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Abstract: Since the facts in the knowledge graph (KG) cannot be updated automatically over time,
some facts have temporal conflicts. To discover and eliminate the temporal conflicts in the KG, this pa-
per proposes a novel temporal conflict resolution method based on temporal KG embedding (named
TeCre). Firstly, the predicate relation and timestamp information of time series are incorporated
into the entity–relation embedding representation by leveraging the temporal KG embedding (KGE)
method. Then, taking into account the chronological sequence of the evolution of the entity–relation
representation over time, TeCre constrains the temporal relation in the KG according to the principles
of time disjoint, time precedence, and time mutually exclusive constraints. Besides that, TeCre further
considers the sequence vectorization of predicate relation to discover the temporal conflict facts in
the KG. Finally, to eliminate the temporal conflict facts, TeCre deletes the tail entities of the temporal
conflict facts, and employs the link prediction method to complete the missing tail entities according
to the output of the score function based on the entity–relation embedding. Experimental results
on four public datasets show that TeCre is significantly better than the state-of-the-art temporal KG
conflict resolution model. The mean reciprocal ranking (MRR) and Hits@10 of TeCre are at least 5.46%
and 3.2% higher than the baseline methods, respectively.

Keywords: knowledge graph; entity–relation embedding; conflict detection; conflict resolution

1. Introduction

Knowledge graphs (KGs) are large-scale multi-relation graphs, in which nodes cor-
respond to entities, and the types of edges represent the relations between entities. KG
encodes facts in the form of triples <entity, relation, entity>, e.g., <Beijing, isCapitalOf,
China>. Some of the KGs, such as DBpedia [1], NELL [2], YAGO [3] and Freebase [4],
have been successfully applied to the fields of information retrieval [5], question answering
systems [6], and recommendation systems [7].

In the past few years, KG embedding (KGE) has become a hot research area [8,9]. KGE
methods learn representations of nodes and relations in a continuous vector space KG, while
retaining graph structures and knowledge relations. However, the use of open-domain
information extraction on expanding the KG usually leads to incorrect or inconsistent facts
in the KG. Specifically, the fact is not always correct in the temporal KG (TKG), as they tend
to be valid only in a certain time period. For example, <Donald Trump, isPresidentOf, USA,
[2017, 2021]> is only correct between 2017 and 2021. Though the temporal information is
available on several large KGs, such as YAGO [10], Wikidata [11], the mainstream KGE
methods ignore the availability or importance of the temporal information when learning
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the KGE [12]. Existing KGE methods treat KG as a static graph and assume that the facts
are always correct.

However, the existing temporal KGE (TKGE) method only pays attention to the factual
rationality and ignores the temporal consistency. The temporal consistency models the
interaction between facts and their context, so it can capture the fine-grained temporal
relations, such as temporal order, temporal distance, and temporal overlap. DRF [13]
incorporates the temporal information with the first-order logic Horn formula to express
the constraint model, which is used to infer the temporal conflict between the consistency
constraints and the queries in the resource description framework (RDF) knowledge base.
The model optimization problem in the paper is defined as a scheduling task. It deals with
temporal conflicts based on the approximate value of the scheduling algorithm. Since the
internal operations are coarse-grained, this method can only resolve a small part of the
temporal conflicts in the KG. For detecting the temporal conflicts in the uncertain time
KG, a eliminate temporal conflicts (ETC) framework based on the maximum weight is
proposed [14]. ETC constructs a detailed description of the constraint graph to identify
the conflict detection based on time constraints. It also proposes implicit constraints and
weighted conversion methods to solve temporal conflict in the KG. However, this method
is not accurate as it is based on the weight conversion. These aforementioned methods
are limited to a small number of time patterns, and the use of open-domain information
extraction on expanding KG usually brings inaccurate pattern information. Moreover,
though there are various inference rules and constraints, some of them are only suitable for
specific fields, and the temporal conflicts cannot be effectively detected and resolved [15,16].

To incorporate the temporal information from the KG into the entity–relation em-
bedding vector representations, researchers try to vectorize the temporal information.
However, it is challenging due to the sparseness and irregularity of the time expression.
To solve this issue, the time expression is converted into a sequence that represents the
temporal information. In addition, we notice that the character-level architecture [17] used
for language modeling operates on characters as atomic units to derive word embedding.
Inspired by these models, our previous work Kgedl [18] detects conflicts by incorporating
the temporal information into the predefined restrictions, and resolves them by evaluating
confidence between entities. However, we find that Kgedl is increasingly unsuitable for
large and complex KGs because of its incomprehensive restrictions and underutilization of
important relational knowledge.

To solve the above problems, this paper proposes a novel temporal conflict resolution
method based on temporal KG embedding (named TeCre). First, we train the LSTM
network to learn the sequence embedding representations of the predicates and timestamp
so that the temporal constraints, such as time disjoint, time precedence, and time mutual
exclusion, can be integrated to discover the temporal conflict facts in the KG. Then, the tail
entity of these conflicts is deleted, and the missing tail entity is complemented according to
the score of the entity–relation embedding that is calculated through the link prediction
method. In addition, we design a new loss function to guarantee the consistency between
entities and the consistency between relations in the temporal space, which improves the
effectiveness of TeCre in large and complex KGs. In summary, the main contributions of
this paper are as follows:

(1) We propose a novel TKG-based temporal conflict detection method. The proposed
method leverages the TKGE and the temporal conflict constraints to discover the
temporal conflict of the facts in the KG.

(2) We propose a conflict resolution method based on the TKGE method to eliminate the
conflicts. To solve the temporal conflict problems of the TKG, the proposed method
deletes the conflicting temporal information from the KG and utilizes the knowledge
completion method to complete the missing time information.

(3) Through a large number of experiments on four real datasets, the effectiveness of
the proposed method is verified. Experimental results show that TeCre improves the
MRR of the baseline method by at least 5.46% and improves at least 3.2% on Hits@10.
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2. Related Work

This paper proposes to employ the TKGE method to detect the temporal conflicts of
the fact in knowledge graphs and to use the link prediction method to resolve the temporal
conflict issue. The related research work will be introduced from two aspects: TKGE
methods and temporal conflict resolution methods.

2.1. Temporal Knowledge Graph Embedding

Recently, some works [17,19,20] focused on modeling the interaction between entity–
relation and temporal information. The goal of TA-LSE [17] is to directly embed temporal
information in the entity–relation. TA-TransE and TA-DistMult use recurrent neural net-
works to learn the time-aware representation of the relation, and use the standard scoring
functions of TransE [21] and DistMult [22] to measure the distance between entities. These
models can model temporal information in the form of time points with or without certain
time modifiers. This method treats the timestamp as a sequence of numbers from 0 to 9, and
then uses LSTM to encode the entity relation vector and the time sequence. TAE-ILP [19]
found that there is a certain chronological sequence of different relations. Accordingly,
a time-sensitive embedding model (TAE) is proposed to complement the KG. TAE adds
temporal constraints to the embedding space, making the model temporal known and
accurate. TAE captures the chronological order and other common-sense constraints that
exist between certain relation types to provide more accurate link predictions. DVT [20]
proposed a method of time-embedding learning using the side information of the time part
of the graph. This method combines the time embedding vector with relational embedding
vectors, such as concatenation, summation or dot product operation [23,24]. The translation
distance scoring function [25] is adopted to measure the distance between entities, and
the temporal information is encoded in the low-dimensional space of entity–relation with
time embedding and time hyperplane. However, these methods cannot capture more
interactions in the time dimension, such as the temporal consistency between facts and
contexts, so the performance of the strategy is still limited. Besides that, HyTE [26] directly
projected entities and relations into the hyperplane at a specific time and then modeled the
plausibility of facts through TransE [21].

Recent studies have shown that by incorporating temporal information into the TKG,
the KGE model’s performance can be further improved. Know-Evolve [27] models the
occurrence of facts as a point-in-time process. However, this method is based on the
problem expression when dealing with concurrent events. Another method of Know–
Evolve is to use the bilinear embedding learning methods to model KG elements’ nonlinear
time evolution. Know–Evolve deploys recurrent neural networks to capture embedded
nonlinear dynamic features. However, they restrict their domain to event-based interaction
types of data sets. DE-TKGC [28] integrates temporal information into diachronic entities
to find and obtain the latest technological achievements on the event-based TKG. However,
like TA-TransE and TA-DistMult, DE-SimplE cannot model facts involving time intervals
(such as [2005, 2008]). Additionally, TEEs [29] encodes the year’s representation as an entity
embedding by summarizing the presentation of the entity that appears in the event-based
description of the year. Usually, these methods convert time-aware facts into triples <head,
relation, tail>, and then use the traditional KGE form [30,31] to measure the truth of the
fact. t-TransE [32] learns time-aware embedding by learning relational ranking together with
TransE. They try to impose chronological order on time-sensitive relations. t-TransE does
not directly use temporal information. Different from t-TransE, we directly incorporate
temporal information into the learning algorithm by TKGE [21].

2.2. Temporal Knowledge Graph Conflict Resolution

The conflict resolution of the TKG usually has two steps. The first step is to detect the
conflict in the TKG, and the second step is to resolve the detected conflicts of the facts.

In terms of conflict detection, most existing outlier entity correction methods identify errors
by discovering outlier entities. For instance, [33,34] identified outliers in KG through cluster
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mining of numeric entities. CCOD [33] employs an unsupervised method to cluster outliers.
They proposed to employ the external knowledge base to distinguish the natural outliers and
other outliers. The use of the knowledge base for cross-checking is able to identify the anomalies’
numeric value. DIND-Dbpedia [34] employs the supervised method to identify digital outliers.
This method can only identify digital outliers and cannot correct non-numerical data. MOD [35]
corrects the outlier triples in the KG through clustering and classification methods. PED [36]
identifies abnormal numeric entities by clustering digital RDF data, and uses probability model to
learn arithmetic relations to find false links. Wrong links are viewed as abnormal triples, but in
this method, triples are links between entities [37], and this method is only suitable for numeric
data and dates. CN-KG [38] is committed to narrowing, identifying, and interpreting possible
errors from the KG through language analysis and entity links. It uses optional source documents,
provenance information, and confidence scores to evaluate the KG quality. ProbKB [39] debugs
error facts by using a set of function constraint methods, which uses a set of function constraints
to debug conflicts, so the method is limited to dealing with static and text facts. TeCoRe [40] is
proposed for time inference and conflict resolution in uncertain time KGs. The core of TeCoRe is
two state-of-the-art probabilistic reasoners, which can effectively deal with time constraints.

In terms of conflict resolution research, ETC [14] detects temporal conflicts in an
uncertain time KG based on the maximum weight. It proposes to construct a detailed
constraint graph to identify the time constraints of conflict detection. Implicit regulations
and weight-conversion methods are proposed to resolve the temporal conflicts to ensure
the time consistency of facts in the KG. Based on abnormal links in the KG, OEC [15]
proposes a method named OEC to identify abnormal triples. OEC uses entity embedding
methods to correct abnormal entities in the KG. In the process of EKG, each entity is
projected into a shared vector space so that similar entities are close in the vector space. The
embedding method of OEC is performed iteratively, and in each iteration, some vectors are
far away from outlier entities. OEC corrects the KG by deleting the anomalous entity, whose
embedding vectors are far from the group. MUTKG [16] reasons uncertain TKGs based on
the Markov logic network and employs the Datalog restriction to detect the wrong facts
in the uncertain TKGs. Then it uses maximum posterior probability reasoning to obtain
the largest possible conflict-free TKG from the uncertain KG. However, this study did not
consider the various temporal conflicts in the KG, and it did not consider the incompleteness
of manual constraints. Since these methods do not view the semantic relation between
entity–relations, they do not make full use of the timestamp information. In our previous
work, Kgedl [18] detects time conflicts through three pre-defined restrictions, and evaluates
the confidence between entities based on the semantic embedding and the path-based
embedding, then completes the conflict resolution by replacing the entities in the conflict
facts. However, the restrictions set by Kgedl for conflict detection are not comprehensive
enough, and Kgedl only considers the consistency of entities but not the consistency of
relations in conflict resolution. Therefore, this paper proposes to use the technique based
on the KGE to detect and resolve the conflicts in the TKG.

3. Problem Statement

We define the TKG as a multi-relational directed graph with timestamped edges
between any pair of nodes. In a TKG, the edge between two nodes represents an event in
the real world, and the edge type represents the corresponding event type. TKG does not
allow repeated edges and self-circulating edges. All edges have different time points, and
each edge has other subject and object entities. Here, we utilize four-tuple < h, r, t, [τs, τe] >
to represent a fact in the knowledge graph, where τs and τe represent the effective start and
end times of the triple < h, r, t >.

Let us take Keith Brian Alexander as an example to show his career facts. Figure 1
shows a TKG of Alexander’s career life.

1. <Alexander, retirement from, NSA, [2014.3.28,now]>;
2. <Alexander, work as, IronNet Cybersecurity, [2014.5,now]>;
3. <Alexander, work as, 1st Commander of the USCC, [2010,2015]>;
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4. <Alexander, work as, 16th Director of NSA, [2005,2014]>;
5. <Alexander, work as, Deputy Chief of Staff G-2, [2005,2014]>;
6. <Alexander, work as, Commanding General of the U.S. INSCOM, [2001,2003]>.

Figure 1. The TKG of Alexander’s career life.

Suppose a question inquires about Alexander’s job position from 2010 to 2014. In that
case, we know from the above facts that fact 2 and fact 3 overlap in time and have conflict.
Alexander worked for IronNet Cybersecurity after 2014 in fact 2. However, in the description
of fact 3, he served as the first commander of the US Cyber Army from 2010 to 2015. This ar-
ticle aims to discover the facts with temporal conflicts in the TKG, that is, to find the facts
corresponding to the dotted lines in Figure 1 and to resolve and correct these conflicting facts.

4. Proposed Method

This section describes the conflict resolution method based on the TKGE proposed
in this paper. Figure 2 shows the overall framework of our method. First, the temporal
conflicts in the KG are restricted by time sequence restriction. Then the predicate relation
and time stamp information in the facts are vectorized. Next, the entity–relation vector is
input to the scoring function, so the facts with temporal conflicts can be found according to
the size of the scores. Finally, the conflicts with temporal conflicts are resolved using the
link prediction method.

4.1. Temporal Conflict Constraint

There are many types of temporal conflict in the TKG. This paper mainly considers
three types of restrictions: temporal disjoint, temporal precedence, and mutual exclusion.
Here, we take four-tuples < hi, ri, ti, [τsi, τei] > and < hj, rj, tj, [τsj, τej] > as examples to
introduce the above three restrictions, where i, j ∈ [1, n], n is the number of tuples in TKG.

Temporal Disjoint: To describe two time intervals with the same relation should not
overlap, we utilize Equation (1) to describe the disjoint constraint.

<hi, ri, ti, [τsi, τei]> ∩ <hj, rj, tj, [τsj, τej]> ∩ ri = rj ∩ ti 6= tj

→ disjoint([τsi, τei], [τsj, τej])
(1)

where ∩ represents the intersection operation, and disjoint(, ) represents the intersection
operation. When ri and rj are the same relation but ti and tj are not the same entity, it
means that the times of [τsi, τei] and [τsj, τej] do not overlap. For example, an employee
cannot work full time (work as relation) in two companies or institutions simultaneously.

Putting fact 3 <Alexander, work as, 1st Commander of the USCC, [2010,2015]> and
fact 2 <Alexander, work as, IronNet Cybersecurity, [2014.5,now]> into Formula 1, we can
obtain the following statement:
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<Alexander, 1st Commander of the USCC, [2010,2015]> ∩ <Alexander, IronNet
Cybersecurity, [2014.5,now]> ∩ work as = work as ∩ IronNet Cybersecurity 6= 1st Com-
mander of the USCC→ disjoint([2010, 2015], [2014.5, now]).

Figure 2. The proposed time conflict resolution framework, containing three parts: (1) four-tuples ex-
traction, (2) temporal conflict detection, and (3) temporal conflict correction. In the four-tuples extrac-
tion, n tuples are extracted from TKG, where n is the number of tuples in TKG. In the temporal conflict
detection, each tuple < hi, ri, ti, [τsi, τei] > is compared with the other tuple < hj, rj, tj, [τsj, τej] > by
three types of restrictions until all temporal conflict tuples are found, where i, j ∈ [1, n], n is the num-
ber of tuples in TKG. In the temporal conflict correction, temporal conflict tuple < hj, rj, tj, [τsj, τej] >

is converted to < hj, tj, Tseq > by LSTM, and then its tail entity is replaced by the entity through the
link prediction method to obtain the correct tuple.

Here, for the same relation work as, Alexander worked at IronNet Cybersecurity after
May 2014. Alexander worked as 1st Commander of the USCC in [2010,2015] has a temporal
conflict, that is, τsj = 2014.5 is smaller than τei = 2015, so there are temporal conflicts in the
same kind of relation, and this fact violates the temporal disjoint restriction.

Temporal Precedence: Under the same head entity and different relations, the end
time of one relation must be earlier than the start time of the other. Here, we assume that
the end time of ri is earlier than the start time of rj, the definition of temporal precedence is
as Equation (2):

<hi, ri, ti, [τsi, τei]> ∩ <hj, rj, tj, [τsj, τej]> ∩ ri 6= rj → τsj < τei (2)

In the different relations ri and rj, the start time of rj is later than the end time of
ri. For example, in fact 1 <Alexander, retirement from, NSA, [2014.3.28,now]> and fact 3
<Alexander, work as, 1st Commander of the USCC, [2010,2015]>, Alexander’s start time
in fact 1 is later than the end time in fact 3, so these two facts violate different relations
temporal precedence constraint.

Mutual Exclusion: If two facts have the same relation, the same head entity and the
same timestamp information, then they must have the same tail entity, i.e., Equation (3):

<hi, ri,ti, [τsi, τei]> ∩ <hj, rj, tj, [τsj, τej]> ∩ hi = hj ∩
ri = rj ∩ τsi = τsj ∩ τei = τej → ti = tj

(3)

Some facts conflict with each other because they violate the mutual exclusion re-
striction. For instance, fact 4 <Alexander, work as, 16th Director of NSA, [2005,2014]>
is conflicted with fact 5 <Alexander, work as, Deputy Chief of Staff G-2, [2005,2014]>,
because Alexander can only work for one team in the same time period.
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4.2. Temporal Sequence Vectoring

The fact of a given temporal KG is represented by a four-tuple < h, r, t, [τs, τe] >, TeCre
decomposes the given (possibly incomplete) timestamp [τs, τe] into a sequence. Inspired
by TA-LSE [17], TeCre splits the numbers in year, month, and day to form a temporal. For
each quadruple, TeCre can extract a sequence of predicate tokens, which are marked by the
relation type and time modifier token composition, such as “since” or “until”. TeCre calls
the concatenation of the predicate token sequence and the time token sequence the predicate
sequence Tseq. Therefore, the time KG can be expressed as a set of four-tuples of the form
< h, r, t, Tseq >, where the predicate sequence can contain temporal information. Table 1
lists some examples of such facts from temporal KG and their corresponding predicate
order. We use the suffixes y, m, and d to indicate whether the number corresponds to the
year, month or day information. These marker sequences are used as input to LSTM.

Table 1. Facts.

Fact Predicate and Timestamp Sequence Head Entity Tail Entity

<Alexander, retirement from, NSA,
[2014.3.28,now]> [retirement from,2y,0y,1y,4y,03m,2d,8d] Alexander NSA

<Alexander, work as, IronNet
Cybersecurity, [2014.5,now]> [work as,2y,0y,1y,4y,now] Alexander IronNet Cybersecurity

<Alexander, work as, 1st Commander
of the USCC, [2010,2015]> [work as, 2y,0y,1y,4y, 2y,0y,1y,5y] Alexander 1st Commander of the USCC

First, each tag of the input sequence Tseq is mapped to its corresponding d-dimensional
embedding through the linear layer, and the resulting sequence of embedding is used as
the input of LSTM. Then, LSTM outputs the predicate timestamp sequence representation
with temporal information eTseq . In addition, the last hidden state of LSTM represents each
predicate timestamp sequence of length N [41].

Secondly, eTseq combines with the subject and object embedding in the standard scoring
function. According to the embedding vector representation of the entity–relation in the
KG, the triple y =< h, r, t, [τs, τe] > corresponding to the quadruple < h, r, t, Tseq > has the
following scoring function:

f (y) = ‖eh + eTseq − et‖2 (4)

where eh and et are the subject and object embedding of the triple, which are trained by
TransE [21]. ‖ · ‖2 represents the L2-norm of the matrix.

Finally, by comparing the scoring functions, the lower the score, the greater the
probability that the entity–relation pair is correct. Next, TeCre utilizes the scoring function
to correct the fact that there is a temporal conflict.

4.3. Error Time Correction

For the temporal conflicts facts, they can be represented as quadruples, TeCre first deletes
the tail entities of these facts. Then complete the missing tail entities by using Equation (4).
The link prediction method is used to link the missing tuple and the timestamp candidate set,
and then the tail entities of the missing tuple are completed.

Here, TeCre regards the TKG timestamp completion as an optimization problem based
on normalization. Given a training positive example quadruple < hk, rk, tk, [τsk, τek] >∈ 4,
4 is the fact tuple set. TeCre finds a time-related four-tuple of the same head entity
< hl , rl , tl , [τsl , τel ] >∈ 4, and the temporal–relation pair < rk, rl >, where k, l ∈ [1, n].
If τsk < τek, TeCre obtains a positive temporal–relation pair x+ =< rk, rl >, and the
corresponding negative relation pair x− =< rk, rl >

−1=< rl , rk >. The optimization goal
of TeCre is for the positive temporal–relation pair’s score to be lower than the score of the
negative relation pair. Therefore, TeCre defines the time-series relation scoring function as
shown below:

s(x) = ‖rk · Tk
seq − rl · Tl

seq‖2 (5)
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If the sequence–relation pair is arranged in chronological order, the score is lower,
otherwise the score is higher. Note that both Tk

seq and Tl
seq are asymmetric, and the loss

function is also asymmetric to obtain the temporal information.
To make the embedding space compatible with the observed tuples, TeCre uses the

fact tuple set 4 and follows the strategy adopted by the previous method. Then, TeCre
minimizes the loss function through Equation (6):

L = ∑
y+∈4

∑
y−∈4′

[γ1 + f (y+)− f (y−)] + λ ∑
x+∈Ω,x−∈Ω′

[γ2 + s(x+)− s(x−)] (6)

where L is the score calculated by Equation (6), f (·) is the scoring function defined in
Equation (4), y+ is a tuple of positive examples, and y− is the corresponding tuple of
negative examples after replacing the tail entity. λ is the hyperparameter, and γ1 and
γ2 are the margins. Ω is the positive relation pair, and Ω′ is the negative relation pair
corresponding to the reverse relation pair.

The relation rk and rl have the same head entity. The first term of Equation (6)
guarantees the consistency between entities in the temporal space, and the second term
guarantees the consistency between relations in the temporal space. The hyperparameter
λ balances these two items. In this article, TeCre utilizes the stochastic gradient descent
method to minimize the problem. Through continuous training, TeCre makes the score of
the positive four-tuples higher than that of all negative four-tuples by using Equation (6).

4.4. Proposed Algorithm

As shown in Algorithm 1, TeCre proposes to resolve the temporal conflict of the facts
in the TKG in four stages. Firstly, the facts of the predicate and time are serialized to
obtain the vector (see line 1–6 in Algorithm 1). Secondly, the serialized predicate and
time are used as the input of LSTM to calculate the score of the time-serialized triples (see
line 7–9 in Algorithm 1). Then, TeCre calculates scores of the entities with the same head
entities temporal pair but different tail entities (see line 10–12 in Algorithm 1). Finally,
TeCre calculates the loss score of the facts that have temporal conflict with the loss function.
Resolve the temporal conflict by deleting the tail entities of the facts and complete tail
entities through link prediction in the KG (see line 13–14 in Algorithm 1).

Algorithm 1 Temporal conflict resolution algorithm based on TKGE
Input: A set of facts < h, r, t, [τs, τe] > with conflicts in KG G
Output: KG G1 without temporal conflict facts
1: Initialize facts yi =< hi, ri, ti, [τsi, τei] >∈ G, G2 = ∅
2: for all facts yj =< hj, rj, tj, [τsj, τej] >∈ G, yi 6= yj do
3: yi ∩ yj ∩ ri = rj ∩ ti 6= tj → disjoint([τsi, τei], [τsj, τej])
4: yi ∩ yj ∩ ri 6= rj → τsi < τej
5: yi ∩ yj ∩ hi = hj ∩ ri = rj ∩ τsi = τsj ∩ τei = τej → ti = tj
6: Put temporal conflicts fact yk into G2
7: for all facts y =< h, r, t, [τs, τe] >∈ G2 do
8: y =< h, r, t, [τs, τe] >→ y =< h, t, Tseq >
9: f (y) = ‖eh + eTseq − et‖2
10: Put corrected facts into G2
11: for all y+ ∈ 4, y− ∈ 4′, x+ ∈ Ω, x− ∈ Ω′ do
12: s(x) = ‖rk · Tk

seq − rl · Tl
seq‖2

13: L = ∑
y+∈4

∑
y−∈4′

[γ1 + f (y+)− f (y−)] + λ ∑
x+∈Ω,x−∈Ω′

[γ2 + s(x+)− s(x−)]

14: return G1
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5. Experimental Results and Analysis

This paper compares the performance of TeCre with the baseline methods in the
aspects of temporal conflict detection and temporal conflict resolution of the TKG on four
public datasets.

5.1. Datasets

The statistics of the aforementioned datasets are listed in Table 2. YAGO15K [17] is
sourced from FB15K [21]. The entities from FB15K to YAGO are aligned with the SAMEAS
relation contained in YAGO dump, and all facts related to these entities are retained.
Baseline methods use the temporal information in the “yagoDateFacts” dump to expand
the fact collection. YAGO15K includes the “occursSince” and “occursUntil” time modifiers.
All facts keep the temporal information at the same level of granularity as the original dump
from which these datasets come. The Integrated Crisis Early Warning System (ICEWS)
is a database containing political events with specific timestamps. These political events
associate entities with other entities through logical predicates. The database includes
events that occurred each year from 1995 to 2015. ICEWS 2014 [17] contains all events
in 2014, and ICEWS 2005–2015 [17] contains all events that occurred between 2005 and
2015. WIKIDATA is a KG that can be edited by both humans and machines. The facts in
the WIKIDATA [17] dataset are framed by time intervals (that is, they contain the time
modifiers “occursSince” and “occursUntil”). The fact annotated with a single point in time
is associated with that point in time as the start time and end time.

Table 2. Statistics of the datasets.

Dataset YAGO15K ICEWS14 ICEWS05-15 WIKIDATA

Entities 15403 6869 10094 11134
Relations 34 230 251 95

Facts 138056 96730 461329 150079
Time Span 1513–2017 2014 2005–2015 25–2020

For the experiments with TeCre, this paper searches the learning rate δ for Adam
among {0.0001, 0.001, 0.01, 0.1}, the embeddings of entities, relation d ranges from 1 to 200,
the hyperparameter λ is set as [0, 1], the margins γ1 and γ2 are selected from [0, 1]. Through
grid search for the area under the precision and recall curve of the verification set, the best
configurations are as follows: δ = 0.001, d = 128, λ = 0.43, γ1 = 0.12, γ2 = 0.36
on YAGO15K; δ = 0.01, d = 64, λ = 0.68, γ1 = 0.21, γ2 = 0.57 on ICEWS14;
δ = 0.001, d = 128, λ = 0.13, γ1 = 0.34, γ2 = 0.25 on ICEWS05-15; δ = 0.001, d = 128,
λ = 0.85, γ1 = 0.75, γ2 = 0.83 on WIKIDATA. We train at most 1000 epochs for all datasets.

5.2. Link Prediction Settings

Following prior work RE-NET [40], CyGNet [41], and CEN [21], this paper employs
a link prediction method to eliminate temporal conflicts. Therefore, the temporal conflict
resolution model is evaluated by testing the model’s performance on the link prediction
task on TKG. This link prediction task is to use missing entities to complete a time-related
fact. In this paper, for a positive four-tuple < h, r, t, [τs, τe] > in the KG, TeCre generates
the negative four-tuple < h, r, t′, [τs, τe] > by replacing the tail entity t with all possible
entities. In the training phase, TeCre uses Equation (6) to make the score of the positive
four-tuple higher than that of all negative four-tuples. In the testing phase, TeCre uses
Equation (4) to sort the scores of all four-tuples, then gives one best result to output. Two
evaluation metrics, mean reciprocal ranking (MRR) and Hits@k, are adopted to evaluate
the performance of the proposed temporal conflict resolution model. MRR is the mean of
the reciprocal of all calculated rankings Hits@k is the proportion of positive four-tuples in
the top k four-tuples. In addition, we also employ precision (P) and recall(R) to evaluate the
performance of TeCre. P represents the ratio of the number of the correct resolved temporal
conflict four-tuples to the number of the resolved conflict four-tuples, and R represents the
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ratio of the number of the resolved conflict four-tuples to the number of all ground truth
temporal conflict four-tuples.

5.3. Baseline Methods

This paper compares TeCre with three state-of-the-art TKG conflict resolution methods.
OEC [15] uses entity embedding methods to correct the abnormal entity–relation in the KG.
ETC [14] uses implicit constraints and weight conversion methods to resolve the temporal
conflicts in the KG to ensure the time consistency of facts in the KG. MUTKG [16] reasons the
uncertain TKG based on the Markov logic network method, and used the maximum posterior
probability reasoning to obtain the maximum possible conflict-free TKG from the uncertain
KG. RE-NET [42] uses a recurrent event encoder and a neighborhood aggregator to model
past events and some events in the same timestamp, respectively. CyGNet [43] proposes a
copy-generation model that learns historical facts from TKG to predict future facts. CEN [44]
uses a length-aware convolutional neural network to model the fact that sequences vary
in length. Our previous work Kgedl [18] detected time conflicts through three pre-defined
restrictions, and resolved conflicts by modeling the confidence between entities.

5.4. Experimental Results

Figure 3 shows the comparison results of the TeCre with baseline methods on the
YAGO15K. TeCre is obviously superior to the baseline methods. When the recall is 10%,
the precision of TeCre, CyGNet, RE-NET, Kgedl, ETC, MUTKG, CEN, and OEC are 0.930,
0.902, 0.884, 0.869, 0.851, 0.830, 0.697, and 0.628, respectively. When the recall’s value is
50%, the precision of TeCre, CyGNet, RE-NET, Kgedl, ETC, MUTKG, CEN, and OEC are
0.731, 0.726, 0.706, 0.676, 0.657, 0.550, 0.545, and 0.502, respectively. When the recall rate
is 90%, the precision of TeCre, CyGNet, RE-NET, Kgedl, ETC, MUTKG, CEN, and OEC
are 0.253, 0.217, 0.202, 0.187, 0.178, 0.169, 0.163, and 0.103, respectively. TeCre is 0.4∼30.2%
higher than the baselines.

Figure 4 shows the comparison result of the TeCre and baseline methods on the ICEWS’14
dataset. TeCre is significantly better than the baseline methods. The area under the precision
and recall curves of the TeCre is 0.697, the areas under the precision and recall curves of the
CyGNet, RE-NET, Kgedl, ETC, MUTKG, CEN, and OEC are 0.647, 0.656, 0.543, 0.532, 0.385,
0.512, and 0.455, respectively. TeCre is 6.25% higher than the second-place RE-NET.

Figure 3. The recall accuracy curve of TeCre and the baseline method on the YAGO15K dataset.
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Figure 4. Comparison results on the ICEWS’14 dataset.

Figures 5 and 6 show the temporal conflict fact detection results of baseline methods
on ICEWS05-15 and WIKIDATA, respectively. TeCre achieved the best results on both
datasets. On the ICEWS05-15 dataset, the area under the precision and recall curve of TeCre
(0.633) is 20% higher than the second-place RE-NET (0.565). On the WIKIDATA dataset,
the area under the accuracy and recall curve of TeCre (0.758) is 13% higher than that of the
second-place CyGNet (0.694).

In the experiment, the default facts in the KG are all true, but the facts that are not in the
KG according to the closed-world assumption are all false. In order to verify the robustness of
TeCre in the face of noisy data, randomly generated facts are added to the data set as false
facts in the KG of the experiment. In the experiment, 10%, 20%, 30%, 40%, 50%, 60%, 70%,
and 80% of noise facts were added as false facts in the KG. In Figures 7 and 8, we show the
accuracy and recall rate of TeCre and the baseline methods with different proportions of error
temporal facts in YAGO15K. It can be seen from the figure that TeCre has achieved the best
results in these methods. When the error proportion is 20%, TeCre’s precision and recall rates
reached 0.961 and 0.896, respectively; when the error proportion is 50%, TeCre’s precision
and recall rates reached 0.870 and 0.827, respectively. Even with 80% false facts added to the
dataset, TeCre still achieved 0.818 and 0.798 accuracy and recall rates.

In Figures 9 and 10, we show the accuracy and recall rates of TeCre and the baseline
methods when different proportions of error temporal facts are added to ICEWS’14. As can
be seen from the figures, TeCre achieved the best results in these methods. When the error
proportion was 30%, TeCre’s precision and recall rates reached 0.902 and 0.869, respectively,
which are higher than the second-place CyGNet precision and recall, as they were 4.15%
and 5.21% higher, respectively. When the error proportion was 60%, TeCre’s precision and
recall rate reached 0.885 and 0.822, respectively, which are higher than the second-place
CyGNet precision and recall, as they were 8.45% and 9.13% higher, respectively.
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Figure 5. Comparison results on the ICEWS05-15 dataset.

Figure 6. Comparison results on the WIKIDATA dataset.

Figure 7. Precision on YAGO15K with different error proportion.
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Figure 8. Recall on YAGO15K with different error proportion.

Figure 9. Precision on ICEWS’14 with different error proportion.

Figure 10. Recall on ICEWS’14 with different error proportion.
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To verify the effectiveness of the proposed method on the resolution of temporal
conflicts, TeCre deletes the timestamp information in the detected temporal conflict facts
and then completes the missing timestamps with the link prediction method. Table 3 shows
the results of all methods on the link prediction task. The actual experimental results on
YAGO15K, ICEWS’14, ICEWS05-15 and WIKIDATA show that TeCre achieves the best
results in MRR and Hits@10. The experimental results on YAGO15K show that TeCre is
8.2% higher than the second-place CyGNet on MRR, and 3.2% higher than the CyGNet on
Hits@10. On the ICEWS’14 dataset, TeCre is 9.77% higher than CyGNet on MRR, and 6.2%
higher than CyGNet on Hits@10. On ICEWS05-15, TeCre is 5.46% higher than CyGNet on
MRR, and 7.7% higher than CyGNet on Hits@10. On WIKIDATA, TeCre is 13.28% higher
than CyGNet on MRR, and 5.5% higher than CyGNet on Hits@10. In summary, TeCre
achieves the best results with MRR increased by at least 5.46% and Hits@10 increased by at
least 3.2%, respectively.

Table 3. Link prediction results on the four datasets (the best results are shown in bold).

YAGO15K ICEWS’14 ICEWS05-15 WIKIDATA

Metrics MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10

OEC 0.133 0.178 0.141 0.201 0.258 0.244 0.218 0.306
CEN 0.140 0.197 0.149 0.203 0.285 0.255 0.264 0.341
MUTKG 0.156 0.215 0.177 0.235 0.297 0.267 0.285 0.357
ETC 0.163 0.265 0.186 0.338 0.334 0.368 0.308 0.397
Kgedl 0.171 0.311 0.192 0.356 0.378 0.397 0.324 0.428
RE-NET 0.175 0.334 0.215 0.388 0.376 0.385 0.356 0.446
CyGNet 0.183 0.383 0.256 0.403 0.403 0.406 0.384 0.501
TeCre 0.198 0.415 0.281 0.465 0.425 0.483 0.435 0.556

According to the above experimental results, the following conclusions are drawn:
(1) OEC and CEN only consider a certain time when the fact occurs and do not take into
account both the start and end time of the fact, so they cannot capture the long-term
dependence of the fact and do not perform well. (2) ETC and MUTKG are more suitable
for timestamps time-series facts with shorter intervals, so their performance in ICEWS’14
and ICEWS05-15 datasets is better than that in the other two datasets. (3) CyGNet and
Re-Net model historical facts to predict future facts. However, they do not consider the time
consistency and the possible time conflicts between facts. (4) Kgedl and TeCre both detect
time conflicts through three pre-defined restrictions. However, Kgedl can only capture the
time consistency between entities to eliminate conflicts, while TeCre can capture the time
consistency between entities and the time consistency between relations to resolve conflicts.
Therefore, TeCre performs better than Kgedl. (5) By modeling the time consistency between
facts that different lengths of timestamps, TeCre can capture fine-grained temporal features,
so TeCre performs best in all datasets.

6. Conclusions

This paper proposes an embedding representation method TeCre based on TKG,
which employs TKGE to resolve conflict facts in the KG. TeCre uses the scoring function
between entity–relations to discover the facts of temporal conflicts in the TKG according
to the temporal conflict constraints. For conflicting facts, the tail entities of these facts are
removed from the quadruple. Then the missing tail entities is added to the facts through the
KG completion method, thereby solving temporal conflicts in the TKG. The experimental
results show that TeCre is significantly better than the best KGE model and the existing
temporal KGE model in the conflict detection and conflict resolution on four time-series
KGs. Through extensive experiments on real-world datasets, the effectiveness of TeCre
compared to traditional and time-sensitive embedding methods is verified. In future work,
we will merge the type consistency information to improve the TeCre model’s performance,
and try to utilize TeCre to complete the missing information of the KG.
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