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Abstract: Molecular biology-focused knowledge graphs (KGs) are directed graphs that integrate
information from heterogeneous sources of biological and biomedical data, such as ontologies and
public databases. They provide a holistic view of biology, chemistry, and disease, allowing users to
draw non-obvious connections between concepts through shared associations. While these massive
graphs are constructed using carefully curated ontologies and annotations from public databases,
much of the information relating the concepts is context specific. Two important variables that
determine the applicability of a given ontology annotation are the species and (especially) the tissue
type in which it takes place. Using a data-driven approach and the results from thousands of high-
quality gene expression samples, we have constructed tissue-specific KGs (using liver, kidney, and
heart as examples) that empirically validate the annotations provided by ontology curators. The
resulting human-centered KGs are designed for toxicology applications but are generalizable to other
areas of human biology, addressing the issue of tissue specificity that often limits the applicability
of other large KGs. These knowledge graphs can serve as valuable tools for generating transparent
explanations of experimental results in the form of mechanistic hypotheses that are highly relevant to
the studied tissue. Because the data-driven relations are derived from a large collection of human in
vitro data, these KGs are particularly well suited for in vitro toxicology applications.

Keywords: knowledge graphs; semantic web; knowledge mining; ontologies; semantic knowledge
curation

1. Introduction

Over the past several decades, great effort has been put into the careful curation of
open biomedical ontologies and pathway databases as well as manual annotation of the
relevant physical entities denoted by these concepts (e.g., proteins, genes, or chemicals).
Ontologies provide a set of formal, hierarchical descriptions of abstract concepts within a
highly specific scope, connected by precise relation types. Axioms are commonly defined
them as “triples” (subject–predicate–object, i.e., a subject related to an object via a predicate),
which helps data-mining and artificial-intelligence tools to exploit the structured knowledge
computationally. Several popular ontologies and pathway databases, such as the Gene
Ontology (GO) [1,2] and Reactome [3], are used quite commonly and have become staple
downstream analysis endpoints for many critical tasks in ’omics, such as the functional
characterization of sets of differentially expressed or mutationally altered genes. Despite
the rich content of these individual resources, a natural limitation is that they provide
a view of just one aspect of biology at a time. For example, we can find in ontology
annotations that several genes (Entrez) participate in a biological process (GO); however, in
a knowledge graph (KG), we can also see that some of their protein products (Uniprot [4])
molecularly interact (StringDB [5]) with one or more other proteins that participate in the
same biochemical reaction (Reactome), which is a key component of certain disease-related
(MONDO [6]) pathways. This kind of rich, heterogeneous information can only be derived
from a knowledge aggregation data structure, such as a KG [7].

In order to break down these data silos, multiple ontologies and databases can often
be combined into a comprehensive KG to provide a more holistic view of biology and
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biochemistry. A semantic KG is a data model that structures knowledge as a directed graph
for computational use, taking into account the specific relation types used to link abstract
concepts and physical entities. Abstract concepts and physical entities are both defined
as nodes in such a graph, and the relations between them are defined as directed edges
connecting a pair of nodes (e.g., “BCL2L11 protein”—“participates in”–> “Translocation
of BIM to mitochondria”). Several large KGs with diverse levels of granularity have been
created for general biomedical applications [8], including KaBOB [9], Hetionet [10], and the
example graph generated by the comprehensive KG creation framework, PheKnowLa-
tor [11]. A human-specific tissue-specific KG for toxicology applications, however, has so
far been lacking. Furthermore, the annotations linking genes and proteins among them-
selves, as well as to different ontology concepts denoting biological processes, molecular
functions, cellular compartments, pathways, phenotypes, or diseases can be very context
specific. In particular, these types of relations may only be relevant for a specific tissue type.

To take a first step toward mitigating these shortcomings, we have produced a human-
centered, toxicology-focused knowledge graph that can be tailored to different tissue types
based on data-driven inference. This has been achieved by using a large curated collection
of high-quality gene expression assays from a variety of tissues. For example, by using
3328 unperturbed liver samples to calculate the correlation of gene expression levels and
single-sample concept enrichment scores (e.g., GO, Reactome, Human Phenotype Ontology
(HPO) [12]), we can discard gene–>concept edges below a strong correlation threshold,
under the assumption that there is no empirical evidence demonstrating that the gene
really relates to the concept in liver tissue. Conversely, if the empirical evidence indicates
consistent, strong tissue-specific correlation between the expression patterns of pair of
genes, we can add a gene<–>gene edge to the KG to capture this relationship. The fact that
the edges in the KG are empirically derived from in vitro data also positions these tissue-
specific graphs uniquely well to analyze results from similar in vitro datasets, though they
can also be employed for other types of data. We have so far produced a general human KG
featuring data-driven edges, as well as tissue-specific KGs for liver, kidney and heart tissue
using this method. The approach that we describe in the following sections can be applied
to other tissues and organisms, provided that adequate experimental data are available.

2. Materials and Methods
2.1. KG Construction Process

Each KG was constructed from a combination of open biomedical ontologies, public
databases, and data-driven relations produced from a large collection of in-house curated
experimental datasets. The complete list of resources used can be found in Table 1.

For every resource incorporated into the KG, we pay careful attention to the most
specific predicate type available, generally from the Relation Ontology (RO) [13]. The RO
provides a formal framework to link ontology concepts, including both general types of
relations and biomedical-specific relations. If the RO predicate class linking two concepts is
provided by the ontology or annotation files, we use it directly as the edge type. Otherwise,
we curate the most specific RO class for each new edge type we create. For example,
for a new directed edge derived from the Toxin and Toxin-Target Database (T3DB) [14]
connecting a chemical to a protein, we use the “regulates activity of” (RO:0011002) relation.
Whenever the RO class allows it, an inverse edge is also added to traverse the pair of
nodes in the opposite direction. We have relied on the RO class definitions to determine
when an inverse relation can be added for each new edge. For example, when linking two
subsequent biochemical reactions in a pathway using the “causally upstream of” relation
(RO:0002411), we can also add a directed edge in the opposite direction of type “causally
downstream of” (RO:0002404). The objective for this careful edge curation is twofold:
First, to produce the most precise explanation when traversing the graph in search for
evidence. Second, to make the KG ready to use with a semantic reasoner in the future,
to infer additional edges via state-of-the-art deductive and inductive methods. The entire
process described below is programmed as an automated pipeline.
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Table 1. Public resources utilized for the creation of the KG. The node counts reflect the subset of
concepts from each resource that were included in the KG.

Resource Type of Knowledge Gathered

Gene Ontology (GO)
(47,101 nodes)

Biological processes, molecular functions, and cellular compartments.
Protein to GO concept relations. Examples: fatty-acyl-CoA binding

(GO:0000062), oxidoreductase activity, acting on metal ions (GO:0016722),
endolysosome membrane (GO:0036020).

Human Phenotype
Ontology (HPO)
(18,619 nodes)

Abnormal phenotypes. Gene to phenotype relations. Phenotype to
disease relations. Examples: Abnormal thrombocyte morphology

(HP:0001872), Intrahepatic biliary atresia (HP:0005248).

MONDO disease
ontology

(MONDO) [6]
(22,398 nodes)

Diseases. Disease to phenotype relations. Examples: Ullrich congenital
muscular dystrophy (MONDO:0000355), pulmonary sarcoidosis

(MONDO:0001708).

Monarch
Initiative [15]

Gene to disease relations. Example: GTF2H5 (Entrez 404672)
–contributes to condition (RO:0003304)–> trichothiodystrophy

(MONDO:0018053).

ClinVar [16]
Gene to disease relations. Gene to phenotype relations. Example:

AASS (Entrez 10157) –causes or contributes to condition (RO:0003302)–>
Hyperlysinemia (HP:0002161).

Chemicals of
Biological Interest

(ChEBI) [17] (168,563
nodes)

Chemicals, chemical groups and roles. Examples: 1,2-dichloropropane
(CHEBI:142468), phase-transfer catalyst (CHEBI:63060).

Protein Ontology
(PRO) [18] (73,668

nodes)

Proteins and protein families. Example: nuclear factor NF-kappa-B p50
subunit (PR:000001757).

Cell Ontology
(CL) [19] (2527

nodes)

Cell types and anatomical references. Example: stellate pyramidal
neuron (CL:4023093).

UniProt [4] (21,485
corresponding PRO
nodes, 19,494 gene

nodes)

Proteins and their corresponding gene templates. The human instance
of the protein in PRO is used as identifier. Example: CYP2E1 protein

(PR:P05181).

Reactome Pathway
Database (28,898

nodes)

Biological pathways, and hierarchical relations between them.
Biochemical reactions, and their relation to pathways. Protein

complex relations to reactions and pathways. Protein and chemical
participation in protein complexes. Gene relations to biological

pathways. Examples: B4GALT6 homodimer [Golgi membrane]
(R-HSA-1015817), MAPK3, (MAPK1) phosphorylates

GRB2-1:SOS1:p-Y427-SHC1 (R-HSA-109822), Activation of BIM and
translocation to mitochondria (R-HSA-111446).

StringDB [5]

Relations between proteins based on molecular interactions. We are
only using those relations based on experimentally-validated physical
interactions. The reported experimental score was used for the edge
weight. Example: NUD4B (PR:A0A024RBG1) –molecularly interacts with

(RO:0002436)–> HDAC4 (PR:P56524).

AOPwiki [20]

Relations between annotated AOP concepts from various ontologies.
Example: reactive oxygen species biosynthetic process (GO:1903409)

–SCIOME:has_downstream_key_event (custom relation)–> oxidative stress
(MP:0003674).
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Table 1. Cont.

Resource Type of Knowledge Gathered

Toxin and
Toxin-Target

Database
(T3DB) [14]

Relations between chemicals considered toxins and their target
proteins. Example: lead atom (CHEBI:25016) –regulates the activity of

(RO:0011002)–> ATNG (PR:P54710).

Relation Ontology
(RO) [13] (41 relation

types)

Formal description of relations between concepts and entities in the
KG. Examples: molecularly interacts with (RO:0002436), causes or

contributes to condition (RO:0003302).

For genes, we used the NCBI Entrez ID as the unique identifier, and for proteins, the
PRO ID (the human instance represented by its UniProt ID, such as PR:P37173 for protein
P37173). Only human genes and proteins were used during the construction of these KGs.

In general terms, to construct the KGs, we started from the same steps. First we
incorporated the nodes and edges from each ontology, which resulted in several large
graphs with a few edges connecting each other. We then incorporated nodes and edges
from public databases (i.e., genes, proteins, complexes, and pathways) and ontology
“annotations” (lists of related genes and proteins to ontology concepts provided by ontology
curators), which added many nodes and edges linking the different ontology concepts to
common entities. Sometimes the same concept existed in multiple sources, so we simplified
the KG by collapsing duplicate nodes into one, combining all their neighbors. Starting
from this base KG, we used a data-driven approach to add edges between pairs of genes
and remove gene edges to concepts that are not validated empirically. This last step was
performed either with a large collection of samples from multiple tissue types to create a
general KG, or samples from a specific tissue type to create tissue-specific KGs. As a general
rule, any node incorporated into the KG was mapped via a standard, unique identifier
(specific ontology ID, Uniprot ID, Entrez ID, etc.), and in the case of proteins and genes, only
the human instance was preserved (ignoring non-human homologs and their annotations).
The detailed steps followed to create the KG, listed by the overall types of connected nodes
produced, were as follows:

1. Add nodes and edges sourced from individual biomedical ontologies. Nodes and
edges are, in general, provided as triples, as described previously. This step may
also include referenced nodes from external ontologies, such as Uberon Anatomy
Ontology (UBERON), Phenotype And Trait Ontology (PATO), Cell Line Ontology
(CLO), mammalian phenotype ontology (MP), etc.

(a) GO↔ GO: Add GO triples from the ontology Open Biological and Biomedical
Ontology (OBO) definition. Example: actin cortical patch assembly –is_a–> cellular
component assembly (GO:0000147 –rdf-schema#subClassOf–> GO:0022607).

(b) HPO↔ HPO: Add HPO triples from the ontology OBO definition. Example:
Hyperserinemia –is_a–> Abnormal circulating serine concentration (HP:0500138
–rdf-schema#subClassOf–> HP:0012278).

(c) MONDO ↔ MONDO: Add MONDO disease ontology triples from the
ontology OBO definition. Example: reticulate pigment disorder –is_a–> genetic
skin disease (MONDO:0000118 –rdf-schema#subClassOf–> MONDO:0024255).

(d) ChEBI ↔ ChEBI: Add Chemicals of Biological Interest ontology (ChEBI)
triples from the ontology OBO definition. Examples: chloride –is_a–> halide
anion (CHEBI:17996 –rdf-schema#subClassOf–> CHEBI:16042); chloride –is con-
jugate base of–> hydrogen chloride (CHEBI:17996 –chebi#is_conjugate_base_of–>
CHEBI:17883).

(e) PRO ↔ PRO: Add PRO triples from the ontology OBO definition. Ex-
ample: LPS:GPI-anchored CD14 complex –has component–> lipopolysaccharide
(PR:000025493 –RO:0002180–> CHEBI:16412).
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(f) CL ↔ CL: Add Cell Ontology (CL) triples from the ontology OBO defi-
nition. Example: peridermal cell –is_a–> squamous epithelial cell (CL:0000078
–rdf-schema#subClassOf–> CL:0000076).

2. Add nodes and edges from public databases. In this step, we add nodes and edges
derived from various biomedical databases. These are not ontologies defined in
a semantic web format, but open databases that use a variety of data structures.
They generally do not refer to abstract concepts like molecular functions or diseases,
but rather to concrete entities, such as genes, proteins, chemicals, etc. Any nodes
added to the KG were based on strict unique identifier rules. All proteins were
identified by their human Uniprot IDs, ignoring the non-human homologs and their
annotations. All human genes were identified by their Entrez IDs, and chemicals to
their ChEBI IDs.

(a) gene ↔ protein: Add gene-to-protein and protein-to-gene edges from UniProt,
to define which protein is which gene product. Example: PADI6 –has_gene_product–
> Protein-arginine deiminase type-6 (Entrez 353238 –RO:0002205–> PR:Q6TGC4).

(b) protein ↔ protein: Add protein-to-protein interaction edges from StringDB,
only based on experimental evidence. The scaled experimental evidence
score is used as the edge weight. Example: 26S proteasome complex subunit
SEM1 –molecularly_interacts_with–> Proteasome subunit alpha type-6 (PR:P60896
–RO:0002436–> PR:P60900).

(c) gene ↔ MONDO, gene ↔ HPO: Add gene-to-MONDO or HPO edges from
ClinVar annotations to incorporate information of genes implicated in disease
or phenotypes. Examples: ZIC2 –causes_condition–> holoprosencephaly 5 (Entrez
7546 –RO:0003303–> MONDO:0012322), ZIC2 –causes_or_contributes_to_condition–
> Bilateral cleft lip (Entrez 7546 –RO:0003302–> HP:0100336) .

(d) protein ↔ complex, chemical ↔ complex: Add protein-to-protein complex and
chemical-to-protein complex edges from Reactome, to incorporate information about
complex members. Example: Complement factor H –molecularly_interacts_with–>
CFH:Host cell surface [plasma membrane] (PR:P08603 –RO:0002436–> R-HSA-
1006173), heparins –molecularly_interacts_with–> CFH:Host cell surface [plasma
membrane] (CHEBI:24505 –RO:0002436–> R-HSA-1006173).

(e) protein↔ Reactome: Add protein complex-to-pathway edges from Reactome
to show which complexes participate in which pathways. Example: ISGF3 bound
to ISRE promotor elements [nucleoplasm] –participates_in–> Interferon alpha/beta
signaling (R-HSA-1015697 –RO:0000056–> R-HSA-909733).

(f) Reactome↔ Reactome: Add pathway to pathway hierarchical edges (causally up-
stream/downstream pathways) from Reactome. Example: Translesion synthesis by Y
family DNA polymerases bypasses lesions on DNA template –causally_
upstream_of–> Termination of translesion DNA synthesis (R-HSA-110313 –RO:0002411–
> R-HSA-5656169).

(g) Reactome↔ Reactome: Add edges to connect biochemical reactions that take
part in pathways Reactome. Example: Cables1 links CDK2 and WEE1 –member_of–
> Factors involved in megakaryocyte development and platelet production (R-HSA-
1013881 –RO:0002350–> R-HSA-983231).

(h) protein ↔ Reactome: Add edges for proteins that participate in biochemical
reactions Reactome. Example: Complex III subunit 3 –participates_in–> Electron
transfer from ubiquinol to cytochrome c of complex III (PR:P00156 –RO:0000056–>
R-HSA-164651) .

(i) chemical ↔ Reactome: Add edges for chemicals that participate in biochemical
reactions from Reactome. Example: aldehydo-L-iduronic acid –participates_in–>
IDUA hydrolyses the unsulfated alpha-L-iduronosidic link in DS (CHEBI:28481
–RO:0000056–> R-HSA-1793186).
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(j) gene↔ Reactome: Add edges connecting genes annotated as biological path-
way participants from Reactome. Example: FGF4 –participates_in–> FGFRL1
modulation of FGFR1 signaling (Entrez 2249 –RO:0000056–> R-HSA-5658623).

3. Add edges from ontology annotations. Many of the biomedical ontologies provide
curated annotations for the ontology terms, for example, describing how genes and
proteins relate to them. These annotations can also describe relations to concepts from
a different ontology.

(a) protein ↔ GO: Add protein–>GO edges from GO annotations, to relate pro-
teins with biological processes, molecular functions and cellular compartments.
Example: CYB5 –enables–> cytochrome-c oxidase activity (PR:P00167 –RO:0002327–
> GO:0004129).

(b) gene↔ HPO: Add gene–>HPO edges from HPO annotations, to relate genes with
their associated phenotypes. Example: STS –causes_or_contributes_to_condition–>
Abnormal stomach morphology (Entrez 412 –RO:0003302–> HP:0002577).

(c) gene ↔ MONDO: Add gene–>MONDO edges from Monarch annotations
to incorporate information about genes known to cause or contribute to dis-
eases. Example: CTSF –causes_or_contributes_to_condition–> adult neuronal ceroid
lipofuscinosis (Entrez 8722 –RO:0003302–> MONDO:0019260).

(d) MONDO↔ HPO: Add disease–>phenotype edges from MONDO and HPO
annotations. Weight these edges based on the frequency at which a phe-
notype is manifested in a disease, using the values provided in the annota-
tions. Example: muscular dystrophy-dystroglycanopathy –has_phenotype–> Seizure
(MONDO:0000171 –RO:0002200–> HP:0001250).

(e) Add edges connecting nodes in the KG key event relations in AOPwiki,
for which a related ontology concept has been annotated. The edge weight is
based on the evidence code or quantitative understanding score (if given). Ex-
ample: hyperplasia –has_upstream_key_event–> cell proliferation (MONDO:0005043
–aop_ontology#has_upstream_key_event–> GO:0008283).

(f) chemical ↔ protein: Add chemical to protein edges from the T3DB, to link
known chemical stressors with their known dysregulated proteins. Example:
metixene –regulates_activity_of–> Muscarinic acetylcholine receptor M4 (CHEBI:51024
–RO:0011002–> PR:P08173).

4. Simplify the KG by removing redundant nodes. Collapse any group of nodes with
an identical label into a single new node. All inbound or outbound edges from the
collapsed nodes are added to the new one (Figure 1). This reduces unnecessary re-
dundancy in the graph and helps avoid knowledge fragmentation. The priority given
to node types to define which is the identifier that remains as the new node name is
based on the following order: MONDO, Reactome, HPO, GO, PATO, UBERON, then
any other node. Additionally, collapse the taxon-neutral and taxon-specific (human)
protein nodes from PRO into one (keeping the human instance node), to avoid unnec-
essary nodes since this is an organism-specific KG. No proteins from any taxa other
than human were incorporated in this KG.

5. Add/Remove data-driven edges to create the general and tissue-specific KGs. In
this step, we remove any edges between genes and pathways or ontology concepts
that are not strongly correlated among the experimental samples used in this empirical
step. Additional edges are added between pairs of genes with strongly correlated
expression across many experimental conditions (Figure 2).

(a) gene ↔ gene: Add gene-to-gene edges from an extensive and carefully cu-
rated collection of high-quality control human gene expression samples. We
first calculated Pearson correlation coefficients between each gene pair across.
The lower and upper significance thresholds were derived from the distri-
bution of correlation coefficient values. Specifically, lower threshold was
defined as 25th quartile minus 3 times the inter-quartile range (IQR) and upper
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threshold was defined as the 75th percentile minus 3 times the IQR. The new
edge between two gene node was added if the corresponding coefficient was
greater(less) than the upper(lower) significance threshold. To specify new
edges in the graph indicating direct or inverse correlation in expression, re-
spectively, with the correlation coefficient between the gene pair used as the
edge weight.

(b) gene↔ concept: Remove and adjust the weights of edges between gene nodes
and nodes denoting GO, HPO, MONDO, or Reactome concepts according to a
data-driven approach. We first performed Single-Sample Gene Set Enrichment
Analysis (SSGSEA) [21] to derive enrichment scores (ES) for each concept using
high-quality curated control gene expression samples spanning many tissue
types. Next, we derived Pearson correlation coefficients between each gene’s
normalized expression value and the related concept’s enrichment scores.
The average of all pairwise correlation is used as the significance threshold.
Any existing gene–>concept edge with correlation below this significance
threshold is removed from the KG, and the correlation coefficient is used as
the edge weight for those remaining gene–>concept edges.

Figure 1. KG creation process. The different sources of knowledge are incorporated as nodes
and edges, and those nodes with identical labels are collapsed into a single node, preserving the
combination of edges. The data-driven edges are then added, linking genes among themselves or
removing edges between genes and protein nodes and their annotations when there is not sufficient
empirical evidence of strong interaction observed in vitro.
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Figure 2. Example subgraph from the general (all tissues) KG compared to the same set of nodes in
the liver KG. The handful of nodes displayed here illustrate the richness of relations among concepts
and entities. The subgraph in the liver-specific KG includes several additional gene<->gene edges
which are only derived empirically from liver samples, not when using all samples across tissues. It
also features an additional protein edge connecting to one of the disease nodes (AP1B1 to intrahepatic
cholestatsis).

2.2. KG Statistics and Test Cases

We used this process to create a multi-tissue human KG from 10,000 control samples
from a variety of tissues, to capture interactions generally reflected in a wide variety of
in vitro experiments. In addition, we also created tissue-specific KGs by repeating the
final step of our pipeline (“Step 5. Add/Remove data-driven edges to create the general
and tissue-specific KGs”) only utilizing data from that particular tissue type. As relevant
examples to toxicology applications, we produced a liver-specific KG using 3328 gene
expression in vitro samples from untreated, healthy liver tissue, as well as a kidney-specific
KG from 843 kidney samples and a heart-specific KG from 711 samples. While we chose
these organs as use cases for a tissue-specific KG due to their wide range of applications in
toxicology, this step can be performed for any other tissue type with a sufficient number
of samples.

To test an application of these tissue-specific graphs, we generated custom gene sets
for concepts relevant to the tissue in question (e.g., node HP:0001395, “Hepatic fibrosis”,
to test the liver tissue KG). For each applicable concept, we tested two possible gene sets,
one using the general (all tissues) KG relations and another one using the tissue-specific KG
relations. Since the number of edges connecting genes or proteins to these concepts may
vary among the different KGs, the resulting gene sets also differed and yielded different
enrichment statistics. We compared the liver vs. general KG using the samples from an
alcoholic hepatitis study [22] (GEO accession GSE28619), whereas a different study on
nephrosclerosis [23] (GEO accession GSE20602) was used as a different example to compare
the kidney vs. general KG.

3. Results
3.1. Resulting KGs

The resulting human-centered graph including the data-driven edges derived from
all tissues contains 388,823 nodes and 4,270,374 directed edges. The edges between genes
indicating either direct or inverse correlation, as well as the edges between genes (or
proteins) and ontology concepts, were derived from a collection of 10,000 gene expression
control (untreated) samples (across a wide variety of tissue types).

The number of edges in each tissue-specific KG will differ and depend on the number
of samples available for that tissue, as well as the distribution of correlation coefficients
between gene pairs and gene–>concept pairs. In general, as the number of samples used
increases (thus making more correlation coefficients congregate closer to the distribution
mean), the resulting graph will contain fewer data-driven edges with outlying correlation
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weights. In the general KG derived from 10,000 samples, the universal interactions will be
favored due to the strong tissue diversity. The liver-specific KG contains 5,931,485 directed
edges, where its gene<->gene, gene–>concept or protein–>concept edges were derived
from 3328 healthy, untreated liver samples. We also created a kidney-specific KG that
contains 3,406,659 directed edges (derived from 843 kidney samples) and a heart-specific
KG with 4,061,181 edges (derived from 711 heart samples).

3.2. Evaluation of Tissue-Specific KGs Using Edge Specificity

In the all-tissue KG, many of the gene–>concept edges that are available from public
ontologies and databases are likely to correspond to relations that are tissue- and condition-
specific. A goal of “Step 5: Add/Remove data-driven edges” is to use experimental gene
expression data to create tissue-specific KGs by eliminating gene–>concept relations that
are not supported in those tissues. To validate this approach, we hypothesized that when
using gene expression data to prune the all-tissue KG, fewer gene–>concept edges should
be lost for concept nodes explicitly relevant to the specific tissue of interest compared to
the remainder of the nodes.

We first compiled lists of tissue-related concept nodes based on their labels. For ex-
ample, after looking for concept nodes, including the (case-insensitive) strings “liver”
or “hepat”, we produced a list of 564 nodes that we then used to test the effect of liver
specificity (see Supplemental Materials for the full list). The list included nodes such as
GO:0072575 (epithelial cell proliferation involved in liver morphogenesis), HP:0006566
(Neonatal cholestatic liver disease), MONDO:0003378 (liver leiomyosarcoma), R-HSA-
549129 (OCT1 transports organic cations into hepatic cells), etc. Similarly, the list of
kidney-related nodes was constructed by searching for node labels containing the strings
“kidney” or “renal” and manually removing false matches, resulting in 946 nodes. We used
the strings “heart” and “cardi” to construct a list of 1461 heart-related nodes.

We can appreciate in Figures 3–5 how the data-driven method to prune edges for a
specific tissue does indeed preferentially preserve many relations between gene or protein
annotations and concepts related to the tissue of interest, while removing some of the gene–
>concept edges incident to other concept nodes. These results are statistically significant;
we confirm that the percentage of gene and protein neighbors lost to tissue-specific nodes
is significantly lower (p = 0.030 on Welch’s t-test for liver in Figure 3; p = 1.53× 10−4

for kidney in Figure 4; and p = 1.45× 10−9 for heart in Figure 5). In all cases, the gene
or protein edges to nodes that are highly relevant to the specific KG tissue are largely
preserved, while, in contrast, many edges are lost for the remaining nodes.

Figure 3. Distribution of the edges lost to gene and protein node neighbors for the liver-specific
KG. Given a list of liver-related nodes (based on their label), we calculate the percentage of gene- or
protein-adjacent node neighbors lost (right panel). When compared to the percentage of adjacent
gene/protein neighbors lost for the remainder of (i.e., non-liver-related) nodes, we can see a significant
increase in gene–>concept edges lost, many of them losing up to all gene or protein neighbors
(left panel).



Information 2023, 14, 91 10 of 14

Figure 4. Distribution of the edges lost to gene and protein node neighbors for the kidney-specific
KG. Given a list of kidney-related nodes (based on their label), we calculate the percentage of gene-
or protein-adjacent node neighbors lost (right panel). When compared to the percentage of adjacent
gene/protein neighbors lost for the remainder of (i.e., non-kidney-related) nodes, we can see a
significant increase in gene–>concept edges lost, many of them losing up to all gene or protein
neighbors (left panel).

Figure 5. Distribution of the edges lost to gene and protein node neighbors for the heart-specific
KG. Given a list of heart-related nodes (based on their label), we calculate the percentage of gene or
protein adjacent node neighbors lost (right panel). When compared to the percentage of adjacent
gene/protein neighbors lost for the remainder of (i.e., non-heart-related) nodes, we can see a signifi-
cant increase in gene–>concept edges lost, many of them losing up to all gene or protein neighbors
(left panel).

3.3. Evaluation of Tissue-Specific KGs Using Gene Set Enrichment

Next, we sought to test whether gene sets derived from tissue-specific knowledge
graphs can improve our ability to identify concept enrichment from experimental data.
As an illustrative test of a tissue-specific KG application, we calculated Gene Set Enrichment
Analysis (GSEA) normalized enrichment scores (NESs) and statistical significance (p-value)
of different concepts denoted by nodes in the KG, using their neighboring genes as gene
sets. For each concept, we contrasted the NES and p-value obtained using the general KG
with the equivalent values obtained using the tissue-specific KG. To calculate enrichment of
these custom gene sets, we used a Python implementation [24] of the GSEA [25] algorithm.
We used the t-test method to score any custom gene sets with a minimum of 3 genes,
running 1000 phenotype-based permutations to assess statistical significance.

Using samples from a differential gene expression study that compared liver tissue
affected by alcoholic hepatitis to healthy liver, we found that while the majority of related
concepts’ NES and p-value remained the same using either KG, four concepts that were
deemed insignificant (p-value > 0.05) using gene sets derived from the general KG were
significant and relevant when deriving the gene sets from the liver KG (Table 2): liver
disorder, response to ethanol, N-acylphosphatidylethanolamine metabolic process (a biological
process closely tied to alcohol intake [26]), and chronic hepatic failure. The only nodes that
resulted in a slightly worse p-value are still significant and do not change the overall
enrichment results.
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Similarly, we compared NES and p-values of a study that compared nephrosclerosis
kidney samples to healthy tissue and found two concepts that resulted in being insignificant
using the general KG but were statistically significant using the kidney KG-derived gene
sets (Table 3): nephrosis and nephrotic syndrome. Together, these two examples illustrate
how tissue specificity of the gene to concept relations in our KGs can increase the power to
detect concept enrichment using empirical data.

Table 2. Comparison of concept enrichment score between gene sets derived from the general KG vs.
gene sets derive from the liver KG. The first four rows correspond to concepts that are highly relevant
to the alcoholic hepatitis study and only become statistically significant when using the liver KG.

CONCEPT ID CONCEPT LABEL GENERAL NES GENERAL P-VAL LIVER NES LIVER P-VAL

MONDO:0005154 liver disorder 0.9318 0.52 1.4832 0.049

GO:0070292
N-acylphosphatidylethanolamine
metabolic process 1.4047 0.11 1.6034 0.00593

GO:0045471 response to ethanol 1.5608 0.0509 1.6143 0.0154

HP:0100626 Chronic hepatic failure 1.5198 0.0594 1.5147 0.0370

GO:0004022
alcohol dehydrogenase (NAD+)
activity 1.6386 0.00204 1.6386 0.00204

GO:0004024
alcohol dehydrogenase activity,
zinc-dependent 1.5774 0.012 1.5774 0.012

GO:0070291
N-acylethanolamine metabolic
process 1.7220 0.00205 1.7220 0.00205

MONDO:0002520 hepatic porphyria 1.6078 0.0237 1.6078 0.0237

MONDO:0004721 liver neoplasm 1.6138 0.0174 1.6138 0.0174

MONDO:0007079 alcohol dependence 1.5304 0.00212 1.5304 0.00212

MONDO:0021698 alcohol-related disorders 1.6348 0 1.6348 0

R-HSA-71707
ethanol + NAD+ =>
acetaldehyde + NADH + H+ 1.5281 0.0123 1.5281 0.0123

R-HSA-71384 Ethanol oxidation 1.6299 0.0156 1.6299 0.0156

GO:0006066 alcohol metabolic process 1.6005 0 1.4869 0.00375

MONDO:0019072 intrahepatic cholestasis 1.7858 0 1.7865 0.00699

GO:0006067 ethanol metabolic process 1.6299 0.0156 1.5795 0.0291

Table 3. Comparison of concept enrichment score between gene sets derived from the general KG
vs. gene sets derive from the kidney KG. The first two rows correspond to concepts that are highly
relevant to the nephrosclerosis study and only become statistically significant when using the kidney
KG.

CONCEPT ID CONCEPT LABEL GENERAL NES GENERAL P-VAL KIDNEY NES KIDNEY P-VAL

MONDO:0002331 nephrosis −0.7478 0.839 1.5524 0.00612

MONDO:0005377 nephrotic syndrome −0.7478 0.839 1.5524 0.00612

MONDO:0044765 steroid-resistant nephrotic syndrome 1.4808 0.0231 1.4740 0.015

GO:0072277
metanephric glomerular capillary
formation 1.3856 0.0287 1.3856 0.0287

GO:0072557 IPAF inflammasome complex 1.5826 0 1.5826 0

GO:0072559 NLRP3 inflammasome complex 1.4586 0.0471 1.4586 0.0471

GO:0097169 AIM2 inflammasome complex 1.6029 0.00212 1.6029 0.00212

HP:0001685 Myocardial fibrosis 1.5911 0.011 1.5911 0.011

HP:0012593 Nephrotic range proteinuria 1.3798 0.0261 1.3798 0.0261

R-HSA-1234176
Oxygen-dependent proline hydroxylation
of Hypoxia-inducible Factor Alpha 1.7026 0 1.7026 0

R-HSA-5678895 Defective CFTR causes cystic fibrosis 1.6973 0.00215 1.6973 0.00215

GO:0061702 inflammasome complex 1.5318 0.014 1.5043 0.0215

4. Discussion

Ontologies and pathway databases provide a wealth of knowledge; however, this
knowledge is often very context dependent. Our data-driven approach allows us to focus
on the more universal relations between genes (or the proteins they synthesize) and various
types of concepts and pathways (from GO, Reactome, HPO, MONDO, etc.). It also allows
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us to narrow the focus of the constructed KG to the tissue type under study, making it
a uniquely capable enrichment tool for multi-omics downstream analysis. Deriving the
tissue-specific relations from a large number of high-quality in vitro datasets positions, these
graph uniquely well for downstream analysis of in vitro data when we seek enrichment of
concepts and pathways.

A limitation of these KGs, like any others created under the “open-world” assumption,
is that they are intended to reflect the axioms we currently know of. However, any missing
edges do not necessarily imply that the corresponding relations are false; rather, we may
simply lack the information required to make those assertions. Another limitation of the
current approach is that when inferring data-driven edges, certain pathways may only be
enriched by a subset of genes under very specific conditions. These rare conditions may be
lost in the larger pool of samples for a given tissue, or it may simply be the case that no
samples are available that are representative of those conditions.

The KGs we have produced can be expanded in different ways using other types of
inferred edges in addition to the current data-driven ones. For example, the application
of semantic reasoners for inductive learning can help us to detect generalizable rules that
can help to infer additional facts or eliminate erroneous ones in the graph. Furthermore,
an exercise equivalent to data-driven edge detection between genes can be conducted
with other types of assays. For example, a collection of curated proteomics and chromatin
accessibility samples could be used, along with tissue type, to infer context-dependent
relations between proteins and, specifically, transcription factors.

Our unique approach to constructing semantic KGs tailored to specific tissue types,
driven by empirical validation using human in vitro data, provides a resource ideally
suited for analyzing new data from human in vitro experiments. It allows researchers
to focus on context-specific downstream analysis of their ’omics experiments (as well as
other in vitro techniques). By integrating biomedical knowledge across semantic domains,
these KGs allow researchers to extract as much useful information as possible from human-
relevant, time-efficient in vitro studies performed at large volume. In the particular case of
toxicology, our combination of the expert knowledge incorporated into these graphs and
data-driven inference from tens of thousands of assays in human tissue will drive the field
of risk assessment forward by offering a holistic resource to be exploited when seeking the
enrichment of adverse responses to chemical stressors.
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OBO Open Biological and Biomedical Ontology
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RO Relation Ontology
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