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Abstract: A tremendous amount of image and video data are being generated and shared in our
daily lives. Image and video data are typically stored and transmitted in compressed form in order
to reduce storage space and transmission time. The processing and analysis of compressed image
and video data can greatly reduce input data size and eliminate the need for decompression and
recompression, thereby achieving significant savings in memory and computation time. There exists
a body of research on compression domain data processing and analysis. This survey focuses on
the work related to image and video data. The papers cited are categorized based on their target
applications, including image and video resizing and retrieval, information hiding and watermark
embedding, image and video enhancement and segmentation, object and motion detection, as well
as pattern classification, among several other applications. Key methods used for these applications
are explained and discussed. Comparisons are drawn among similar approaches. We then point out
possible directions of further research.
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1. Introduction

It is estimated that 3.2 billion images and 720,000 h of video are shared online daily [1].
Image and video compression allows for the efficient storage and transmission of image and
video data. Rather than simply compressing data streams to save space, the compression of
images and video has also promoted development in other areas such as smart cities [2–4],
healthcare [5–10] and agriculture [11].

Despite the relatively smaller size after compression, users still need to decompress
data on the application side. If these data can be processed and analyzed directly in their
compressed forms, then we can save storage space and computation time. The explanation
is that in this case, we can work with significantly smaller input in the compression domain,
eliminating the need to decompress the already compressed data for processing or analysis
and then recompress the data back to their compressed form. In the literature, there exists
a body of work which aims to investigate the feasibility and effectiveness of data analysis
either partially or fully in the compression domain. By conducting analyses, e.g., object
detection, on data in a compressed form, the input will be compressed data instead of
original data. The obvious advantages of this approach include faster processing and
analysis due to reduced input size, and elimination of the overheads associated with
decompression and recompression. Nevertheless, in the compression domain, original data
become a sequence of binary bytes, or bits. Consequently, “understandability” based on
some inherent patterns or correlations in the original data is lost. In addition to the difficulty
of interpreting the compressed byte streams or bitstreams, conventional analysis algorithms
that work well on regular data input will not function on data in their compression domain.

While compression domain data streams can be fully or partially decompressed to
recover the original data, either in a lossy or lossless manner, the compression domain
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process skips the decompression step and thus we need to have a good understanding of the
compression process in order to be able to design analysis methods that take compressed
data streams directly as inputs. To facilitate the discussion of the compression domain
analysis methods surveyed, we provide brief introductions to the key techniques employed
by the image and video compression standards, including the Joint Photographic Experts
Group (JPEG) for image compression, and H.26x and several MPEG standards for video
data compression.

The rest of the survey is organized as follows. Section 2 covers compression domain
image data analysis. Section 3 discusses analysis methods for compressed video data.
We summarize the survey in Section 4 and provide some thoughts on future research on
compression domain processing and analysis.

2. Image
2.1. JPEG and DCT

Despite being introduced as early as the 1990s, the JPEG format [12] is still the most
popular image format today. The acronym JPEG stands for the Joint Photographic Experts
Group, which is a standards group under both the International Organization for Standard-
ization and the International Electrotechnical Commission. The JPEG standard consists
of methods and processes to compress digital images in a lossy manner. The baseline
sequential process of JPEG compression is shown in Figure 1.

Figure 1. Flow chart for baseline JPEG for an image. An input image will go through multiple
operations, including the discrete cosine transform (DCT), quantization, differential coding, and
variable-length coding. The output is a bitstream with headers and markers containing side informa-
tion for the decoder.

First, after a level shift, the image is divided into 8× 8 minimum computing units
(MCU). Each MCU is transformed by forwarding the DCT into an 8 × 8 DCT coefficients
matrix according to Equations (1) and (2). The DC coefficient is at the top left, and the
remaining 63 are AC coefficients. The 64-coefficient matrix is then quantized using a
specified quantization table. Each value in the MCU is divided by the corresponding value
in the quantization table and then rounded to the nearest integer. Next, the matrix is resized
into a one-dimensional zig-zag sequence. The sequence of quantized DCT coefficients is
then fed into an entropy encoder. All DC values are coded using a differential coding
method. The 63 zigzag-ordered AC coefficients are coded using run-length coding. These
result in a joint Huffman code of 8-bit values.
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7
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n=0
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During the process of JPEG compression, the DCT and quantization work jointly to
reduce the data size, resulting in data compression. After the transform shown in the
equations above, the input signal energy can be concentrated in just a few coefficients.
The condensed information facilitates further processing to be performed on the DCT
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coefficients, instead of on the pixels in the original image. Similar transform domain
processing is employed by the more recent JPEG 2000 image compression standard, where
wavelet transform is used instead of the DCT.

To facilitate a quick browse of the topics, we summarize in Table 1 the methods
surveyed according to their applications.

Table 1. Summary of compression domain processing on image data.

Target References Detail

Image Resizing [13–15] Change image dimensions
Image Enhancement
and Edge Detection [16–24] Change image properties to highlight certain region

Image Retrieval [25–29] Locate certain type of images from a large image database
Image Retargeting [30,31] Rearrange objects in differently sized images

Image Hiding [32,33] Conceal image in another image
Watermark Embedding [34,35] Add watermark on images

Image Classification [36–39] Separate images according to various attributes
Other Applications [40,41] Extract feature wavelet coefficients to detect objects, etc.

2.2. Image Resizing

Image resizing means converting an image of a given size to one of a different size.
Generally, resizing includes zooming and shrinking. Zooming in the spatial domain is
usually accomplished using interpolation algorithms, such as spline, bicubic, bilinear, etc.
Shrinking can also be achieved using similar techniques, or by simply taking sample pixels
on a fixed stride. There is also some work using neural networks to realize super resolution
imaging, which may enable a new breakthrough in this direction.

In order to perform resizing operations directly in the compressed domain, DCT
domain knowledge was first used in [13] by applying the convolution–multiplication
property. The filtered coefficients were downsampled to the targeted size. Computing the
new block produces the resized image. The downsampling filter was modified in [14], and
the new half-reduced block is calculated by the following equation:

c =
4

∑
i=1

hicigi, (3)

in which c1 through c4 are adjacent 8× 8 blocks, h and g are downsampling filters given by

h2 = gt
1 = gt

3 = h1 =

[
u4×8
o4×8

]
, h4 = gt

2 = gt
4 = h3 =

[
o4×8
u4×8

]
, (4)

o4×8 is a 4× 8 zero matrix, and u4×8 is defined as

o4×8 =


0.5 0.5 0 0 0 0 0 0
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0.5 0.5 0 0
0 0 0 0 0 0 0.5 0.5

. (5)

This method can preserve all the low-frequency DCT coefficients of the original image.
Therefore, the resized image will have a better peak signal-to-noise ratio (PSNR) compared
with other methods such as bilinear interpolation in the spatial domain. This result was
further improved in [15] using sub-band DCT. For each 8× 8 block B of the input image
for halving, a 4-point inverse-DCT is applied with

A(k, l) =
B(k, l)

4cos πk
2N cos πl

2N
, k, l = 0, 1, 2, 3. (6)

If we double the size of an image, then
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A(k, l) = 4cos
πk
2N

cos
πl
2N

B(k, l), k, l = 0, 1, 2, 3 . . . 7. (7)

The results showed that, although extra computation was involved, the overall perfor-
mance was better than that of other existing methods.

2.3. Image Enhancement and Edge Detection

Image enhancement covers multiple image processing techniques intended to high-
light certain information in the image, or diminish the impact of unwanted features such as
noise or blur. Traditional image enhancement can be done in either the spatial domain or
the frequency domain after applying a Fourier transform. Some common methods include
contrast adjustment, histogram equalization, noise removal, smoothing and sharpening.
On the other hand, edge detection locates the boundaries of objects in the image. The ex-
tracted features can be further used for image segmentation. Figure 2 shows how different
operations would impact the output image.

Figure 2. Output for different image enhancement methods. The operations applied, from left to
right, are: original image, histogram equalization, motion blur, deblur using Wiener filter, smoothing
with Gaussian filter, image sharpening, edge detection with Sobel operator.

Both image enhancement and edge detection can be performed in the DCT domain,
as shown in the following works. Shen and Sethi extracted features directly from DCT
coefficients [16]. This is based on the fact that each DCT coefficient for any given 8× 8
block is a linear combination of all the pixel values within the block. Therefore, the value
of each AC coefficient reflects different grayscale values in a certain direction at a certain
rate. Finally, the extracted information can be used for coarse edge detection in the original
image, which can be 20 times faster than using the Sobel edge operator. Their work was
extended in [17] to achieve faster convolution on DCT coefficient blocks, which further
helped edge detection using a Laplacian-of-Gaussian operator. A comprehensive summary
of these works can be found in [18]. The authors of [19] also proposed inner block
transforms, which could realize regular geometric transformation by directly manipulating
DCT domain data. The work was extended to compression domain video processing
in [20].

DCT domain information was also used in [21] for edge enhancement of remote
sensing image data. The algorithm consists of three parts: high pass filtering, adding back
part or all of the gray levels to the original image, and contrast stretching. First, the 3× 3
high pass filter kernel was decomposed using multiplication of matrices. The edge was
enhanced by adding the gray levels and applying contrast stretching to the composite
image. The same strategy was applied to edge enhancement of retina images in [22], in
which 5× 5 and 7× 7 filter kernels were used for comparison.

Image segmentation can also be accomplished if the edges are located in the DCT
domain [23], because variance in the block contains the edge information. For a given
image block, the variance can be calculated using Equation (8). Later on, the whole image
can be classified into three categories based on variance: homogeneous blocks, potentially
high-frequency texture blocks, and edge blocks. Finally, region-growing techniques were
applied to segment the original image.

σ2 =
1

N2

N−1

∑
u=0

N−1

∑
v=0

C2(u, v) (u, v) 6= (0, 0). (8)
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Because of the sparsity of DCT coefficients after quantization, conducting image
enhancement in the DCT domain can reduce storage requirements and computational
expense [24]. The quantized coefficient blocks were separated into several bands along the
anti-diagonal direction. Whether or not the output image is enhanced can be controlled by
adjusting the parameters.

2.4. Image Retrieval

Image retrieval usually refers to the technique of retrieving images from a large image
database. Common methods add extra information, such as captions or other keywords, so
that retrieval can be completed using the corresponding annotations. One way of adding
annotations is to automatically extract features from the image. The flowchart for a general
image retrieval model is shown in Figure 3.

Figure 3. Flowchart for image retrieval.

For example, texture and color features extracted directly from the DCT domain were
used in image retrieval in [25]. The absolute values of the AC components of the quantized
DCT coefficients for each block were used as texture features. The DC components of the
coefficients of the three channels Y, Cr and Cb were used to represent the color features.

Similarly, the DCT coefficients in YCrCb space were also used in [26]. The extracted
feature vectors were clustered using the K-means method, with the centroids being the
codewords for each image. The codebook, consisting of all codewords, is the histogram for
each image in the database. The histogram can be used as a powerful tool to express the
color distribution, which can further assist image retrieval.

Wavelet domain processing after a discrete wavelet transform (DWT) was also used
in [27] to realize sketch-based retrieval; this was an extension of their previous work of using
wavelet coefficients as compression domain index. On the other hand, conventional content-
based image retrieval uses data from the pixel domain, which is time-consuming. Therefore,
DCT coefficients were used in [28] to improve efficiency. The low-level features from dot-
diffused block truncation coding bitmaps and high-level features from convolutional neural
network (CNN) mode were combined to improve the overall accuracy for content-based
image retrieval [29].

2.5. Image Retargeting

Unlike image resizing, which treats each pixel equally likely, image retargeting aims
to preserve important regions in the image during resizing. A conventional retargeting
flowchart is shown in Figure 4.
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Figure 4. Flowchart for image retargeting.

This process can also be carried out in the compression domain. The intensity, color
and texture features were extracted from DCT coefficients of the input image in [30]. The
retargeting algorithm uses the saliency value of each DCT block via Hausdorff distance
calculation and feature map fusion. Another multi-operator retargeting method uses
indirect seam carving, similarity transformation, and direct seam carving of the DCT
coefficients to perform resizing [31].

2.6. Image Hiding

Image hiding, sometimes called steganography, aims to hide an image (or information
in other formats) inside another image. The hidden image should be able to be recovered at a
relatively high quality. Traditional methods manipulate pixels to hide the extra information.
Figure 5 shows a toy sample of the realization of image hiding by modifying the least
significant bits. The underlying mechanic is that for a pixel of 8 bits, changing lower
significance bits (the right four bits) will have much less impact on pixel value comparing
with changing significant ones (the left four bits).

Figure 5. Toy sample for image hiding.

Unlike conventional data hiding, which directly embeds information bits into the
bitstream, the method in [32] embeds Wiener filtering coefficients into the bitstream. Ad-
ditionally, the filter could be further used to enhance the decoded images. A fairly com-
prehensive introduction to lossless information hiding in images can be found in [33]. The
book covers information hiding techniques in three categories, i.e., the spatial, transform,
and compression domains.

2.7. Watermark Embedding

Watermarking was invented to protect the copyright of targeted signals. Therefore,
unlike image hiding, which tries to make hidden images imperceptible for human beings,
watermark embedding aims at remaining robust against modification. The process of
watermark embedding uses a watermarking key and watermarking algorithm to produce
the watermarked digital image. Besides watermark embedding in the DCT domain, several
other compression domain coefficients were also considered for watermark embedding
in [34]. Transforms considered include the Karhunen–Loeve transform (KLT), Hadamard
transform, wavelet transform and Slant transform. The results show that all of these
methods have a larger hiding capacity when integrating watermarks into images. Patra et
al. also applied Chinese Remainder Theorem in the DCT domain to ensure the robustness
of watermarks [35]. The working process is shown in Figure 6.
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Figure 6. Overview of watermark embedding process.

2.8. Image Classification

Image classification aims to separate a group of images into several categories accord-
ing to certain rules. Different features can be extracted from pixels in the image, serving as
criteria for making the decision. Common methods that are currently widely used include
K-nearest neighbor, support vector machine (SVM), and neural networks. A simplified
flowchart is shown in Figure 7. For traditional methods, such as SVM, we need to gener-
ate features manually, which requires expertise in certain areas. However, with a neural
network, features can be extracted automatically without domain knowledge.

Figure 7. Simplified flowchart for image classification.

Although features from the spatial domain are more often used, features extracted
from DCT coefficients can also be used for image classification. The work in [36] addresses
screening out objectionable images to avoid under-age children seeing them (e.g., by
identifying naked people in an image). Pixels in an image are classified as skin by the
following calculation of the posterior probability of a pixel:

P(Skin|YCbCr, L) =
P(YCbCr|Skin, L)

P(YCbCr|Skin, L) + P(RGB|Skin, L)
≥ θ, (9)

where θ ∈ [0, 1] is the threshold. The first term in the denominator is the prior probability of
skin, and the second term is the non-skin pixels under average brightness L. Subsequently,
the skin texture property is extracted from the lower frequency region in the DCT domain.
Combined with other statistical features, the decision tree outputs the classification result.

After deep neural networks, such as convolutional neural networks (CNNs), gained
popularity in image classification, the feasibility of using DCT coefficients was also exam-
ined. The two-dimensional DCT was applied directly to the input image in [37]. Then, a
reduced size array was cropped from the coefficients matrix. The arrays were fed into a
CNN for classification. The test showed that this method could speed up training time by a
factor of 10, with a decrease in accuracy from 98% to 92% using the MNIST data set. This
method provides users with a trade-off between accuracy and training time.

The application of multiple lossy compression operations to images is common in an
image editing pipeline. Digital images can be easily used for the spread of false information,
and thus their integrity needs to be questioned. The work in [42] addressed the forensic
problem of classifying images based on the number of JPEG compressions they have gone
through, by utilizing deep convolutional neural networks in the DCT domain. Handcrafted
features, including the first 21 sub-bands (excluding the DC component) in the zig-zag
order of the DCT coefficient matrix, were used for the histogram of the luminance channel.
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For the chrominance channels, only the first three sub-bands were used. The combined
feature vector was fed into the CNN model to estimate the number of compression opera-
tions. Experimental results showed that the algorithm could handle up to five rounds of
compression.

In a recent study [38], DCT coefficients were also tested on MnasNet and Yolov5. The
results showed a higher processing efficiency with a slight decrease in average precision.
The original bitstream of JPEG was used in [39] for classification. The corresponding
bitstream of each block was truncated or padded with zeros to maintain the same length.
The 3D data were fed into CNN for classification.

The authors of this survey paper have also conducted research in this field [43],
exploring the possibility of classifying images in their JPEG-compressed format. The study
analyzed JPEG’s underlying mechanisms and managed to separate malaria-infected red
blood cells from normal cells based on information extracted from different stages of the
JPEG compression process. The training data consisted of multiple combinations of DCT
coefficients, DC values in decimal and binary forms, the “scan” segment in binary and
decimal forms, and the bitstream at different lengths. The results showed that, using long
short-term memory (LSTM), images could be successfully classified based on compression
domain information with 80% accuracy. Moreover, accuracy of over 90% was attained
simply by employing coded DC values, indicating that images from different classes could
still be well distinguished in their JPEG-compressed format. Simulations demonstrated that
the proposed method can significantly reduce the consumption of computational resources
by shortening input data size and eliminating the image decompression step.

2.9. Other Applications

There are also plenty of other image processing areas that benefit from the compression
domain approach. As an example, in ship detection using remote sensing techniques, space-
borne images are easily affected by clouds or ocean waves. Additionally, the processing
efficiency can be low because of the high resolution of the images transmitted. The authors
of [40] managed to combine wavelet coefficients extracted from the JPEG2000 compression
domain, deep neural network and extreme learning machine to solve these issues. Instead
of using DCT coefficients in JPEG, DWT coefficients are used to divide the land and
sea, providing ship candidates. Next, the autoencoders are trained to extract meaningful
features from the high and low wavelet coefficients. Finally, the sequential extreme learning
machine is trained to make the decision.

Another example is face recognition using features extracted from DCT coefficients of
normalized images in [41]. It was shown that, compared with Karhunen–Loeve transform,
DCT could have desirable pattern recognition capabilities. Additionally, the light compu-
tational complexity of DCT makes it suitable for face recognition. The classification was
performed using a simple Euclidean distance measure of the features vector containing
reduced-size DCT coefficients.

Generating visual data from text could be a difficult task in the past. With the help
of Generative Adversarial Networks (GANs), the model proposed in [44] can be trained
directly on DCT coefficients and achieve good performance. The input descriptive text data
was first represented as numerical vectors, using text embedding. After noise is added, the
image tensor can be obtained by applying several convolutions and normalizations. For this
DCT-based generator network, the tensor was divided into three channels, corresponding
to the Y, Cb and Cr channels. The locally connected layer would produce amplitudes of
DCT for each channel, and then quantization was applied to generate the DCT-compressed
images.

On the contrary, another group of researchers managed to learn semantics from
DCT-based frequency domain representation in [45]. They showed that it is possible to
preserve meaningful semantic information, even when high-frequency components in DCT
coefficients are dropped. The frequency domain compression was conducted on the DCT
coefficients matrix, which only keeps the DC component, most of the low-frequency and
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some middle-frequency information. After augmentation using positional and frequency
embedding, the matrix was fed into blocks for classification with linear projection.

2.10. Summary

Although we have categorized algorithms according to their applications, different
methods may share more in common than is initially apparent. Firstly, most existing image
processing techniques in the compression domain use DCT coefficients as input. This is
because DCT is the core component of JPEG, which continues to be the most popular image
compression format. However, we should also note that, for applications aiming to save
computational resources with compressed images, DCT coefficients are not the best option
because DCT is conducted at the end of decompression, which means that most of the
resource-consuming steps have been done. Secondly, different application scenarios may
share similar underlying image processing algorithms. Image retargeting inevitably uses
image resizing to generate suitable sizes for objects in the output image. Image retrieval
and classification both take features extracted from images and use the new tags to separate
one image from another. Finally, we have to admit that some of the image processing
methods discussed are outdated. Therefore, more in-depth research should be carried out
on the compressed bitstream, which requires no decompression, and more advanced image
compression formats such as WebP.

3. Video
3.1. Video Compression and IPB Frames

In a video stream, each frame can be also be viewed as an image. Video compression
relies on exploiting the correlations between adjacent frames using motion estimation and
motion compensation. There are three major types of frame: I, P and B frames. I stands for
intra-coded pictures, which can be decoded without other frames. P denotes frames that are
predicted using the previous frame in video compression. Therefore, decoding a P frame
requires the information of a decompressed previous frame. B stands for bidirectional
predicted frames, decoding of which requires both the preceding and following frames. P
and B frames are also called inter frames. A simple illustration of the IPB frames in a video
sequence is shown in Figure 8.

Figure 8. Intra (I) and inter (B and P) frames in a video sequence.

The Moving Picture Experts Group (MPEG) is another working group similar to JPEG,
with a focus on the efficient compression of video data. Later, MPEG was used as the name
of a video format after compression. There are several well known MPEG video formats
such as MPEG-1, MPEG-2 and MPEG-4. H.264, also known as Advanced Video Coding
(AVC) or MPEG-4 Part 10, is currently the most widely used video compression standard.
H.265, also known as High-Efficiency Video Coding (HEVC) or MPEG-H Part 2, is a newer
video compression standard, designed as an upgrade of H.264. However, H.265 requires
much more processing power and advanced hardware, thereby limiting its popularity. The
flowchart of MPEG-1 encoding is shown in Figure 9.
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Figure 9. Flowchart of MPEG-1 encoding.

Some drawbacks of MPEG-1 were overcame in MPEG-2. For example, instead of only
supporting progressive scanning, MPEG-2 could also handle interlace scanning well, and
had the capability to compress high-resolution videos. After MPEG-3 was abandoned,
MPEG-4 was optimized to achieve higher compression efficiency and video quality com-
pared with its predecessor. One major improvement is that MPEG-4 uses 16 × 16 DCT,
instead of the traditional 8 × 8 in MPEG-2 or JPEG. This allows for a larger compression
ratio. The computing unit was further improved in H.265, which started to use coding tree
units (CTUs). Ranging from 4 × 4 to 64 × 64, the different sizes of macroblock allow the
algorithm to process data more efficiently. In H.266, the size was increased to 128 × 128 to
provide the codec with additional flexibility.

Most processing and analysis techniques in the video compression domain rely on
motion vectors, which are two-dimensional vectors used for the prediction of inter video
frames. Motion vectors are the result of motion estimation conducted by a video encoder.
The decoder performs motion compensation by using motion vectors as offsets to locate
similar blocks from a reference frame in order to predict the current frame.

Table 2 summarizes various applications of compression domain processing and
analysis methods surveyed.

Table 2. Summary of compression domain processing and analysis on video data.

Target References Details

Video Compositing [46–51] Combine multiple video stream into one

Video Retrieval [52–55] Locate certain type of videos from a large video
database

Watermark Embedding [56–59] Add watermark into video
Video Transcoding [60–63] Convert video from one format to another
Object Detection [64–70] Locate certain object

Segmentation [71–74] Separate certain object from frames
Video Steganalysis [75,76] Hide information in video stream

Salient Motion Detection [77–80] Detect saliency in video
Video Resizing [81–83] Change dimension of video

Video Summarization [84–86] Add tags that can be representative of the video
Other Applications [87–97] Detect double compression, etc.

3.2. Video Compositing

Videos are usually transmitted in a compressed form over networks. There are situa-
tions in which a multi-user video network server wants to combine multiple compressed
video sources into a single compressed output stream. This is where video compositing
can be implemented. The ability to directly compose video streams in the DCT domain will
significantly speed up processing. In [46], the authors converted all MC-DCT compressed
video into the DCT domain and performed compositing in the DCT domain. The model
used is shown in Figure 10.



Information 2023, 14, 184 11 of 21

Figure 10. Compositing two DCT-based video sequences in DCT domain.

The algorithm was improved in [47] with a fast algorithm that converts motion-
compensation compressed video into a sequence of DCT-domain blocks. These blocks
correspond to the spatial domain blocks of the current frame, eliminating the need to
use other reference frames for prediction. As a result, the inter-frame element of the
compression–decompression pipeline is removed. This method enables not only video
compositing in the DCT compressed domain, but also allows for several other operations,
e.g., scaling, overlapping, translation, filtering, etc. Similar video processing systems and
related tools can be found in [48,49]. An algorithm designed for MPEG1 video compositing
based on the same idea was proposed in [50].

In [51], the authors tackled the challenge of handling motion-JPEG video data in
the compressed domain. It was shown that, where pixels in the output image are linear
combinations of those from the input, several operations can be performed in the compres-
sion domain. The verified operations include convolution, scaling, rotation, translation,
morphing, de-interlacing, image composition, and transcoding. It was observed that image
compression, decompression and other operations can be treated as tensors. All of these
tensors can be combined to construct a single linear operator that can be applied to com-
pressed video images. An approximation technique called condensation was introduced
in [51]. The idea is to approximate compression domain operators so that they can be
efficiently computed. Condensation modifies an operator to a sparse operator, so that the
effect of the sparse operator result will be nearly identical to that of the original operator.
Condensation would increase processing speed at the cost of slight degradation in the
quality of processed images.

3.3. Video Archiving, Indexing and Retrieval

Similar to image retrieval, video archiving, indexing and retrieval also require adding
tags to each piece in a large video database. Utilizing features that are automatically created
from images can significantly minimize human effort. The basic flowchart is also identical
to that of image retrieval. The only difference is that instead of extracting features from
images, in this case, the algorithm extracts features from key frames.

Reviews of outdated image and video indexing techniques can be found in [54,55],
which can provide readers with some background information about these topics. Editing
and parsing digital video directly in the compression domain has many advantages in terms
of storage efficiency, speed and video quality [48,49]. Compression domain parsing of video
relies on shot change detection and motion detection using data in the compression domain.
To detect shot changes, [52] used features derived from the available DCT coefficients,
macroblocks, and motion vector information. More features were extracted from DCT
coefficients and motion vectors in MPEG video for better performance [53].

3.4. Caption and Watermark Embedding

Rather than adding a watermark to one image, watermark embedding in video re-
quires the operation to be performed on multiple frames. Adding descriptive text to video
frames is a useful feature of a video editor. Traditional watermark embedding requires the
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raw video sequence to be recovered first, the watermark added, and then encoded again,
as shown in Figure 11.

Figure 11. Watermark embedding in spatial domain.

A stochastic approximation model was used in [56] to support caption processing
in the MC-DCT domain. The strength of the added text is determined by the mean and
variance of the input image block. Then, the DCT coefficients of the added text can be
inserted into the video in the DCT domain. The mean and variance of the input blocks can
be derived using Equation (10), where YDC and YAC are the DC and AC coefficients of the
input image block Y.

α = YDC/8,

β2 = Var(y) =
∑63

l=0 Y2
l

64
−

Y2
DC
64

=
∑63

l=1 Y2
l

64
=

∑ Y2
AC

64

(10)

A similar method was adopted in [57] to add captions on a sequence of video frames.
The DC value of the input block was used as the approximated value for all pixels. This
method can avoid having watermark mask values that exceed the maximum value allowed
in the MC-DCT domain.

Video watermark embedding/extracting in the H.264 compression domain was pro-
posed in [58], in which video bitstream was utilized to avoid extensive compression and
decompression. The activities of each block were determined by the number of nonzero
(NNZ) entries of quantized AC residuals. Therefore, desynchronization issues can be
eliminated as long as the embedding and extracting are restricted to areas of high spatial
activity. It was shown that these macroblocks are robust against intraprediction mode
changes.

As a relatively new video compression standard, HEVC could also benefit from
watermarking in the compression domain, as shown in [59]. The embedding was only
performed in P frames to minimize the degradation of output video quality. Security and
robustness can be guaranteed by random selection and the spatiotemporal characteristics
of the compressed video. As in [58], the blocks with higher NNZ may be selected for
watermark embedding.

3.5. Video Transcoding

Video transcoding is the conversion of video data from one format to another. This
function is vital when a target device does not support the current video format, or has
limited storage capacity that requires a reduced file size. Transcoding is also used to convert
incompatible or obsolete video data to a newer, more widely supported video format. The
general procedure is similar to that shown in Figure 12.

Figure 12. Conventional video transcoding flowchart.
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Unlike previous work that required full decoding, the approach proposed in [60] used
a Huffman decoded bitstream to transcode MPEG-1 video to motion-JPEG. This method
provided faster processing at the cost of lower picture quality. Another two transcoding
schemes were proposed in [61]. The first one simply implemented both MC (motion
compensation) loops in the DCT domain. In the second scheme, image downsampling was
used to build a hybrid DCT-spatial domain architecture. Fast refinement for non-integral
motion vectors was introduced in [62] to provide better quality and lower complexity for a
spatial-downscaling video transcoder in the DCT domain.

A special case of transcoding is reverse play, which can produce a video stream in
the reverse order after processing by the transcoder [63]. Unlike the spatial method that
needs decoding, reordering and re-encoding, transcoding in the compression domain uses
a forward motion vector in the regular video bitstream to create the reverse motion vector.
Therefore, the computational complexity can be greatly reduced.

3.6. Object Detection

Information extracted from DCT coefficients and motion vectors in the video compres-
sion domain can also be used for object detection in video. The general processing flow is
illustrated in Figure 13.

Figure 13. Overview of the object tracking method.

This idea gave rise to the work in [64], which extracted metadata from video sequences
in the MPEG-2 compressed domain. Metadata include camera motion, regions of interest
to be tracked, and scene cuts to be detected. For object detection, the DCT coefficients of
I frames and intracoded macroblocks of P frames were used directly from the MPEG-2
compressed data. For non-intracoded ones, the DCT block calculation can be simplified by
approximating the four adjacent blocks, because only information concerning whether a
macroblock is sufficiently textured really matters.

The motion vectors in a compressed HEVC bitstream are good enough to indicate the
approximate location of the target object [65]. Then, a more accurate location can refine the
bounding box in the decoded frame.

A convolutional neural network (CNN) was also used, along with motion vectors,
for real-time object tracking in [66]. For independent frames, such as I frames, CNN
was applied for accurate detection. Meanwhile, for dependent frames, such as P frames,
interpolation was applied using the detection results of I frames. This method was extended
in [67] to predict the velocities of objects by considering the scale variation of bounding
boxes. The features used in [68] included three types of data: partitioning depths, prediction
modes, and residuals. All of these were extracted from I frames. The pixel-level resolution
of residuals guarantees the pixel-level object localization.

Using features derived from motion vectors of HEVC compressed video sequences, a
moving object detection method was proposed in [69]. This method was developed upon
the conditional random field [70], which was updated for every frame. Like hidden Markov
models, the conditional random field is a probabilistic model for segmenting and labeling
sequence data.

Face detection directly from the HEVC bitstream was addressed in [73]. The feature
map fed into a CNN consisted of three feature channels extracted from entropy decoding.

Video action recognition can be viewed as an extension of object detection. Instead of
using decoded RGB frames, the model proposed in [98] only operates on I frames, motion
vectors, residuals and audio waveforms. The efficiency of the model is ensured by the
features’ ease of access.
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3.7. Segmentation

Detecting the constituent parts of video frames enables us to partition them into
multiple segments or objects, which is a critical aspect of various practical applications
such as enhancing visual effects in movies, understanding scenes in autonomous driving,
and creating virtual backgrounds in video conferencing. However, conventional video
segmentation approaches are limited to the spatial domain, in which no motion information
is available. To estimate motion, methods such as block matching, phase correlation,
and gradient-based approaches are commonly employed on pairs of consecutive frames.
An alternative approach to improve video segmentation is to leverage the advantages
of compressed video, as motion cues are already present in the P frames. In practical
situations, segmentation is often accompanied by object detection.

Along the same lines, compression domain segmentation methods were proposed
in [71] to achieve results comparable to those of more computationally expensive segmen-
tation methods on raw data.

A compression domain-based propagation method using a deep CNN was employed
in [72] to achieve real-time video segmentation. This method was proposed to expedite
inference speed for semi-supervised video object segmentation tasks. The deep CNN was
used to extract features of I frames, and information flow propagation was employed to
generate features of P frames.

The study in [74], focusing on semantic video segmentation, proposed a new method
with three modules to improve accuracy while reducing noise caused by motion vectors.
These modules included a feature warping module, a residual-guided correction module
for refinement, and a residual-guided frame selection module. The results showed that the
proposed modules successfully achieved acceptable accuracy degradation while improving
the overall performance.

3.8. Video Steganalysis

Video steganography is a branch of data hiding that embeds information into cover
video contents in such a manner that the presence of the information is not evident to human
inspection. The video steganalysis method proposed in [75] aimed to detect information
hidden in videos. The pair of conditional and joint distributions of the adjacent difference
in the DCT and DWT (discrete wavelet transform) domains was extracted to be the feature
used for classification. A comprehensive survey of both compression domain and raw
video stream steganography techniques can be found in [76]. Another survey paper, [99],
also analyzed video steganography over uncompressed and compressed domains and may
offer a wider view of this specific problem.

3.9. Salient Motion Detection

The analysis of surveillance video is a growing area of research in computer vision.
Motion saliency denotes the conspicuous state of an object in a video. Detecting motion
saliency relies on motion detection. One way to detect salient motion is shown in Figure 14.

Figure 14. Flowchart for salient motion detection.

The DCT coefficients of luminance and chroma components were used in [77] to
calculate the spatial saliency of a given frame. The motion vectors were also used to refine
the results. This two-step method could measure saliency in video frames without camera
motion. Similar work was also done in [78] with a different selection of features.

A CNN was involved in [79] to obtain the saliency area. Combined with motion
estimation results of each block during HEVC compression, the algorithm completed the
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saliency map of the input video. A 3D deep CNN was applied in [80] to extract features
from the motion vectors of the macroblocks in the P frames for video classification. The
extra dimension was time.

3.10. Video Resizing

A compression domain approach was also used in [81] to realize down-conversion
from the Common Intermediate Format (CIF) to the Quarter Common Intermediate Format
(QCIF) bitstream. Compared with conventional methods in the pixel domain, compression
domain approaches could eliminate three computationally expensive blocks, i.e., DCT,
IDCT and motion estimation. A similar strategy was also applied in [82], in which some
high-order AC coefficients were discarded, providing the flexibility to choose between
computational cost and video quality. Unlike the above methods, the method proposed
in [83] used three macroblocks instead of four while providing comparable quality.

3.11. Video Summarization and Abstraction

It would be desirable to be able to understand the content of a video without having
to watch the entire video. Video summarization tends to create a short synopsis that
summarizes the important parts of the stream. Video summarization and abstraction allows
for quick indexing, searching, browsing and evaluation of the input data. A simplified
model for video summarization can be found in Figure 15.

Figure 15. Flowchart for video summarization.

The work in [84] addressed the progressive generation of a video summary in the
compression domain. The proposed method relies on exploiting visual features extracted
from the video stream and using a simple and fast algorithm to summarize the video
content. Specifically, the DC value of each DCT block was extracted to build DC images,
which serve as the criteria for selecting representative frames. This method was further
developed in [85], which used I frames of HEVC coded video for video abstraction in the
compression domain. Clustering was also applied to extract the key frames. For more work
on video summarization techniques in the compression domain, see [86].

3.12. Other Applications

Motion estimation in compressed bitstreams of fingerprint videos helped in the de-
tection of dynamic behavior in [87], where the proposed method could reliably detect
and characterize distortion. In [88], a representative frame was selected, and then the
corresponding DCT coefficients were used to detect scene change and to select sub-regions
for subsequent processing and analysing. Ahmed [89] developed a programmable video co-
processor that can handle DCT-domain operations including resolution conversion, frame
rate changing, quality and rate control, filtering, video compositing and video cut detection.

The video encoder can also be improved in the compression domain [90]. The low-
resolution coarse-step motion estimation operations were performed in the DCT domain.
High-level motion activity could also be determined by computing the block matching in
the reference frame, at the cost of slightly increased computational complexity. Another
low-bit-rate video coding algorithm was proposed in [91]. DCT-decimation was used in the
encoder, while the corresponding DCT-interpolation was used in the decoder. Embedded
zerotree [92] and an adaptive arithmetic coder were also used in the encoder to improve
the quality of the decoded video.

Unlike the previous studies, which focused on lossy compression formats, [93]
presents a technique for translating a specific class of computations to operate directly
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on losslessly-compressed data using the sliding window Lempel–Ziv algorithm. The ap-
plications of this technique include video editing and compositing directly on losslessly
compressed video.

Video encryption can also be performed in the DCT domain. The method proposed
in [94] extracted the most significant bits for video reconstruction in H.264 streaming and
concatenated them into a sub-bitstream. The encrypted bitstream was then rearranged into
the original positions.

Compression-domain highway vehicle counting using spatial and temporal regression
was proposed in [95], in which low-level features were used to capture crucial information
that is useful for counting vehicles. These features can be computed from the motion
vectors and block partition modes. The features includes the size, shape, motion, and
texture information of traffic scenes. These features can then be combined to train a
hierarchical classification-based regression model to count vehicles in a video frame.

To detect double HEVC compression, an attention-based two-stream residual network
was proposed in [96] to build a hybrid neural network architecture together with LSTM.
This method could efficiently learn spatio-temporal representations of relocated I frames,
and was able to achieve high robustness against recompression.

Super-resolution aims to achieve high-resolution data streams from their low-resolution
observations. The spatial and temporal coding priors extracted from the compression do-
main were used in [97] as the input for a deep neural network. The proposed scheme
sought to achieve video super-resolution and the suppression of compression artifacts in
an end-to-end manner.

3.13. Summary

Compared with 2D images, frames in video carry much more information. However,
we can still find correlations between these two data formats. The original MPEG-1 format
borrowed almost all its techniques from JPEG. Therefore, most of the algorithms that used
to work in the compression domain for images can be used for video as well (possibly with
minor modifications). Even for an enlarged macroblock of 16 × 16, the DCT coefficients
still carry information that represent original frames. It is also important to note that
the motion vectors are used quite often because they can be easily accessed from the
compressed bitstream without verbose decoding procedures. Although we have classified
different methods in separate sections, they are actually closely related. For object detection,
segmentation and salient motion detection, certain features or regions need to be extracted.
Video archiving, indexing, retrieval and summarization require the gathering of important
frames that can be representative. Therefore, understanding the mechanism of any one
algorithm may help develop more efficient new methods.

4. Discussion

In this survey, we presented a comprehensive review of existing work in the literature
concerning compression domain techniques for video and image data. Processing and
analysis of data in their compressed forms can greatly reduce the size of input data and
eliminate the need for decompression and recompression, thereby achieving significant
savings in memory and computation time. We can see that different methods make use of
different entities in the compression domain, including DCT coefficients, wavelet transform
coefficients, motion vectors, etc.

Although numerous papers cited here used DCT coefficients as their input, this is not
the optimal solution for compression domain analysis, as we mentioned earlier. The reason
is that in both image and video decompression, inverse DCT occurs last, which means most
heavy jobs have been done. Therefore, the primary goal for using compression domain
data to save computational resources and time—is not fully attained. The compressed
bitstream should take the priority, because extracting information from a bitstream requires
no decompression.
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Additionally, with the great success achieved through the application of deep neural
networks in image and video processing, some of the older compression domain tech-
niques have been revisited and revised according to the new framework of deep learning
approaches. However, the underlying mechanisms of image and video compression remain
unchanged. Therefore, further research into how to properly use features from compressed
bitstreams in the deep learning framework is warranted.

On the other hand, there has been little work on compression domain processing based
on compression formats other than JPEG, MPEG, and H.26x. Examples include lossless
image compression formats based on Portable Network Graphic (PNG). New challenges
are on the horizon with the appearance of the H.266 video format. This so-called Versatile
Video Coding is an up-and-coming video compression standard. Early tests suggest that
H.266 achieves 40–50% better compression than HEVC codecs. We anticipate a lot of new
compression-domain work with this new video format.

5. Conclusions

Previous researchers have made significant contributions to the field of image and
video processing with compression domain data. However, as we are now creating larger
amounts of data with more advanced compression techniques, more in-depth research
should be conducted on the real compression domain data, bitstreams. The fundamental
theorem for state-of-the-art algorithms should also be carefully explored. A combination
of previous research with a modern neural network model may result in a surprising
discovery.

In closing, we point interested readers to more references. Ref. [100] is an introductory-
level book focused on the DCT (used in JPEG, MPEG and H.264) and DWT (used in
JPEG2000). It also covers various image and video processing operations performed in
the compression domain, including filtering, enhancement, color restoration, resizing,
transcoding, watermarking, indexing, face detection, steganography, etc. Ref. [101] is a
more recent survey paper focusing on video analysis techniques in the compression domain.
The techniques used for document image analysis in the compression domain are discussed
in [102].
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Abbreviations
The following abbreviations are used in this manuscript:

JPEG Joint Photographic Experts Group
DCT Discrete cosine transform
MCU minimum coded unit
PSNR peak signal-to-noise ratio
DWT discrete wavelet transform
SVM support vector machine
CNN Convolutional neural network
LSTM Long short-term memory
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MPEG Moving Picture Experts Group
HEVC High Efficiency Video Coding
MV motion vector
MC motion compensation
NNZ number of nonzero
PNG Portable Network Graphic
CTU coding tree unit
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