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Abstract: With the continuous development of deep learning, the face recognition field has also
developed rapidly. However, with the massive popularity of COVID-19, face recognition with masks
is a problem that is now about to be tackled in practice. In recognizing a face wearing a mask, the
mask obscures most of the facial features of the face, resulting in the general face recognition model
only capturing part of the facial information. Therefore, existing face recognition models are usually
ineffective in recognizing faces wearing masks. This article addresses this problem in the existing face
recognition model and proposes an improvement of Facenet. We use ConvNeXt-T as the backbone of
the network model and add the ECA (Efficient Channel Attention) mechanism. This enhances the
feature extraction of the unobscured part of the face to obtain more useful information, while avoiding
dimensionality reduction and not increasing the model complexity. We design new face recognition
models by investigating the effects of different attention mechanisms on face mask recognition models
and the effects of different data set ratios on experimental results. In addition, we construct a large set
of faces wearing masks so that we can efficiently and quickly train the model. Through experiments,
our model proved to be 99.76% accurate for real faces wearing masks. A combined accuracy of 99.48%
for extreme environments such as too high or lousy contrast and brightness.

Keywords: deep learning; face recognition; mask; attention mechanism

1. Introduction

In recent years, face recognition has been the subject of research in various countries
worldwide. It has advantages that cannot be compared with other identification meth-
ods, such as non-intrusiveness, intuitiveness and convenience. In a COVID-19 epidemic,
the virus can be transmitted through physical contact and airborne droplets. Wearing a
mask can effectively stop the entry of harmful substances into the respiratory tract. It also
prevents droplets from getting into the air when we sneeze, cough or speak. Therefore,
wearing a mask can be very effective in preventing the spread of COVID-19, which is
essential for preventing and controlling the outbreak [1,2].

Traditional identification includes fingerprint, iris, facial, and palm print recognition.
The different identification methods also have some disadvantages. For example, iris recog-
nition is highly accurate but not very cost-effective [3] or as easy to access as fingerprints
and palm prints. However, there are better times to use both of them. As we know, too
much exposure allows viruses and bacteria to be carried and spread unknowingly, which
can further escalate the severity of an outbreak. The face has been widely accepted as a
reliable biometric parameter compared to other forms of identification [4]. The acceptability
of the face is also higher. A key reason for this is that everyone has a face, which is usually
easy to show.

In the past few years, face recognition has developed rapidly due to improvements in
loss functions [5–10], elaborate convolutional neural networks [11–15] and the availability
of large data sets [16–18]. It is not just these normal face recognition developments that are
making rapid progress—some directions for face recognition in extreme conditions are also
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progressing well. For example, in [19], a single network masking face recognition method
named FROM is introduced. It can be trained end-to-end, while learning feature masks
and depth-masking features. In [20], they built a mask dictionary using an innovatively
designed two-by-two differential concatenation network (PDSN). Its feature discard mask
is then generated by combining relevant dictionary entries to eliminate corrupted feature
elements from recognition. The focus of these projects is to improve the accuracy of
identifying people when wearing sunglasses and scarves. The method in [19] has a 100%
accuracy rate in identifying people wearing sunglasses and scarves. The downside is that
they are not specifically designed to identify the person wearing the mask. By extending
those excellent face recognition models directly to face recognition models with masks, we
find that their performance degrades significantly and is not sufficient for the intended use.

To prevent the spread of COVID-19, the World Health Organization was very quick to
tell people to wear masks in public and to make their use a mandatory biosecurity measure.
Since people need to wear masks from time to time, this poses a problem for the previous
field of face recognition. Although face recognition has been an essential area of research in
various countries worldwide [21,22], there are still areas for improvement in recognizing
faces wearing masks.

Due to the lack of a large data set of real faces wearing masks, most masked face data
sets are synthesized by software using faces from the original data set with masks (e.g.,
masks, sunglasses). We believe that they are not well suited to real-world applications
and that some errors have an impact when we train the network. The result is a lower
accuracy rate when testing real faces. In order to demonstrate that our network can work
well for recognizing faces wearing masks, we created a data set of 14 people with 418 faces,
as specified. This data set was also augmented to 1538 sheets by data enhancement and
used to test our network.

In this paper, we improve on the original based on FaceNet [23] so that it can be
used as a model to recognize faces wearing masks, and the contributions of this paper are
summarized below:

1. Inspired by FaceNet [23], we have improved the original model so that it can learn
face features better. Moreover, there is a significant improvement in the accuracy of
recognizing faces wearing masks, which is vital in the COVID-19 era for public places
where masks are required.

2. We place great importance on the use of attention mechanisms. We believe that suit-
able attention mechanisms can effectively enable the network to learn more helpful
information while paying less attention to other invalid information and even sifting
out unrelated information. Moreover, we use ConvNeXt-T [24] as a new backbone
of FaceNet, which has trouble with larger models. Using a suitable attention mech-
anism can solve the information overload problem well. Therefore, we tested the
feasibility of most of the currently available attention mechanisms for recognizing
faces wearing masks

3. We produced a data set containing 1538 images of real faces wearing masks. Our
network achieved excellent results under extreme conditions (such as too bright, too
dark, too high or too low contrast) and under normal conditions. It also has a good
accuracy rate for normal faces, indicating that it has some robustness for normal face
recognition as well.

2. Related Work
2.1. General Face Recognition and Face Recognition with a Mask

Over the past decade, scientists have worked on developing face recognition technol-
ogy. Some of the latest methods have achieved almost 100% accuracy in recognizing normal
faces and have high accuracy on some low-quality face data sets. Currently, the main effort
in face recognition in general is to improve the loss function, with the core being to enhance
the discrimination of the model by maximizing the inter-class variance and minimizing
the intra-class variance. There are two main methods, the first of which is to optimize the
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model by optimizing the comparison between the two distances and then obtaining a loss
based on the relationship between the input samples [6,25,26]. An alternative approach is
to define model training as classification task learning, which can make use of large data
sets to strengthen the classification capabilities of the model [5,7,8,27]. Center loss [9] learns
the features and feature centers of each identity, and then uses this obtained information
to reduce the intra-class variance. CosFace [8] proposed a cosine interval term to amplify
the inter-class variance. Large margin softmax [27] achieves an increase in the intergroup
distance by adding an angle constraint, which in turn compresses the intragroup distance.
Angular softmax [7] introduces the hypersphere space by normalizing the weights so that
the points on the features are mapped to the unit hypersphere. ArcFace [5] optimizes
geodesic distance margins by normalizing the exact correspondence between angles and
arcs in the hypersphere. UniformFace [28] makes the class centers spread uniformly in
the feature space thus maximizing the inter-class distance. Adaface [29] introduces image
quality as a factor, proposing a generalized loss function by using the feature paradigm to
approximate image quality, and can move arbitrarily between ArcFace [5] and CosFace [8],
improving the recognition accuracy of low-quality images without losing the accuracy of
high-quality images.

Due to the effects of COVID-19, people’s daily activities are restricted on a large scale.
At the height of the epidemic in China, almost all outdoor activities were forbidden, even
shopping was not allowed, and supplies were delivered only by special staff. The effect
of these things is a significant drop in people’s productivity. People’s quality of life
declined accordingly. Despite this, we should still understand that human health and
safety come first, which is why biosecurity measures are necessary to restrict the spreading
of the virus. In addition, people’s work and factory production have become much less
efficient as a result of the epidemic, so many measures have been implemented, and many
technologies have been developed. These measures ensure that people can move around
as freely as possible and interact face-to-face during the epidemic while safeguarding
their health. CNN is a convenient and effective tool during this epidemic. Some systems
use CNNs and sensors for security and control, where CNNs are used as the basis for
face recognition, and sensors can detect the temperature of the person being tested to
determine if they have a fever, etc. Ref. [30] used CNN networks to detect whether people
were wearing masks and to confirm the identity of faces. Ref. [31] used FaceNet as the
base network framework, the MobileNetV2 architecture as the feature extractor and the
OpenCV face detector to produce a facial recognition system for people wearing masks and
without masks. They tested a data set of real faces wearing masks that they photographed
themselves. The recognition rate for faces wearing masks reached 99.52%, and the accuracy
rate for face recognition of people not wearing masks reached 99.96%. Inspired by [31], we
improved FaceNet to produce better results for faces wearing masks.

2.2. FaceNet

The general face recognition process is divided into four steps: face detection, face
localization, face feature extraction and face retrieval. In the face recognition process,
several key points are generally located on the detected face. The multi-dimensional
floating-point vector of face features and face confidence are then calculated from these key
points, and finally, similar faces are retrieved from the face feature library based on the face
features. The cosine angle or Euclidean distance often measures similarity.

As illustrated in Figure 1, the authors use a CNN model to extract face features directly.
FaceNet [23] uses end-to-end learning of face images directly in order to map them into
the same Euclidean space and to be measurable. After learning how to encode from image
to Euclidean space, the network undergoes face recognition, face verification and face
clustering based on this encoding.
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Figure 1. Architecture of FaceNet.

Triplet Loss is an essential feature of FaceNet. The mapped vector representation f (x)
can be made metrizable in Euclidean space by Triplet Loss. The intent of Triplet Loss is to
enable closer Euclidean distances for vectors of the same face image in Euclidean space
and further Euclidean distances for vectors of different face images in Euclidean space.
The process can be expressed as follows: suppose the input face image is xa

i , called the
anchor. The image of the same person’s face as xp

i , is called the positive. Another image of
a different person’s face as xn

i , is called the negative. We need to make the vectors between
xa

i and xp
i closer together and between xa

i and xn
i further apart. It can be expressed as

Equation (1).∥∥∥ f (xa
i )− f (xp

i )
∥∥∥2

2
+ α < ‖ f (xa

i )− f (xn
i )‖

2
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i ) ∈ τ (1)
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N
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i

[∥∥∥ f (xa
i )− f (xp
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2
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]
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where α is the threshold that sufficiently separates the positive and negative samples. τ is
the set of all triples (xa

i , xp
i , xn

i ), the set size is N. The training process is shown in Figure 2.
After learning, it makes the Euclidean distance between the anchor and positive closer and
the Euclidean distance between the anchor and negative further and further. Equation (2)
shows the calculation of the loss (L). In our approach, we use Triplet Loss because it allows
for efficient training of the model in the absence of data.

Figure 2. The Triplet Loss minimizes the distance between an anchor and a positive, both of which
have the same identity, and maximizes the distance between the anchor and a negative of a differ-
ent identity.

3. Method

Our improved FaceNet is a clear and unambiguous end-to-end approach. It follows
the architecture of Figure 3. First, it takes normal face images and masked faces as input.
The feature extractor with ConvNeXt-T [24] as the backbone, thus extracting rough face
features, and then further optimized by the ECA module. It calculates the metric to generate
vectors of real characteristics. The feature vectors are compared with the face feature vectors
in the face database, and the final result is obtained.
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Figure 3. An overview of the proposed framework. First, a batch of masked and unmasked face
images are used as the input to the network. Then, deep CNN feature extraction and L2 normalization
are used to achieve face embedding.

3.1. Feature Extractor

We use ConvNeXt-T as our backbone network and obtain both spatially-aware features
for exact mask learning and discriminant features for recognition. ConvNeXt [24] is
based on resnest50, which uses the training strategy of VIT to train the original network
model on top of resnet50, and uses it as a baseline to imitate the stage compute ratio
of the swim transform. In addition, a series of improvements, such as using depthwise
convolution, using the new Inverted Bottleneck, and changing the activation function.
These improvements have led to a huge breakthrough, while maintaining the simplicity
and efficiency of standard ConvNeXt. With the same flops, ConvNeXt has much better
accuracy and inference speed than Swim Transform in Imgnet-1k, which is why we choose
it. It follows the architecture of Figure 4.

Figure 4. Architecture of ConvNeXt-T.

3.2. Attention

In recent years, attention mechanisms have been widely used in various areas of
deep learning. Attention mechanism models can be found almost everywhere in projects
such as image enhancement, semantic segmentation, and target detection. The attention
mechanism in deep learning is similar to the human visual attention mechanism in that
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it essentially prioritizes attention to more interesting targets or information that is more
appropriate for the task at hand [32]. The human visual system cooperates with the brain
to quickly focus on the area of interest when observing things. The brain then devotes more
resources to this area that needs attention, thus obtaining more detailed information while
suppressing other useless information.

More carefully, Attention can be divided into Channel attention, Spatial Attention,
Channel and Spatial Attention and Self-attention mechanisms. Using the channel attention
mechanism allows the importance of different channels to be learned based on a specific
task by applying the weights of each feature channel to each of the original feature channels
once they are obtained. In our model, we use an efficient channel attention (ECA) block [33],
which uses a 1D convolution to avoid channel dimensionality reduction when learning
channel attention information. The ECA block is very similar to the SE block [34], as shown
in Figure 5. The SE block can be split into two parts, including a squeeze module for
aggregating global information and an efficient excitation module for simulating cross-
channel interactions. Global information is gathered in the squeeze module through
global pooling.

Figure 5. The left one is the SE block. The right one is the ECA block.

Then, the fully-connected layers in the excitation module are used to remove the
redundant information and output the channel attention vector. Finally, the output is
obtained by multiplying each channel information of the input feature by the channel
attention vector. However, the SE module uses too many fully-connected layers resulting in
too much complexity of the model. The ECA module uses a local cross-channel interaction
strategy to generate channel weights by performing a one-dimensional convolution of
convolution kernel size k, effectively reducing the model complexity while maintaining
performance. In summary, the formulation of an ECA block is as follows:

s = Feca(X, θ) = δ(Conv1D(GAP(X))) (3)

Y = sX (4)

where Conv1D(·) denotes 1D convolution with a kernel of shape k across the channel
domain, to model local cross-channel interaction. The covering range of the interaction is
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dependent on parameter k, where the size of k is determined adaptively, according to the
channel dimension C, using cross-validation:

k = ψ(C) =
∣∣∣∣ log2 C

γ
+

b
γ

∣∣∣∣
odd

(5)

4. Experiment
4.1. Data Sets and Evaluation Metrics

Data sets: In the following, we present the face data sets used for training and testing
the model, respectively.

CASIA-WebFace [35]: The CASIA-WebFace data set is currently the dominant data set
in face recognition, containing 494,414 images of 10,575 individuals. According to [18], The
CASIA-WebFace data set is applied as the training data set. We also produced a muzzled
CASIA-WebFace data set (Substitute for WebFace-Mask).

Labeled faces in the wild (LFW) [17]: LFW is an unconstrained natural scene face
recognition data set consisting of more than 13,000 face images of famous people worldwide
in natural scenes with different poses, expressions and lighting environments. Each face
image has a corresponding identity. Because of these factors, even images of the same
person can vary greatly. In addition to the original LFW data set, we also produced a
muzzled LFW data set (substitute for LFW-Mask).

Test data set: Since there is currently no database to publicly identify people wearing
masks, we took a total of 417 images of faces wearing masks for a total of 14 people
(9 males and 5 females) per the relevant regulations and with the permission of the people
photographed. The data set was also augmented to 1538 using data enhancement, randomly
decreasing or increasing the contrast and brightness, and was used to test the accuracy of
our model under extreme conditions. Figure 6 shows some examples.

Figure 6. Test data set. (a) Unprocessed face images. (b) Face images with brightness adjustment.
(c) Contrast-adjusted face images. (d) Face image with simultaneous contrast adjustment and bright-
ness adjustment.

Evaluation Metrics: We employ four widely-used metrics to quantitatively evaluate
the face recognition performance in our experiments, including Accuracy, Precision, Recall
and F1-score.
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4.2. Implementation Details

Pre-processing: We apply the corresponding similarity transformation to the captured
face image wearing a mask, align and crop the face image appropriately, and obtain a
face image of 300 × 300 size. Then, the original image is image enhanced. We divide the
produced face data set into two categories. One is the face data set (Face-Nor) without data
enhancement and the other face data set (Face-En) includes normal and data-enhanced
face images.

Train: The part of training can be split into two phases. In the first stage, we learn
backbone networks (i.e., Figure 4) with Triplet Loss for general face recognition on the
CASIA-WebFace data set. Then, we use the trained model in the first stage as our pre-
trained model and train the entire network for 30 epochs, including the feature extractor
and ECA blocks, on the WebFace-Mix data set, which is a 1:1 ratio mix of WebFace and
WebFace-Mask. By the way, we trained each epoch in about 40 min on an NVIDIA GeForce
RTX 3090 graphics card.

4.3. Ablation Study
4.3.1. Backbone

In order to verify the effectiveness of ConvNeXt and ensure that the network’s model
is manageable, we first choose ConvNeXt-T as the pre-selected model to experiment with
the current face recognition models. We use the LFW data set for training in the first
stage, use the LFW-Mask data set training directly in the second stage without adding the
attention mechanism, and train 100 epochs in both stages. As shown in Table 1, we see that
after simple training, the model with a ConvNeXt-T backbone has an accuracy of 85.85%
on the Face-Nor data set, 84.52% on the Face-En data set, and the others are less accurate.
Therefore, ConvNeXt-T is selected as the backbone for our later experiments. Incidentally,
the accuracy is higher when we use a larger data set as the training set.

Table 1. Face verification comparison (%) on Face-Nor and Face-En when using different backbones.

Method Face-Nor Face-En

inception_resnetv1 [36] 72.66 64.95
iresnet50 [37] 73.38 71.58
Mobilenetv1 [38] 83.93 82.51
ConvNeXt-T [24] 90.16 89.40

4.3.2. Data Set Settings

It is well known that training a face recognition model with a larger face data set will
improve the recognition ability of the model. In the first phase, we train the model using
Webface, and then in the second phase, we adjust the training data set. Because we need
to satisfy the need to recognize both masked and normal faces, we made three data sets
with different scales using the WebFace and WebFace-Mask. In this paper, three important
baselines are considered.

• Web-NOR: The backbone network is only trained on the WebFace-Mask data set for
40 epochs.

• Web-AUG: 30 epochs of training in the second stage using a mixed data set consisting
of the WebFace and WebFace-Mask in a 1:2 ratio.

• Web-MD: Mix the WebFace and WebFace-Mask in the ratio of 1:1 as the training set.
This is also our final choice for the second stage training set.

As shown in Table 2, we have compared the three previously mentioned baselines in
the same configuration in this experiment. The Web-NOR is significantly less accurate in
recognizing faces wearing masks, which is consistent with our intuition. Next, Web-AUG
with the training hybrid data set performs significantly better than Web-NOR, which may
be because faces with masks and normal faces correlate even for the part of the face with the
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mask on. However, when we compare Web-AUG and Web-MD, we can see that Web-MD
has a clear advantage, which indicates that Web-MD is more effective. From a general face
recognition perspective, Web-MD is also more generalizable. In the following experiments,
we use Web-MD as our training method.

Table 2. Face verification comparison (%) on Face-Nor and Face-En when using different data
set proportions.

Method Face-Nor Face-En

Web-NOR 87.76 84.65
Web-AUG 95.20 93.17
Web-MD 97.12 95.92

4.3.3. Discussion of Attention

After the initial extraction of face features by ConvNeXt-T, we believe that adding the
attention mechanism can aggregate face features more effectively. Because wearing a mask
will obscure a considerable part of the face, we would like to increase the weight of the
effective features of the mask-wearing face by the attention mechanism, so we conducted a
series of experiments on the attention mechanism. As shown in Table 3, we selected some
representative attention mechanisms for testing. The SE block and ECA block are clearly
superior to other attention mechanisms. Channel attention has a very positive effect on our
model. We speculate that Polarized Self-Attention [39] may not have paid attention to the
correlation between feature channels, so the effect is poor. Regarding the CBAM block [40],
we believe that mixed attention may not fit our model and that pure channel attention may
be better suited.

Table 3. Face verification comparison (%) on Face-Nor and Face-En when using different atten-
tion mechanisms.

Method Face-Nor Face-En

Polarized Self-Attention [39] 94.50 94.02
CBAM [40] 98.56 96.94
SE [34] 99.28 98.57
ECA [33] 99.76 99.48

4.3.4. Comparison with SOTA Methods

To compare with SOTA methods, we have selected some representative methods.
We uniformly use WebFace and Web-MD as training sets when testing these methods,
with other settings unchanged, and then test them on Face-Nor and Face-En. Test results
are shown in Tables 4 and 5, which show that our approach can significantly improve the
performance of the CNN model on the faces of people with realistic mask coverings.

Table 4. Comparison with other state-of-the-art methods on Face-Nor.

Method Accuracy Precision Recall F1-Score

Facenet [23] 83.93 88.64 92.04 90.31
PDSN [2] 98.80 99.18 99.45 99.31
FROM [19] 99.52 99.46 99.73 99.59
Pre-Facenet [31] 99.04 99.18 99.46 99.32
Ours 99.76 99.73 100 99.86
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Table 5. Comparison with other state-of-the-art methods on Face-EN.

Method Accuracy Precision Recall F1-Score

Facenet [23] 82.51 82.71 93.27 87.67
PDSN [2] 98.57 98.89 99.48 99.18
FROM [19] 99.35 99.48 99.78 99.63
Pre-Facenet [31] 99.02 99.26 99.63 99.44
Ours 99.48 99.56 99.85 99.70

4.3.5. Result

With the above discussion, we arrive at the best training scheme and network model.
Figure 7 shows the training graph of the face recognition model.

Figure 7. Training graph of accuracy and loss with the number of epochs. (a) Accuracy graph.
Train_acc indicates the accuracy curve of the training set. Val_acc indicates the accuracy curve of
the validation set. (b) Loss graph. Train_loss indicates the loss curve of the training set. Val_loss
indicates the loss curve of the validation set.

Our model achieves an accuracy rate close to 100% during the training process. When
the model was evaluated with test data with face masks, the unprocessed face recognition
accuracy was 99.72%. The 99.48% accuracy of face recognition after data enhancement.
This indicates that our model is also robust to faces after data enhancement.

In order to verify that our face recognition module is realistic, we tested the module
with real face images and simulated similar outdoor and indoor access control environ-
ments, both of which yielded good accuracy and optimization results. As shown in Figure 8,
The model successfully recognizes a person’s face. Moreover, when a person’s face is in the
face database, their name and confidence rate are displayed on the image. Furthermore,
if a person’s face is not in the face database, the face will still be detected and the word
“unknown” will be added to the label, representing a stranger.

Figure 8. Results of identification between strangers and registered people.
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5. Conclusions and Future Works

Our method is a very effective way to bring the COVID-19 pandemic under control.
The method is used to identify people wearing masks, determine whether they are stored
in the database, and identify people who are stored in the database. If applied correctly,
our method could be used to ensure our safety and others. This model can realize faces
while wearing a mask, which can be applied as a low-cost solution for controlling the
movement of people in situations where health and safety are required. In this sense, our
model yields satisfactory results in experiments. Our model also lays the foundation for
further expansion of research in this area.

However, our approach still has many problems. When making the data set for testing,
we chose to photograph real faces to make our experiments closer to real life. Since only
14 people sampled the data set, it resulted in a small sample of faces in the data set that did
not have much variability. We randomly processed faces wearing masks with data enhance-
ment in order to simulate environments with different illumination or contrast, but these
data-enhanced images of faces did not particularly match the realistic environment. How-
ever, the model still shows potential for use in differentiated facial recognition applications.
Therefore, as future work, a real face mask data set is indispensable for both training and
testing, and we should consider improving the loss function to enhance the discriminative
ability of the model by maximizing the inter-class variance and minimizing the intra-class
variance, to enhance the recognition ability of the model for faces wearing masks.
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