× (1− R(D, P)), (29)

C6(D, P) = 1− (1− Sorensen(D, P))× (1− R1(D, P)), (30)

C7(D, P) = 1− (1−Chebychev(D, P))× (1− Sorensen(D, P)), (31)

C8(D, P) = 1− (1−Cosine(D, P))× (1− Sorensen(D, P)), (32)

C9(D, P) = 1− (1−Chebychev(D, P))× (1− R1(D, P)), (33)

C10(D, P) = 1− (1− R1(D, P))× (1−Cosine(D, P)), (34)

C11(D, P) = 1− (1−Chebychev(D, P))× (1−Cosine(D, P)), (35)

C12(D, P) = 1− (1−Chebychev(D, P))× (1−Cosinei(D, P)), (36)

C13(D, P) = 1− (1−Cosinei(D, P))× (1− R1(D, P)), (37)

C14(D, P) = 1− (1−Cosine(D, P))× (1−Cosinei(D, P)). (38)

4. Results and Discussion

The goal of this work is to accurately track pedestrians in a video, which involves
assigning person-specific IDs to corresponding tracks that are coherent throughout the
entire tracking sequence. By achieving a perfect tracking result, we can ensure that the
pedestrian movements are accurately monitored and analyzed.

The proposed work was evaluated using the challenging MOT17 [32] dataset, which
is designed for multi-object tracking. The dataset consists of 14 video sequences—seven
for training and seven for testing—covering both indoor and outdoor scenarios involving
pedestrian tracking. The high degree of pedestrian occlusion and fast motion in the MOT17
dataset make tracking even more challenging. In this study, we focused on the 02-04-10
DPM training sequences to evaluate the performance of our multi-object tracking methods.
Since the methods we used do not require a training process, we were able to use the
training sequences exclusively for evaluation. All training video sequences in our dataset
are uniformly rescaled to a resolution of 960 × 540 pixels. Correspondingly, ground truth
annotations are adjusted to match this resolution.

In order to assess the effectiveness of our proposed cost matrices, we use a set of
standard evaluation metrics [60,61]. These metrics include the ID F1 score (IDF1), ID
precision (IDP), ID recall (IDR), Recall (Rcll), Precision (Prcn), false acceptance rate (FAR),
ground truth (GT), mostly tracked (MT), partially tracked (PT), mostly lost (ML), false
positives (FP), false negatives (FN), identification switch (IDs), fragmentation (FM), multi-
object tracking accuracy (MOTA), multi-object tracking precision (MOTP), and MOTA
logarithmic (MOTAL).

We are primarily interested in two metrics: IDF1 and MOTA. IDF1 is more concerned with
association performance, whereas MOTA is more concerned with detection performance.

All modules were implemented on Ubuntu 20.04 LST using the Python 3.8.1 program-
ming language. Deep learning networks were also implemented using the Torch framework
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(version 1.13.0). The YOLOv5 network was trained using an image size of 416 × 416. In
addition, the YOLOv5 weights were initialized using the yolov5m.pt COCO pre-trained
model. For the Deep-SORT, TLost = 30 and association gating threshold = 0.4; Cost_matrix
associations with cost larger than 0.7 were disregarded. Our Deep-SORT tracking uses
the default mars-small128.pb TensorFlow model trained on MARS dataset for extracting
features from bounding boxes. Moreover, all experiments were performed using an Nvidia
1650 GPU 4 GB and an Intel(R) Core(TM) i5-9400F CPU 2.90 GHz (six cores) with 16 GB
RAM. The experimental results are shown in the Tables 1 and 2.

Table 1. Evaluation of Deep-SORT using our proposed data association cost matrices on the
MOT17 dataset.

Cost Matrix Evaluation Metrics
IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT↑PT ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

IOU 43.675 69.827 31.775 39.162 86.060 2.174 202 27 79 96 5010 48,048 247 730 32.506 79.756 32.815
Sorensen 43.727 69.877 31.819 39.172 86.025 2.181 202 27 81 94 5026 48,040 243 726 32.501 79.726 32.805
Cosinei 43.702 69.837 31.802 39.163 86.003 2.185 202 27 81 94 5034 48,047 242 721 32.483 79.728 32.786
Overlap 43.429 69.381 31.607 39.152 85.944 2.195 202 27 81 94 5057 48,056 250 724 32.432 79.738 32.746
Overlapr 43.659 69.793 31.765 39.168 86.059 2.175 202 27 80 95 5011 48,043 246 731 32.512 79.739 32.820

Euclidean 41.732 66.779 30.349 38.690 85.131 2.316 202 27 82 93 5337 48,421 368 762 31.466 79.849 31.929
Manhattan 42.038 67.254 30.575 38.668 85.057 2.329 202 27 81 94 5365 48,438 359 753 31.421 79.840 31.872
Chebyshev 42.429 67.754 30.885 38.815 85.150 2.320 202 27 82 93 5346 48,322 343 750 31.612 79.824 32.043

Cosine 40.278 64.542 29.273 38.380 84.620 2.391 202 27 79 96 5509 48,666 375 744 30.929 79.961 31.401

R 39.588 63.431 28.773 37.573 82.830 2.670 202 24 80 98 6151 49,303 523 873 29.122 79.824 29.781
R1 39.974 64.111 29.040 37.701 83.231 2.604 202 25 81 96 5999 49,202 486 851 29.490 79.862 30.102
R2 36.918 59.397 26.782 35.950 79.728 3.133 202 22 80 100 7219 50,585 665 956 25.967 79.994 26.805

Values emphasized in bold represent the peak performance in each metric (IDF1&MOTA) for every category of
cost matrices.

Table 2. Evaluation of Deep-SORT using a combination of our proposed data association cost matrices
on the MOT17 dataset.

Cost Matrix Evaluation Metrics
IDF1↑ IDP↑ IDR↑ Rcll↑ Prcn↑ FAR↓ GT MT↑ PT ML↓ FP↓ FN↓ IDs↓ FM↓ MOTA↑ MOTP↑ MOTAL↑

C1 43.610 69.715 31.729 39.163 86.048 2.177 202 27 80 95 5015 48,047 249 732 32.498 79.732 32.810
C2 43.663 69.798 31.767 39.171 86.065 2.174 202 27 80 95 5009 48,041 246 731 32.517 79.736 32.826
C3 43.748 69.928 31.831 39.185 86.083 2.171 202 27 80 95 5003 48,030 253 731 32.530 79.729 32.847
C4 43.675 69.830 31.774 39.208 86.167 2.158 202 27 79 96 4971 48,012 258 728 32.587 79.750 32.910
C5 43.685 69.861 31.778 39.190 86.157 2.158 202 27 79 96 4973 48,026 266 730 32.556 79.755 32.890
C6 43.389 69.351 31.570 39.171 86.048 2.177 202 27 80 95 5016 48,041 249 730 32.504 79.741 32.817
C7 43.793 69.990 31.866 39.170 86.031 2.180 202 27 81 94 5023 48,042 243 727 32.502 79.727 32.807
C8 43.727 69.877 31.819 39.172 86.025 2.181 202 27 81 94 5026 48,040 243 726 32.501 79.726 32.805
C9 41.995 67.131 30.554 38.837 85.328 2.289 202 26 83 93 5274 48,305 320 731 31.754 79.722 32.156
C10 41.363 66.262 30.066 38.171 84.124 2.469 202 25 82 95 5689 48,831 428 784 30.425 79.862 30.964
C11 42.498 67.872 30.933 38.842 85.225 2.308 202 27 82 93 5318 48,301 334 753 31.685 79.795 32.105
C12 43.727 69.875 31.819 39.172 86.022 2.182 202 27 81 94 5027 48,040 243 726 32.499 79.726 32.804
C13 43.611 69.702 31.733 39.170 86.036 2.179 202 27 80 95 5021 48,042 247 732 32.499 79.730 32.809
C14 43.702 69.837 31.802 39.163 86.003 2.185 202 27 81 94 5034 48,047 242 721 32.483 79.728 32.786

Values displayed in bold represent the peak performance for each performance metric (IDF1&MOTA).

The implementation presented in this study provides several important insights into
the performance of various tracking methods.

Firstly, the proposed ratio association cost matrix, R1, is shown to outperform both R
and R2 in the majority of tracking metrics. However, while the cosine cost matrix based on
angular distance can produce good results that exceed those of the ratio cost matrices, it
still falls short of the performance achieved by the distance cost matrices (refer to Table 1
for results).

Secondly, the proposed distance association cost matrix, Chebyshev, is found to out-
perform other distance matrices such as Euclidean and Manhattan (refer to Table 1 for
results). This suggests that the Chebyshev distance metric may be a more appropriate
choice for tracking applications in certain scenarios.

Moreover, the proposed Sorensen and Overlapr matrices, which are based on the
intersection of the tracked and detected bounding boxes, demonstrate superior perfor-
mance compared to other cost matrices in Table 1 concerning association and detection,
respectively. This highlights the potential benefits of using intersection-based methods for
tracking tasks.
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Furthermore, the proposed combination cost matrices, C7 and C4, are found to deliver
the best performances among all cost matrices in Tables 1 and 2, in terms of association
and detection, respectively. This suggests that combining different cost matrices may be a
promising approach for improving tracking/detection accuracy.

However, it is worth noting that the implementation presented in this study has
some limitations. Specifically, the system based on combination cost matrices can achieve
approximately 46 frames per second (FPS) without tracking, but this drops to 8 FPS with
tracking due to the nonuse of the GPU on the tracking part and hardware limitations.
Additionally, the study cannot explicitly balance the effect of performing accurate detection,
association, and localization when comparing trackers using the established metrics (IDF1
and MOTA). This may limit the generalizability of the findings to certain tracking scenarios.

5. Conclusions

The advanced driver assistance system (ADAS) proposed in this paper is a significant
contribution to the field of autonomous vehicles. By leveraging the power of the YOLOv5
and the Deep-SORT algorithms, our system can efficiently detect and track pedestrians,
making it a valuable addition to the existing ADAS technologies.

One of the key features of our proposed system is the use of a new tracking data
association metric. Our proposed cost matrices exhibit excellent performance in terms of
association and detection, outperforming the default data association cost matrix. This
improvement in tracking accuracy can enhance the safety of pedestrians and autonomous
vehicles on the road.

However, there are still some limitations to our work that we aim to address in
future research. One of these limitations is the ability to track pedestrians over longer
periods, which requires reidentification of the same individual over time. To address this
challenge, we plan to use our proposed system as a baseline and develop new methods for
re-identification.

Another area on which we plan to focus our future research is the utilization of parallel
computing technology, such as GPU acceleration, for the tracking component in order to
enhance the system’s frames per second (FPS). This enhancement will enable our ADAS to
operate more efficiently and quickly, thereby further improving its overall performance.

Lastly, we intend to evaluate the performance of our system using HOTA, a novel
metric for evaluating multi-object tracking (MOT) performance. Unlike previous metrics
such as MOTA and IDF1, HOTA was designed to overcome many of the limitations of
earlier metrics, and it provides a more accurate assessment of tracking accuracy.

Overall, we believe that our proposed ADAS has the potential to make a significant
impact on the field of autonomous vehicles, and we are excited to continue our research
and development in this area.
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