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Abstract: Biometric technology is fast gaining pace as a veritable developmental tool. So far, biometric
procedures have been predominantly used to ensure identity and ear recognition techniques continue
to provide very robust research prospects. This paper proposes to identify and review present
techniques for ear biometrics using certain parameters: machine learning methods, and procedures
and provide directions for future research. Ten databases were accessed, including ACM, Wiley, IEEE,
Springer, Emerald, Elsevier, Sage, MIT, Taylor & Francis, and Science Direct, and 1121 publications
were retrieved. In order to obtain relevant materials, some articles were excused using certain criteria
such as abstract eligibility, duplicity, and uncertainty (indeterminate method). As a result, 73 papers
were selected for in-depth assessment and significance. A quantitative analysis was carried out on
the identified works using search strategies: source, technique, datasets, status, and architecture. A
Quantitative Analysis (QA) of feature extraction methods was carried out on the selected studies
with a geometric approach indicating the highest value at 36%, followed by the local method at
27%. Several architectures, such as Convolutional Neural Network, restricted Boltzmann machine,
auto-encoder, deep belief network, and other unspecified architectures, showed 38%, 28%, 21%, 5%,
and 4%, respectively. Essentially, this survey also provides the various status of existing methods
used in classifying related studies. A taxonomy of the current methodologies of ear recognition
system was presented along with a publicly available occlussion and pose sensitive black ear image
dataset of 970 images. The study concludes with the need for researchers to consider improvements
in the speed and security of available feature extraction algorithms.

Keywords: biometric technology; ear recognition systems; feature extraction; classification methods;
convolutional neural network; restricted Boltzmann machine

1. Introduction

Globally, over 1.5 billion people are without proper identification proof [1]. Estab-
lishing a person’s identity, together with connected privileges, is an increasing source of
concern for governments all over the world, as it constitutes a major requirement for the
attainment of Sustainable Development Goals (SDG).

A formal means of personal identity verification is a primary requirement in modern
societies. The inability to establish one’s identity can significantly hamper access to basic
rights, government, and other essential services. The task of effectively identifying an
individual involves the use of biometrics technology. Biometric recognition involves using
specialized devices to capture the image of an individual’s feature and computer software
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to extract, encrypt, store, and match these features [2]. It typically involves the use of
unique features such as the face, ear signature, gait, voice, fingerprint, etc., for automatic
computerized identification systems.

A biometric system is principally a pattern recognition system that obtains biometric
data from an individual, mines a feature set from the data acquired, and compares this
feature set against the stored template in the database [3].

Computer-based biometric systems have become available primarily due to increasing
technological sophistication and computing capabilities. The face is a prominent example of
an innate human biometric used for identification [4]. It is a major feature for identification
due to its uniqueness [5]. However, an upward surge in the global population coupled
with cultural diversities makes effective identification more profound, particularly as
traditional identification such as passwords, locks and pin codes are gradually becoming
vulnerable to theft, sabotage, or loss hence the need for more reliable traits like the ear [6].
The recent global pandemic caused by the novel corona virus (COVID-19) has led to the
compulsory use of face masks in public [7]. Consequently, this new dressing standard
poses a serious challenge to facial recognition in public [8]. Further still, the challenge is
further emphasized in the performance of recognition systems, particularly in surveillance
scenarios, because the masks have occluded a large portion of the face [9] and have made
the attention to ear recognition research even more important. Although strategies for ear
recognition systems (ERS) were long conceived, actual implementation did not occur until
much later [10]. Ear images are a promising feature that has been lately advanced as a
biometric resource [11]. For instance, the human ears have an immediately foreseeable
background, and scholarly work on the symmetric features of the human ear has continued
to generate new interest [12]. For instance, structural features of the human ear abound,
thereby making it readily suitable for robust processing and applications. Not only does the
ear represent an unchanged biometric trait over time, but it also possesses characteristics
applicable to every individual, such as distinctiveness, collectability, universality, and
permanence [13].

The advantages of the external ear as a biometric feature include:

1. Fewer inconsistencies in ear structure due to advancement in age compared with
a face.

2. Reliable ear outline throughout an individual life cycle.
3. The distinctiveness of the external ear shape is not affected by moods, emotions, other

expressions, etc.
4. Restricted surface ear surface area leads to faster processing compared with a face.
5. It is easier to capture the human ear even at a distance.
6. The procedure is non-invasive. Beards, spectacles, and makeup cannot alter the

appearance of the ear.

In summary, this study aims to conduct a Systematic Literature Review (SLR) on
human ear biometric and recognition systems. The emphasis is on the contributions of
deep learning to improving and enhancing ear recognition system performance vis-a-vis
traditional machine learning methods. Subsequent sections of this paper are organized
as follows: Section 2 highlights the sequence, search methods, and other strategies used
in this study. Results obtained are presented in Section 3, with a follow-up discussion in
Section 4. Lastly, Section 5 highlights the research outcomes and challenges and presents a
current taxonomy of the ear recognition system.

2. Research Method

Research studies on human ear biometrics abound. These studies, mostly digital,
were scientifically analyzed using quantitative methods to highlight significant trends and
developments in ear recognition systems. The search procedure used in [1] was adopted
and used for this study to provide answers to the following research questions:

RQ1: What is state of the art in ear recognition research?
RQ2: What has deep learning contributed to ear recognition in the last decade?
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RQ3: Is there sufficient publicly available data for ear recognition research?
The research questions though intertwined motivates conducting this SLR.

2.1. Search Attributes

The methods of human ear recognition can be roughly divided into traditional and
methods based on deep learning, [14] with studies particularly more inclined towards
the latter.

Biometrics has, over time, evolved to include deep learning of artificial neural net-
works (ANN), [15]. Deep Convolutional Neural Networks are mathematical models that
simulate the functional attributes of human biological neural networks [16]. They represent
multiple data layers with multiple abstraction stages through learning to generate precise
models autonomously [17]. Research into ear recognition using neural networks with
varying performances has been in existence for a while. Several variants of ANN, such as
the convolutional neural network (CNN) are applicable in advancing various biometric
modalities. Studies suggest that approaches applying CNN epitomize state-of-the-art
performance in object detection, segmentation, and image classification, particularly in
unconstrained settings [18].

One of the initial efforts at the neural network for ear recognition was described
by [19], which employed local binary patterns and CNN with a recognition accuracy of
93.3%. Recent advances in CNN for developing verification and identification systems
have considerably pushed the development of image classification and object detection [20].
It combines a large set of parameters than traditional neural networks, thereby generating
improved performance [16].

2.2. Search Queries

In other to obtain a robust and comprehensive collection of related articles that have
significantly contributed to ERS, the following search criteria were used:

1. Boolean operators of “OR or “AND” to retrieve data.
2. Keywords generated from the research question as search parameters.
3. Restriction to some publication types and publishers.
4. Identifiers from related work.

Search results displayed outcomes with keywords and Boolean combinations such as
(human ear) AND (deep convolutionary network (OR) biometrics), (Identification (OR)
recognition (OR) deep-learning (OR) feature extraction). A logical procedure of review of
the contributions of neural networks to ERS was conducted through a numerical assessment
to identify innovative patterns, methods, and techniques in the ear recognition domain.
Table 1 indicates the number of articles downloaded from respective indexed databases.

Table 1. Articles downloaded from indexed database.

S/n Digital Library No. Articles Percentage (%)

1 Taylor & Francis 89 7.9
2 Science Direct 157 14
3 IEEE 255 22.7
4 Emerald 48 4.2
5 ACM 73 6.5
6 Sage 55 4.9
7 Springer 201 17.9
8 Elsevier 137 12.2
9 Wiley 45 4.0
10 MIT 61 5.4

Total 1121 100

Search Stage 1 (Information Extraction): an in-depth search of seven electronic databases
showed an initial total article count of 1121 and was further subjected to a careful selection process.
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Search Stage 2 (Screening): after the removal of 784 duplicate and 245 irrelevant
articles/works of literature, a residual quantity of 92 was obtained for onward analysis.

Search Stage 3 (Eligibility Determination): in obtaining appropriate articles relevant to
the study, 92 articles were shortlisted. Subsequently, 18 articles were dropped for lack of
clear-cut methodology.

Search Stage 4 (Inclusion): in-line with the research aim, the Authors conducted a
quality check for the residual articles and concluded on 74 for further systematic review.

The summary of the search procedure from stage 1 (information extraction), stage 2
(screening), stage 3 (eligibility determination) to stage 4 (inclusion) are represented in the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart
in Figure 1. Preliminary results from search criteria were obtained from Google Scholar,
Scopus, Springer, Science Direct, ACM, Emerald, and IEEE explore databases using a search
criterion of publications not later than ten (10) years.
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2.3. Search Strategy

After a preliminary assessment of requirements suitable for answering the research
questions, a predominance of varied knowledge repositories ranging from journal arti-
cles, online blogs, and bulletins to book chapters were returned. Five (5) main sources
which include journals, conferences, workshops, book chapters and original thesis were
selected for the review. A total of 74 articles were carefully selected based on relevance with
52 journal articles, 9 conference proceedings, 5 workshop reports, 5 theses and 3 book chapters.
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2.4. Article Source (AS)

Ten (10) electronic databases, including Taylor & Francis, Springer, Elsevier, Emerald,
Wiley, Science Direct, IEEE, ACM, Sage, and MIT, provided data for extraction using
keywords and related terms in the study. The sources include workshops, conference
proceedings, journal publications, original thesis, and book chapters.

2.5. Ear Databases

This section presents a review of databases used in ear detection and recognition. Ear
databases are crucial in developing and evaluating ERS and algorithms. Existing databases
are in different sizes with varied factors of influence ranging from illumination to the angle
of the pose. A summary of existing databases used in ear recognition research studies is
presented in Table 2. A number of these databases are either publicly available or can be
acquired under license.

Table 2. Existing ear recognition research databases.

S/n Catalogue Year Total
Images Sides Volunteers Description Available

1 VGGFace-Ear 2022 234651 both 660
Iner and intra subject variations

in pose, age, illumination
and ethnicity.

Free

2 UERC 2019 11000 Both 3690
Three image datasets to train and

test images under varied
parameters

Free

3 EarVN1.0 2018 28412 N/A 164
Images captured under varied

pose, illumination, and occlusion
conditions

Free

4 USTB-HELLOEAR (A) 2017 336572 Both 104 Pose variations Free

5 USTB-HELLOEAR (B) 2017 275909 Both 466 Left and right images captured in
uncontrolled conditions Free

6 WebEars 2017 1000 N/A N/A Images captured under varied
conditions Free

7 HelloEars 2017 610000 Both 1570 Images captured in a controlled
environment Free

8 AWE 2016 1000 Both 100 Images captured in the wild in an
uncontrolled environment Free

9 UND 2014 NA Both N/A Different image collections with
varied images captured in 3D. Free

10 XM2VTS 2014 4 Footages Both 295 32 khz 16-bit audio/video files Not Free

11 UMIST 2014 564 Both 20 Head rotation from the left-hand
side to the frontal view Free

12 UBEAR 2011 4497 Both 127
Images captured in an

uncontrolled environment with
different poses and occlusion

Free

13 WPUT 2010 2071 Both 501 Varied illumination Free

14 YSU 2009 2590 259 Angle images between 0 and 90 Free

15 IIT Delhi 2007 493 Right 125 3 Images taken indoor Free

16 WVU 2006 460 Both 402 2 min audio-visual from
both sides Free

17 USTB (4) 2005 8500 Both 500 15-degree differences using
17 cameras Free
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Table 2. Cont.

S/n Catalogue Year Total
Images Sides Volunteers Description Available

18 USTB (3) 2004 1738 Right 79 Dual images at 5-degree variation
till 60. Free

19 USTB (2) 2003 308 Right 77 Varying degrees of illumination at
+30 and −30 degrees Free

20 USTB (1) 2002 180 Right 60 Different illumination conditions
at a trivial angle Free

21 UND (E) 2002 942 Both 302 Both 2D and 3D pictures Free

22 UND (F) 2003 464 Side 114 Side profile appearance Free

23 UND (G) 2005 738 Side 235 2D and 3D pictures Free

24 UND (J2) 2005 1800 Both 415 2D and 3D pictures Free

25 IITD 2007 663 Right 121 Greyscale images with slight
angle variations. Free

26 PERPINAN 1995 102 Left 17
Images with minor pose
variations captured in a
controlled environment

Free

27 AMI NA 700 Both 100 Fixed Illumination Free

28 NCKU N/A 330 Both 90 37 images for each respondent Free

2.6. Methods of Classification

The techniques of ear recognition can be grouped into four broad categories: hybrid,
geometric, holistic, and local methods [10].

2.6.1. Geometric Approach

Research on geometric tendencies of the human ear dates to early 1890, when a French
researcher, Alphonse Bertillon, suggested the potential of the human ear in identifying sub-
jects [21]. Additional improvements using geometric features promoted the development
of a Voronoi illustration with adjacency graphs [22].

The geometric method involves the extraction and analysis of geometric features of the
human ear. These ranges from canny edge detection and contours to statistical features [23].
Ear image edges are computed after noise reduction using a Gaussian filter in canny edge
detection. Edges are then connected to generate a pattern [24]. The contours of the ear start
and end points are also useful information sources applicable in generating ear features and
recognizable patterns [25]. Other feature-based statistical methods present ear images using
parameters such as ear height, width, and angles between ear portions [26]. The work [27]
presents a detailed taxonomy of ear features used for recognition by both machines and
humans, such as texture, structure, and details. Typical texture-related features include ear
type, skin colour; ear size, and shape, all extractable using linear discriminant analysis and
principal component analysis algorithms. Ear features also use more prominent methods
like local binary pattern [28], SIFT [29], and Gabor filters [30], on ear structures such as
lobes, contours, and folds of the ear to represent the distinctiveness of the ear.

However, distortion invariant methods in ear geometry make only the required details
available, thereby making this approach over-dependent on edge detectors such that only
geometric ear information is considered with little emphasis on texture information.

2.6.2. Holistic Approach

In the holistic method, the overall stance of the ear is used to calculate input represen-
tations. It provides reasonable performance, particularly for suitably processed images.
Hence, the approach requires normalization procedures before the extraction of desired
features to ensure quality performance.
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In this study, several studies on holistic techniques were reviewed. Ref. [31] conducted
preliminary research on Force Field Transformation (FFT) for automatic ear recognition
and returned a recognition rate of 99% on about 252 images in the XM2VTS database.
Ref. [32] furthered the application of FFT with the underlying principle of Newton’s law of
gravitation to consider symmetric image pixels.

Experiments on the USTB IV database by [33] registered a comparatively low recogni-
tion rate of 72.2%. Gabor filters are also capable of identifying detailed texture data. When
fused, its recognition accuracy varies between 92.06% and 95.93% [32]. Dimensionality
reduction techniques such as PCA [31,34], ICA [35] and matrix factorization [36], feed
higher-dimension vectors into lower dimensions while retaining their distinct features.
Selected wavelet coefficients were used by [37] in repeated steps to represent features of ear
images from the IITK database with a stated recognition accuracy of 96% [38] in their exper-
iment on the UND and FEUD databases identified the suitability of sparse representations
in changing degrees of illumination and pose.

In [39], numerical methods were used in composing six varied feature vectors that
serve as feedback for a back propagation neural network for classifying moment invariant
feature sets.

2.6.3. Local Approach

The local method depends on local areas of certain locations in an image to the extent
of encoding texture details such that the region of interest does not automatically match
structurally significant parts. Studies such as [40] present SIFT as a robust algorithm suit-
able for feature extraction under changing conditions. For instance, SIFT can accommodate
variants in the pose for about 20 degrees [32]. Generally, assigning landmarks to ear images
before training ensures proper filtering and matching operations in the local technique.
Though SIFT landmarks have been very high such that obtaining an exact assignment
is experimentally impossible, [41] attained a recognition rate of 91.5% with the XM2VTS
database with possibilities for further improvements to 96%. Subsequent studies by [42]
decomposed ear images into distinct colour segments with a reduced error margin that
identifies and calculate unique identifiers for each key point detected. Unlike other ap-
proaches, local descriptors have varying degrees of complexity and are often combined
with hybrid techniques to provide further reliable results in ear recognition [43].

2.6.4. Hybrid Approach

The hybrid technique involves the use of multiple parameters to improve the perfor-
mance of recognition systems [5]. Edge models are initially generated from training images
before adjustments into actual edges, as shown in [44]. Similarly, a fusion of Tchebichef
moment descriptors and the triangle ratio method was experimentally determined in [45],
while [46] achieved a recognition accurate of 99.2% in the USTB II database.

The study of [47] famously combined PCA and wavelets, while [39] opted for a fusion
of Haar wavelet and LBP. The sparse representation algorithm by [48] was used on gray-
level positioning features before initial dimension reduction procedures with LDA by [49].
In wavelet transforms, coefficient thresholds are required to obtain feature vectors that are
particularly useful in the recognition and identification systems [50].

2.7. Ear Recognition Stages

In ear recognition systems, ear images are captured using a specific device. The images
are then subjected to a preliminary stage of determining potential regions of interest using
algorithms before being processed by a classifier, where details are enhanced before further
procedures [51]. Essentially, the stages required in ear recognition are highlighted below:



Information 2023, 14, 192 8 of 30

2.7.1. Pre-Processing

This is the first step in ensuring the usability of acquired images. It involves the
removal of unwanted background information (noise) before further processing. The
techniques used are divided into intensity and filter methods.

Intensity Method: Analysing coloured images for edge and feature detection can be
very complex [23]. Hence, a 3-conduit (RGB) image is often reduced to a single pathway
(grayscale) to minimize complexity [52]. A method of spreading image intensity across a
histogram, known as histogram equalization, is also sometimes applicable.

Filter method: In the filter method, noise reduction and feature enhancements are
achieved using fuzzy technology [24]. Mean or median and Gaussian and Gabor filters are
prominent examples of achieving a similar purpose.

2.7.2. Feature Extraction

The task of reducing the dimensions of an image for proper identification is known as
feature extraction [53]. The features of an image must be precisely and correctly extracted
using certain constituents of ear images, such as texture, colour, and shape. Subsequently,
research parameters have been established to further determine the performance of recog-
nition systems [9].

2.7.3. Classification

The classification or authentication stage is the final stage in the recognition process,
where the feature set of the probe image is compared with a database image using various
authentication techniques [23]. Many studies have been conducted on the stages involved
in recognition of ear patterns. A summary of the common methods used by researchers for
developing efficient and effective ERS is presented in Table 3.

Table 3. Summary of common methods in different stages of human ear recognition.

Pre-Processing Feature Extraction Decision-Making and Classification

Filter Method
Log Gabor Filter [54]
Gaussian filter [55]
Middle filter [55,56]

Fuzzy filter [24]
Intensity Method

Histogram equalization [53,57]
RBG—grayscale [25,55]

Geometric Method
Numerical technique [58]

Ear contour [25]
Detection of the edge [59]

Appearance Based Method
Descriptors of features [60]

Reduction of Dimension [61]
Force field Transformations [62]

Wavelet Method [63]

Neural networks [64]
Normalized cross-correlation [53]

SVM classifier [64,65],
K-Nearest Neighbours [28]

Minimum Distance Classifier [50]

2.8. Deep Learning Approaches in Ear Recognition

In this study, a relationship between the most crucial stage (feature extraction) and
classification techniques in relation to the volume of Authors is established.

Although deep-based schemes are often data-hungry, requiring significant processing
time, several light, computationally fast variants have recently evolved [66,67].

In deep learning, more prominent feature extraction techniques include Gabor Mean [54],
ANN Classifier, Haar wavelet ([50], Linear Discriminant Analysis (LDA) [68,69], Back Propa-
gation Neural Network [70], FFT [23], Principal Component Analysis (PCA), [71], Edge-based
method [12] and Voronoi diagrams [20].

Over time, the field of ear recognition has naturally developed along traditional ma-
chine learning methods, with few of its methods showing resilience to unconstrained
conditions, including lightning and pose variations [69], hence inhibiting the overall per-
formance of traditional systems.

Traditional ear detection and feature extraction methods typically rely on physiological
attributes of the ear for normalization, feature extraction and classification [69,72]. For
instance, in [73], training of various geometrical attributes of the ear was conducted with
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neural classifiers before the appearance of the inner and outer ear was suggested by [74].
Similarly, a combination of ear shape, average, centroid, and distance between pixels has
been used to extract features using contour algorithms [75] geometrically. The work [58]
extracted features using exterior ear edge and other local geometric features. Though these
procedures appear straightforward, the performance level is often significantly low due to
other salient processes involved [23].

Techniques involving subspace learning such as PCA, LDA and ICA, sometimes
referred to as “Eigenears” have been experimentally determined suitably in local ear
contour feature extraction [23]. More recently, The work [61] used a combination of multi-
discriminative attributes and dimension reduction techniques to locally extract features of
the ear. Such fusion techniques are referred to as hybrid and are usually more computation-
ally expensive but with higher recognition performance over individual local, holistic, and
geometric methods [76].

Nevertheless, traditional learning methods in ear recognition are severely hampered
by more complex realities [72]. Even more interesting is the recent research focus which
involves obtaining ear images in unrestrained conditions, generally referred to as in the wild.
Traditional approaches to human ear recognition often rely on the preliminary processing
of images, complex feature extraction, and determination of suitable classifiers [70]. These
challenges have opened a new landscape as the research focus has gradually shifted to the
automation of biometric identification [77].

3. Results Analysis

This section presents a discussion of search strategy outcomes to provide answers
to research questions. Subsequently, different subsections are structured to highlight
interpretations of the findings.

3.1. Search Strategy 1: Source

RQ1: What is state of the art in ear recognition research?

In the initial phase, a categorized search was used to identify similar articles on
ERS and Neural Networks using paper titles and related keywords before developing
a concluding search technique. The search for similar works was conducted for articles
between 2010 and 2020 from the following sources: Springer, Elsevier, ACM, IEEE, Sage,
Wiley, MIT Press, Taylor & Francis, Emerald and Science Direct. Figure 1 shows the number
of relevant articles from selected sources, thus addressing RQ1.

3.2. Relevance of Publication

The 74 selected publications show that IEEE had the highest number with 15 relevant
articles, followed by Springer having 12 relevant articles, Elsevier published 11, while
Science Direct published 9 relevant articles. Taylor & Francis, Emerald, ACM, and Sage had
8, 8, 7 and 3 articles, respectively, while Wiley and MIT had one relevant publication each.

Ear recognition technique remains an active area of research that continues to generate
diverse interest. The total number of relevant publications and the corresponding levels of
citation from 2011 to 2020 is 2, 3, 5, 5, 4, 8, 7, 12, 10, and 13, respectively. Thus, confirming
the steady rise in neural network techniques with the year 2020 having the highest number
of relevant articles within the decade.

Although diverse methods of pre-processing, feature extraction and classification exist
in the recognition process, there is an upward surge in the use of neural network methods
for classification in ear recognition systems. Reasons for this might be inferred from the
increasing demand for more fool proof biometric identification systems requiring large
datasets and the ability of neural networks to train very large data sets autonomously.

3.3. Search Strategy 3: (Method)

Ear recognition techniques vary. Overtime, several Authors, have experimentally
determined the performance of ERS using single or combined approaches on a wide array
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of datasets. Table 4 presents a summary of identified works containing metrics used in
ear recognition.

Table 4. Summary of Performance metrics used in Traditional and Deep learning techniques in
selected articles.

Traditional Learning Technique

True Acceptance Rate
[6,78–83]

Template capacity
[5,84–86]

False Acceptance Rate
[4,6,21,23,83,87–91]

Equal Error Rate
[92–94]

Matching Speed
[3,95]

Recognition Accuracy
[14,15,24,28,68,85,96–105]

Recall
[106–108]

Precision
[40,95,102,109–111]

Deep Learning Techniques

True Acceptance Rate
[110–114]

Template capacity
[115]

False Acceptance Rate
[110–114].

Equal Error Rate
[72,114]

Matching Speed
[61,115–117]

Recognition Accuracy
[70,118–121]

Recall
[57,77,122–125]

Precision
[126,127]

Previous studies have highlighted the numerous methods applied in the process of
ear recognition, including local, holistic, geometric, and hybrid. The study on 74 existing
related literature carefully selected from several works of literature [7–180] revealed that
65%, 20%, 12% and 8% of the studies employed local, hybrid, holistic, and geometric
methods, respectively. Although several works of literature on ear biometrics abound, a
concise summary of some existing ear recognition approaches from the list is presented in
Table 5. A summary of the Pros and Cons of different sub-areas in Ear Recognition Stages
is given in Table 6 in Section 4.

Table 5. Comparative summary of ear recognition approaches.

Reference. Year Method Type Dataset Performance (%)

[7] 2010 PCA and NN Holistic UBEAR 96

[18] 2022 Deep Learning CNN VGGFace NA

[23] 2019 NA NA NA NA

[27] 2016 Geometric features Geometric features CP 88

[31] 2003 Force field transform Holistic Own NA

[31] 2003 PCA Holistic UND(E) 71.6

[35] 2005 Matrix factorization Holistic USTB II 91

[38] 2008 Sparse representation Holistic UND 96.9

[39] 2010 Moment invariant method Holistic Own 91.8

[40] 2010 SIFT Local XM2VTS 96

[41] 2007 Combination of pre-filtered
points and SIFT Local XM2VTS 91.5

[47] 2007 PCA and wavelet
transformation Hybrid USTB II, CP 90.5

[47] 2007 Inpainting techniques, neural
networks

CNN, Traditional
learning UERC 75

[48] 2013 SIFT Local CP 78.8

[49] 2014 Hybrid-based on SURF LDA
AND NN Hybrid Own 97
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Table 5. Cont.

Reference. Year Method Type Dataset Performance (%)

[41] 2007 Combination of pre-filtered
points and SIFT Local XM2VTS 91.5

[47] 2007 PCA and wavelet
transformation Hybrid USTB II, CP 90.5

[47] 2007 Inpainting techniques, neural
networks

CNN, Traditional
learning UERC 75

[48] 2013 SIFT Local CP 78.8

[49] 2014 Hybrid-based on SURF LDA
AND NN Hybrid Own 97

[49] 2014 Neural networks Deep CNN UERC 99.7

[72] 2019 Neural Networks CNN AMI 75.6

[73] 1999 Orthogonal log-Gabor filter
pairs Local IITD II 95.9

[75] 2005 Ear framework geometry Geometric Own 86.2

[81] 2013 Not Applicable (NA) NA NA NA

[85] 2019 NA NA NA NA

[87] 2019 Neural networks CNN - -

[92] 2020 Deep learning CNN NA 97

[98] 2014 Edge image dimension Geometric USTB II 85

[107] 2016 CNN Local Avila Police School
& Bisite Video 80.5 & 79.2

[107] 2013 Deep neural network CNN Avila Police School 84

[108] 2017 Traditional Machine Learning YOLO, Multilayer
perceptron Own 82

[117] 2018 Maximum and minimum height
lines Geometric USTDB&IIT Delhi 98.3 & 99.6

[119] 2018 Deep Learning CNN Open image
dataset 85

[123] 2023 Neural networks CNN AMI, UND, Video
Dataset, UBEAR 98

[128] 2010 PCA Holistic Own 40

[129] 2002 ICA Holistic Own 94.1

[130] 2014 Log-Gabor wavelets Local UND 90

[131] 2007 Multi-Matcher Hybrid UND(E) 80

[132] 2007 Log-Gabor filters Local XM2VTS 85.7

[133] 2008 LBP and Haar Wavelet
transformation Hybrid USTB III 92.4

[134] 2008 Improved locally linear
embedding Holistic USTB III 90

[135] 2008 Null Kernel discriminant
analysis Holistic USTB I 97.7

[136] 2008 Gabor filters Local UND(E) 84

[137] 2009 Block portioning and Gabor
transformation Local USTB II 100
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Table 5. Cont.

Reference. Year Method Type Dataset Performance (%)

[138] 2009 2D quadrature filter Local IITD I 96.5

[140] 2013 Sparse representation
classification Holistic USTB III 90

[141] 2019 Multi-level fusion Hybrid USTB II 99.2

[142] 2014 Enhanced SURF with NN Local IITK 1 2.8

[143] 2014 Non-linear curvelet features Local IITD II 96.2

[144] 2014 BSIF Local IITD II 97.3

[145] 2014 LPQ Local Several 93.1

[146] 2014 LPQ, BSIF, LBP, HOG with LDA Hybrid UND-J2, AMI,
IITK 98.7

[147] 2014 Weighted wavelet transforms
and DCT Hybrid Own 98.1

[148] 2015 Haar wavelet and LBP Hybrid IITD 94.5

[149] 2016 BSIF Local IITD I, IITD II 96.7 & 97.3

[150] 2015 Multi-bags-of-features
histogram Local IITD I 6.3

[151] 2015 Gabor filters Local IITD II 92.4

[153] 2017 Modular neural network Hybrid USTB 99

[154] 2018 Biased normalized cut and
morphological operations Deep Neural Network Own 95

[155] 2018 Traditional machine learning Local NA NA

[156] 2020 Deep learning CNN Own 95

[157] 2020 Traditional Machine Learning Sparse Representation USTB III NA

[158] 2022 Traditional Machine Learning Hybrid IITDelhi NA

[159] 2022 Deep Learning SIFT and ANN IITDelhi NA

[180] 2022 Global and local ear prints Hybrid FEARID 91.3

In this study, the authors of selected articles were divided into five groups. These
categories represent the level of the ERS implementation in the article in terms of if the
study was based on:

1. an assessment of existing algorithms on a given dataset (A);
2. a proposed or yet-to-be-evaluated techniques (S);
3. a designed templates using existing procedures (D);
4. planning and assessment with studies based on established procedures (PA);
5. newly proposed and executed techniques (PE).

The results showed A, S, D, PA and PE returned 26, 19, 8, 9, 13 articles respectively.
The details of the articles in each category is in Table 7 (see Section 4).

Results show that 25.33% of the methods used in the selected articles were suggested
(proposed) and not implemented. This might not be unconnected with the availability of
limited ear databases collected in unrestrained situations for experimental studies.

RQ2: What are the contributions of deep learning to ear recognition in the last decade?

At present, acceptance of deep learning techniques is increasing as it combines the
traditional steps in the recognition process into single connecting models [72]. Deep learn-
ing algorithms have overcome many of the challenges associated with machine learning
algorithms, particularly those associated with feature extraction techniques, while also
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having the ability for biometric image transformations. Consequently, attempts at ear
detection using neural networks though initially limited are rapidly gaining pace. Early
attempts by [160] focused on multi-class projection extreme learning machine methods to
augment performance. In [10], a concise and detailed review of advances in ear detection
using machine learning was presented. Geometric morphometric and Neural Networks
were suggested in [57] to compare non-automated instances. Ref. [87] developed a neural
network model to authenticate responses originating from the human ear with a 7.56% and
13.3% increase in identification and verification tasks, respectively.

However, variants of the neural network such as Convolutional Neural Networks
(CNN) have shown remarkable performance against conventional systems [161]. The CNN
design originates from [162], it is majorly a multi-layer network with capabilities to handle
several invariants [169]. Subsequent experimental studies have gradually adapted its use to
the recognition of specific human biometric traits. It eliminates cumbersome pre-processing
procedures associated with traditional methods [163,164] and its robustness against texture
and shape makes it dominant over traditional approaches [20,24].

Experimental studies by [72] compared the performance of some traditional ear recogni-
tion approaches to a variant of CNN with results above 22% of the initial descriptors. Nonethe-
less, ear recognition using deep neural networks is still significantly hampered by limited ear
recognition databases and few experimental images leading to data augmentation [18].

RQ3: Is there sufficient publicly available data for ear recognition research?

A summary of findings from Table 2 indicates a predominance of free publicly available
ear databases. This research identifies 27 publicly available datasets. Findings studies suggest
the existence of publicly available ear databases since 1995, however, ear databases have
grown to further accommodate different poses, angles, occlusion, and modes of collection.

Ear biometrics represents an active field of research. Nevertheless, ear image databases
are very rare and usually strongly limited [165]. Further still, an absence of a unified
large-scale publicly available ear database still represents a major challenge in the overall
objective evaluation of ear recognition systems.

For instance, as of 2017, the reported performance of ear-recognition techniques has
surpassed the rank-1 recognition rate of 90% on most available datasets [10]. This fact
suggests that though technology has reached a level of maturity that easily handles images
captured in laboratory-like settings, presently available ear databases are inadequate.
Consequently, more challenging datasets are needed to identify open problems and provide
room for further advancements.

3.4. Comparison with Related Surveys

ERS is not so popular compared to other biometric systems like fingerprints, faces,
Veins, iris etc, [113]. Data augmentation of images in neural networks is often a challenging
factor. Hence [166] suggested a learning method using limited datasets to train the network
in ear image recognition. Similarly, Ref. [69] proposed a means of ear identification using
transfer learning. Ref. [10] also recommended a mean method to improve the performance
of datasets and suggested various architectures and controlled learning on previously
trained datasets to develop a widely accessible CNN-based ear recognition method. In order
to improve upon factors that affect image acquisition techniques such as contrast, position,
and light intensity, a framework for ear localization using a histogram of oriented gradient
(HOG) and support vector machine (SVM) was developed by [116] before subsequent CNN
classification. A discriminant method was suggested by [61] to extract ear features in a
pecking order, while [21] introduced dual images using SVM to tackle the challenge of
limited images per subject. In exploring hand-crafted options, Ref. [167] combined CNN
and handcrafted features to augment deep learning techniques, thus suggesting that deep
learning can be complemented with other techniques.

This survey extended the review from [23], whose focus was mainly on the three core
phases of ear biometric research: pre-processing, feature extraction and authentication.
Consequently, a comprehensive overview of the contributions of prior research efforts is
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further amplified with particular emphasis on methods used for feature extraction and
classification process. Despite previous reviews, this study focuses on qualitative and
quantitative analysis of prevailing techniques through diverse search strategies as done
in [11]. To the best of our knowledge, this study is the first to provide an in-depth novel
synopsis and grouping of research approaches in ear biometric using different categories:
existing approaches and methods.

Table 7 in Section 4 shows shows the predominantly used ear databases amongst
several researchers from the list of reviewed articles.

A careful review of selected publications revealed some factors highlighted below as
major determinants of the challenge raised in R3.

1. Poor feature selection: the application of feature selection is very diverse as it aims to
reduce factors that can affect the performance of classifiers. Many images are acquired
with several inherent background noises. Invariably, poor feature selection results in
poor classification.

2. Hardware Dependence: A common drawback identified from selected works of litera-
ture is the resource-intensive tendencies of neural networks and other associated costs.
They often require large volumes of data for training, placing heavy computational
demand on processors.

3. Gaps between industry, implementation, research, and deployment: studies from
reviewed articles revealed a missing link between the industries, researchers, and
other stakeholders such that the majority of the related experimental studies were
performed for purely academic purposes, hence limiting the potential to fine-tune
existing technologies to suit user requirements.

Consequently, a need for merging research with actual deployment at user-ends is
crucial in assessing the strengths and weaknesses of recognition systems and in providing
relevant state-of-the-art systems capable of mitigating emerging vulnerabilities.

3.5. State of the Art in Ear Biometrics over the Last Decade

In the past few years, ear biometrics have been very prominent in achieving state of
the art status applicable within the fields of human verification and identification [173].
Although poor quality images have often been a demerit, improved methods have since
been developed to tackle it. Research from various authors, Refs. [181,182] have consistently
explored novel approaches targeted at optimal performance of ear biometric systems.
Typically, concentration on ear biometrics have been largely focused on the approaches of
ear detection. This is seen from the study in [183–189]. The fundamental goal of researchers
for years has been and continues to be developing ear recognition model that can overcome
all detection challenges [183], but ear detection remains an image segmentation problem.
In [184], deep CNN and contextual information was applied for ear detection in the 2D
side of the face image. A single stage architecture was used to perform detection and
classification with scale invariance. A context-provider in Context-aware Ear Detection
Network (ContexedNet) developed in [190], extracts probability maps from the input image
corresponding to facial element locations, and a model specifically designed to segment
ears that incorporates the probability maps into a context-aware segmentation-based ear
recognition algorithm. Extensive tests were conducted on the AWE and UBEAR datasets
to evaluate ContexedNet, and the results were very encouraging when compared to other
state-of-the-art methods. In [185], a deep learning object detector called Faster R-CNN
was developed based on CNN, PCA and genetic algorithm (GA) for feature extraction,
dimensionality reduction and selection, respectively. The work [186] went further to
propose a deep network for segmenting and normalising ear print patterns, the model was
trained using the IITD dataset.

Furthermore, the authors in [113] proposed a method for ear detection based on Faster
Region-based Convolutional Neural Networks (Faster R-CNNs). On the UBEAR and UND
dataset, the model was demonstrated to assure highly competitive outcomes by building
on advancements in the general object detection area. El-Naggar et al. later presented a
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theoretically related method in [191], which once more showed the effectiveness of the
Faster R-CNN architecture for ear identification. A geometric deep learning-based method
for ear recognition was reported [76]. The suggested model uses Gaussian mixture models
to define convolutional filters and permits the use of CNNs on graphs (GMMs). Based on
this idea, the authors develop a framework for competitive detection that is both highly
rotation-resistant (i.e., rotation equivariant) and has other advantageous features. Using a
multi-path model topology and detection grouping, the authors [123] proposed a CNN-
based method for ear detection that locates ear regions in the images. This method’s core
idea is to search for ears at various scales, like contextual modules seen in contemporary
object identification frameworks like [192,193], to enhance detection the authors in [190]
employed general object detection models with contextual modules for the job of ear
detection, exploring a related approach.

The work in [187], studied ear landmarks detection while utilising the image contract,
Laplace filter and Gaussian blurring techniques. Sobel Edge detector and modified adaptive
search window was applied for highlighting ear edges and detecting region while [188]
automatically identified the primary anatomical contour features in depth map pictures to
detect the auricular elements of the ear. Ear Mask Extraction (EME) network, normalization
algorithm and a novel Siamese-based CNN (CG-ERNet) was used to segment, align, and
extract deep ear features, respectively in [189]. Curvature Gabor filters were used by CG-
ERNet to take advantage of domain-specific information while triplet loss, triplet selection,
and adaptive margin were adopted for better loss convergence.

Recent technological advancements in the field of artificial intelligence and particularly
convolutional neural networks have inspired improved computer visions leading to improved
detection, recognition, regression, and classification issues in ear biometrics. Some of these
innovations are highlighted in [189] to include object detection methods such as F-RCNN,
Mask-RCNN, SSD, VGG. Though these methods often have several non-linear layers, a
myriad of parameters may be used in further training the ear recognition databases.

The work [194] employed a deep unsupervised active learning (DUAL) model to learn
new features on the ear images while testing without any feedback or correction. Using
conditional Deep Convolutional Generative Adversarial Networks (DCGAN) and Convo-
lutional Neural Network (CNN) models, a framework that includes a generative model
for colouring dark and grayscale images as well as a classification model was proposed
in this [195]. When tested on the limited AMI and the unconstrained AWE ear datasets,
the model displayed encouraging results. A quick CNN-like network (TR-ICANet) was
suggested for ear print recognition in [67]. While PCA was used to geometrically normalize
scale and posture, CNN was employed to detect the ear landmarks and convolutional filters
were learned through an unsupervised learning method utilizing Independent Component
Analysis (ICA).

Selecting and weighting characteristics has an impact on most ear identification tech-
niques; this is a difficult problem in ERS and other pattern recognition applications [196].
The authors presented a deep CNN feature learning Mahalanobis distance metric tech-
nique. Discriminant correlation analysis was used to reduce dimensionality, Mahalanobis
distance was learned based on LogDet divergence metric, and K-nearest neighbour was
implemented for ear detection, various deep features are retrieved by adopting VGG and
ResNet pre-trained models. In [197], unrestricted ear recognition was examined using
a transformer neural network dubbed Vision transformer (ViT) and data-efficient image
transformers (DeiTs). The recognition accuracy of the ViT-Ear and DeiT-Ear models was at
par with previous CNN-based techniques and other deep learning algorithms. Without
data augmentation procedures, ViT and DeiTs models was shown to outperform ResNets.
The authors in [198], utilized Deep Residual Networks (ResNet) to create ear recognition
models that acts as feature extractors in feeding an SVM classifier. ResNet was trained and
improved utilizing a training corpus of various ear datasets. To improve the performance
of the entire system, ensembles of networks with different depths were deployed.
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A six layer deep convolutional neural network design was proposed in [199] to supple-
ment the other biometric systems in a pandemic scenario. When deployed in conjunction
with an appropriate surveillance system, the method was found to be very effective at
identifying people in huge crowds in uncontrolled environments. The Particle Swarm
Optimization (PSO)-based ERS was presented in [200] and evaluated with 50 photos and
150 images using the AMI EAR database. The recognition accuracy was 98% and 96.6%,
respectively, which is superior to other benchmark approaches like PCA and Scale Invariant
Feature Transform (SIFT).

Despite the advances in deep learning, ear recognition approaches have since grown
to include bi and multi-modal methods. For instance, the works [201,202] underscores the
accuracy of multimodal biometric systems in uncontrolled scenarios by integrating ear
and face profile. Each biometrics’ texture characteristics were extracted using a histogram-
based local descriptor, local directional patterns, binarized statistical picture features, and
local phase quantization. At the feature and score levels, the local descriptors from both
modalities were combined to create the KNN classifier for human identification [201].
In [202], a high-dimensional feature vector was utilized to independently represent the ear
and face modalities in the frequency and spatial domains utilizing local phase quantization
(LPQ) and local directional patterns (LDP). To create more non-linear and discriminative
characteristics for the kNN classifier’s use in identifying persons, the feature set was
merged with kernel discriminative common vector (KDCV). Experimental results on two
benchmark datasets demonstrated that the suggested strategy outperforms individual
modalities and other cutting-edge techniques in terms of performance.

3.6. Threats to Validity

Considering the related threats to the review procedures and possibly inaccurate data
extraction, the highlighted papers in this review were selected based on the earlier described
process. The details in Figure 1 reflects some of the answers raised in the research questions.
There are numerous articles that no doubt may extend beyond the search parameters used;
hence the possibility of exclusion of one or more vital but related articles remains likely.
Consequently, a reference check was carried out at the initial stage to prevent any omission
of such articles. The final article selection was based on parameters such as precision of
the information, quality assessment and clear methodology. Also, the articles were further
evaluated by comparing results published by various Authors to avoid overestimation.

4. Discussions, Limitations, and Taxonomy

This study underscores the contributions of deep learning to ear recognition systems
while also highlighting a summary of contemporary techniques discussed in other studies.
Security is paramount and accurate recognition of target elements from pre-processing to
classification is critical in ensuring the integrity of any biometric system. The contributions
of deep learning are multifaceted and far-reaching. Studies reviewed affirm the enormous
work done in ERS using minimum distance and support vector machines.

However, newer methods capable of autonomously training large sets of data remain
under explored. Based on the articles selected, the advantages and disadvantages of
the various sub-units in ear recognition stages are indicated in Table 6. A small number
of novel classification approaches exist for ERS. The work [168] highlighted a few bio-
inspired algorithms, such as cuckoo search, particle swarm optimization, etc. Although
some of the listed algorithms have widespread application domains, their significance is
primarily for unraveling the optimization challenge in the location search. Consequently,
in-depth knowledge of deep learning in pre-processing and feature extraction stages of ear
recognition systems is required in subsequent research.



Information 2023, 14, 192 17 of 30

Table 6. Summary of the Pros and Cons of different sub-areas in Ear Recognition Stages.

Stage Sub-Area Pros Cons

Pre-processing

Filter method

No need for object segmentation Aligned ears are at
a disadvantage

Graceful degradation is a
major boost Some details may be lost

Suitable for non-aligned images Limited bandwidth is a drawback

Intensity method

Reduced computational difficulty Distorted uniform images
are concealed

Spin and reflection invariant Poor performance against scaling

Limited false matches Copy and paste regions of an
image cannot be detected

Feature
Extraction

Geometric method

Suitable for obtaining a
non-varying feature

Increased computation
requirements

Methods are easy to implement Results can sometimes
be inaccurate

Image orientations are detected Susceptible to noise

Appearance Method

Very robust, particularly in
2-dimensional space Performance decreases with size

Any image characteristics is
extracted as a feature

Average accuracy is less
compared with other methods

Minimized false matches Cannot handle certain
compressions

It can be used with a few
selected features Illumination is a significant factor

Recognition accuracy is high Good-quality images are required

Classification

Neural Networks Non-linear problems are easily
resolved

Inability to model a few numbers
of training datasets

Support Vector

Increased performance with gap
in classes

Large datasets are unsuitable
in SVM

Improved memory utilization Noise is not effectively controlled

Improved memory utilization Limited explanation
for classification

4.1. Limitations

In line with the study research questions, a thorough review of research articles on
the contributions of deep learning to ERS was conducted, with 74 publications eventually
identified as sufficient to achieve the research objectives. However, most of the papers
listed were published between 2015 to 2022. Therefore, we cannot categorically state that
all available studies in this research domain have been exhausted, considering the rate
and volume of published research articles. Also, non-English articles were not considered
during the article search.

4.2. Specific Contributions

Presently, the need to develop a black ear-pose invariant ear recognition database is
motivated by the following:

1. This study identifies a need to evaluate the performance of ear recognition systems
with ear images of different races before they are deployed in real-world scenarios.
However, existing ear recognition databases contain mostly Caucasian ear images,
while other minority ethnic groups such as blacks, Asians, and Arabs are ignored [169].
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2. The black race form 18.2% of the total world population, however, previous research
endeavors toward black ear recognition have not been established, and there is
no publicly available dataset dedicated to black ear recognition in the works of
literature reviewed.

3. This study observed that ear recognition images are often partially or fully occluded
by hair, dress, headphone, hat/cap, scarf, rings, and other obstacles [170]. Such
occlusions and viewpoints may cause a significant decline in the performance of
the ear recognition algorithm (ERA) during identification or verification tasks [171].
Therefore, reliable ear recognition should be equipped with automated detection of
occlusion to avoid misclassification due to occluded samples [51].

Therefore, the ear image samples were collected from 152 African (black-skinned)
individuals from a public university in Nigeria. The dataset contains left and right ear
images of the volunteers in varying pose angles of 0◦, 30◦, and 60◦, respectively, with the
ear images containing head scarfs, earrings, ear plugs, etc., thus, making the dataset pose
and occlusion invariant. The corpus is published and publicly available to researchers
at [203] with a total of 907 black ear images. Figure 2 shows the pose angles of the left and
right ear images as captured for each volunteer.
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Table 7. Article classification result.
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2018 [17] x x x x
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2018 [20] x x x x

2017 [24] x x x
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2016 [57] x x x x x

2014 [58] x x

2018 [59] x x x x

2018 [60] x x x x

2016 [61] x x x x

2016 [64] x x x
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2014 [98] x x x x

2018 [99] x x x x

2014 [100] x x x

2019 [101] x x x x

2018 [102] x x x x

2017 [104] x x

2013 [106] x x x x

2016 [107] x x x

2020 [108] x x x

2017 [109] x x x x

2017 [110] x x x x

2020 [111] x x

2020 [112] x x x

2017 [113] x x x

2019 [116] x x x x
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2018 [119] x x x

2020 [121] x x x x

2019 [123] x x x x

2014 [124] x x x x x

2016 [126] x x x x

2010 [127] x x x x x

2013 [140] x x x

2013 [141] x x x x x

2014 [142] x x x x x

2014 [143] x x x x

2015 [150] x x x x

2020 [156] x x x x

2020 [157] x x x x

2019 [166] x x x x

2018 [167] x x x x

2010 [179] x x x x x

2020 [183] x x x x

2021 [184] x

2021 [185] x x x x

2021 [186] x x x

2021 [187] x x x

2021 [188] x x

2021 [189] x x x x

2021 [190] x x x x

2021 [194] x x x

2021 [195] x x x x

2021 [196] x x x x

2021 [198] x x x x

2021 [199] x x x x

2022 [202] x x x x

5. Conclusions and Future Direction

Although a high volume of research is geared toward improving the recognition
accuracy of biometric systems, none of these techniques has shown 100% accuracy. In
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this study, an SLR showing the current contributions of deep learning to ear recognition
in different stages is presented. Before the screening, a total number of 1121 articles
was returned during a preliminary search followed by a thorough analysis of existing
contributions of deep learning, research questions, and the various methods used in the
recognition process. In the end, 74 articles were deemed relevant to the study and were
selected for further analysis.

In terms of the number of publications per year, results indicate that significant
contributions were made to ear recognition in 2018, as it had 18 relevant articles, closely
followed by 2016 with 16 articles. Results based on contributions from Deep learning
obtained from Table 7 showed CNN, other architectures and non- unspecified architectures
had 51.95%, 18.18%, and 29.87%, contributions, respectively. Similarly, local, geometric
and hybrid feature extraction approaches had 60.61%, 18.18% and 21.21%, respectively.
For studies that employed existing or developed image databases, the analysis revealed
that 85.42% (82) articles used one database or another in their studies, while 14 did not use
any database.

Contrastingly, results from analyzing the status of articles showed gap between pro-
posed methods (S) and proposed & executed works (P&E) which accounted for 25.33% and
17.33%, respectively. Articles that assessed existing algorithms (A), designed a templates
(D) or planned and assessed using established procedures (PA) had 34.67%, 10.67%, and
12.0%, respectively.

Traditional machine learning methods was used in 45 (48.91%) of the articles while 47
(51.09%) employed deep learning methods. This is due to increase in the ER datasets sizes.

Further still, an examination of selected performance metrics of recognition accuracy,
template capacity, true acceptance rate, false acceptance rate, false rejection rate, equal
error rate, precision, recall, and matching speed used by the Authors of selected articles
was systematically determined. Interestingly, most studies on ear recognition system are
assessment of existing algorithms on a given dataset followed by newly proposed or yet to
be evaluated techniques.

In real-life applications, speed is of great essence. Future works should investigate
various enhancement techniques to improve the speed of feature extraction algorithms in
ERS. Although ear biometric technology is renowned for its long history of use, particularly
in developed countries, it is still enjoying rapid growth and potential with increasingly
dynamic but secure classification procedures. Establishing an efficient and foolproof ear
biometric recognition system is not only a growing concern but also an opportunity to
explore the inherent gaps in feature extraction and classification procedures targeted at
accurate authentication or identification tasks.
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