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Abstract: Transportation agencies are primarily responsible for building new roads and maintaining
current roads. The main focuses of these agencies are to prioritize maintenance and make significant
rehabilitation decisions to handle serious problems facing road authorities. Considerable efforts and
an abundance of studies have been performed to determine the nature, mechanisms, test methods,
and measurement of pavements for preservation and improvements of roadways. The presented
study reports a state-of-the-art review on recent advances in the application of artificial intelligence
in various steps of flexible pavement, including pavement construction, performance, cost, and
maintenance. Herein, the challenges of gathering large amounts of data, parameter optimization,
portability, and low-cost data annotating are discussed. According to the findings, it is suggested that
greater attention should be paid to integrating multidisciplinary roadway engineering techniques to
address existing challenges and opportunities in the future.
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1. Introduction

Flexible pavement conditions have an enormous impact on road safety and perfor-
mance and are affected by a variety of factors like traffic patterns, climate, development
parameters, construction methodology, and protective methods. Since service life depends
on the flexible pavement situation, it is essential to conduct a control procedure as a manage-
ment system of pavement. To ensure the long-term sustainability of roadways, minimize
maintenance costs, and conserve resources, paving materials must be carefully chosen. The
optimum design of both the pavement mixture and roadway is of great importance [1].

Artificial Intelligence (Al) is a branch of informatics in which computers perform
human-like tasks, such as correctly detecting and learning inputs for perception, problem-
solving, reasoning, knowledge representation, and planning. Different innovative Al
technologies have been designed to mimic the cognitive capacities of humans to deal
with more complex problems intentionally, intelligently, and adaptively. In general, Al
may be considered a combination of machine learning and data analysis [2]. Scientists
hope to find more precious or attractive information underlying the physical effect of
additives and experimental data. Al, as an evidence-based technique with high potential,
has had success and dependability in many academic topics and projects. Therefore, this
research systematically analyzed the utilization of Al in various types of flexible pavement,
including pavement design, construction, cost, and maintenance. Prior studies on this topic
over the last decade, especially since 2014, were gathered for this research. Specifically, the
analysis aimed to distinguish the modern challenges and future headings of the research,
allowing scientists to detect significant areas for subsequent study.
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2. Methodology

To achieve our research objective, we collected available documentation on the appli-
cation of ANNSs in flexible pavement. This paper covered articles published in the English
language between 2014 and 2022, as shown in Figure 1. The key descriptors used in the
literature search were created by a combination of various keywords. It was found that the
number of articles published has grown rapidly in recent years. The topics discussed in the
present paper are summarized in Table 1.
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Figure 1. Literature search results.
Table 1. Key topics of this paper.
Major Topic Sub-Topic
Pavement Performance Contr.oil .
Classification
Workability
Pavement Construction Quality
Design
Pavement Maintenance Predm.hon
Planning
Pavement Cost Planning

The research articles were selected based on the following criteria:

- Hot research topics

- Significant contribution citations

- Publication time

- Contribution of the research methods
- Largeness of utilized data

- Quality of paper

3. Al in Flexible Pavement

The flexible pavement design consists of complicated inter-material interactions, vehi-
cle load, road structure, and the environment and requires experienced researchers and
complex calculations. As the accessibility of pavement engineering research data has in-
creased, researchers have shifted focus to creating and assessing designs using artificial



Information 2023, 14, 62

30f23

intelligence. As a result of the literature review, four research hot topics during the design
of the flexible phase were identified: performance, construction, maintenance, and cost.

3.1. Flexible Pavement Performance

Pavement performance is a major challenge in road engineering operations and plan-
ning. Pavement performance is influenced by of several factors like soil, environment,
traffic, and economy, as well as stress distribution factors. The main function of pavement
is to provide a smooth driving surface and appropriate surface friction.

Sadat Hosseini et al. [3] found that the constituent viscoelastic characteristics of the
complex shear module (G*) and phase angle (5) allowed for the selection of the optimal dose
of an additive for modifying the unique bitumen using crumb rubber, styrene-butadiene—
styrene, and polyphosphoric acid. The mixture was optimized using artificial neural
networks (ANNSs), linear regression, linear help vector regression, choice tree regression,
Gaussian system regression (GPR), and ensemble regression. Comparing the different
outcomes of the model in terms of the overall efficiency coefficient of the performance
measures, the researchers suggested that the overall regression approach yields the best
performance in the projections of concrete asphalt.

Behnke et al. [4] produced a qualitative road rutting prediction model to study the
long-term structural response of high-stress elastoplastic solids to repeated tire overflows.
The model combines a time homogenization technique based on the finite element method
with an arbitrary Lagrangian—Eulerian specification. The asphalt mix structural indicators
were utilized to develop a virtual design technique for the asphalt microstructure that
customizes the morphology and spatial distribution of aggregates.

ANN models can be used to model absorbent asphalt’s acoustic properties. Acoustic
asphalts are especially useful to reduce noise from road traffic. This solution is ideally suited
to urban areas, where noise-absorbing asphalt is utilized to control noise with minimal
effect on the environment. In [5], the properties of acoustic asphalt, including the sound
absorption coefficient, were found experimentally. Then, the acoustical coefficient of the
proposed numerical model and the data of measurements were compared. The final model
can be used for predicting the sound absorption coefficient [5].

A prior study developed a suitable model to present the relationships between a
material’s properties and the acoustic coefficient of absorption to forecast the acoustical
characteristics of the material. Via experimentations with acoustic asphalts, the measured
sound characteristics of the material were recorded and analyzed. Based on the experimen-
tal data, a numerical model was constructed and validated [6].

Amorim et al. [7] reported a multi-layer perceptron neural network (MLPNN) with
two concealed layers for determining the ratio of the influence of various configurations
of axle loads. Since the existing mechanical-empirical equation is very complicated for
the design equivalent single axle load (ESAL) evaluation, an ANN was developed for the
computation of EALFs.

Ziyadi and Al-Qadi [8] studied the impact of broad-base tires on flexible pavement
using an MLPNN model, containing a k-fold cross-validation method, which can accurately
predict the critical responses of the 3D finite element model.

Moussa and Owais [9] developed a dynamic prediction module for hot mix asphalt
using a 251-deep convolutional neural network model and six convolution blocks. The
convolution block included convolution, batch normalization (BN), and ReLLU enabled
layers.

Seitllari et al. [10] evaluated variations in the dynamic module of aged asphalt mixture
using MLMLNP with a hidden layer. In the meantime, 249 hidden two-layer MLPNN
models were used to predict the dynamic module of the hot mix asphalt.

Moghaddam et al. [11] adopted different types of machine learning techniques,
likemulti-level factorization net (MLEN), to predict the fatigue life of mixed asphalt modi-
fied with polyethylene terephthalate. The results demonstrated the ability of the neural
network to predict fatigue lifetime.
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Ahmed et al. [12] predicted HMA fatigue life with stress-controlled tests using two
MLEN models, namely a strain test model and a strength test model. The strain test model
performed better in predicting accuracy.

El-Badawy et al. [13] used an ANN for finding the dynamic modulus (E*) of Witczak
NCHRP 1-37A, Witczak NCHRP 1-40D, and Hirsch models. It was found that more precise
E* forecasts can be made by using mentioned models. A global sensitivity analysis (GSA)
demonstrated that representative parameters of aggregates, binders, and mixtures have
converging effects on E* predictions using an applied model.

Majidifard et al. [14] predicted Gf in flexible pavement using gene expression program-
ming (GEP) and ANN/SA methods. The researchers proposed models consisting of various
materials like bitumen, aggregate, regenerators and rubber, and recycled materials. While
the models provided robust predictions of G, the GEP model outperformed the ANN/SA
model for test data. GEP can model Gf without having to pre-define the functional structure
of the model. The optimal ANN/SA model transformed into functional representation
during calculations. The results showed that the GEP model had better generalization and
a simpler functional structure.

Huang et al. [15] used parameters of the Witczak pattern for developing a hybrid
algorithm. The dynamic module of the asphalt mixture was predicted using a modified BAS
algorithm and RF model. The outcomes of the research showed that the dynamic module
is affected mostly by G* and the phase angle of the binders. Although the volumetric
properties had some impact, the variation of the variable controlling the aggregation
gradation demonstrated little impact on the dynamic module.

Shafabakhsh et al. [16] inspected various aggregates, types of additives, percent
of additives, temperature, and stresses to model the deformation of flexible pavement
using an ANN model. The ANN training process was done by back-propagation neural
networks. The deformation measured the expected deformation by the ANN model and
was compared using the coefficient R2. Results showed that the final strain of the asphalt
mixture could be modeled with minimal errors and time using the ANN model.

Arifuzzaman et al. [17] investigated the impact of numerous factors, such as environ-
mental conditions, types of binders, and CNT doses, on the behavior of asphalt adhesives.
Adhesion force was measured by BOA-based SVR techniques via Al hybrid models. Atomic
Force Microscopy was used to estimate the adhesion force of asphalt. The model’s perfor-
mance was evaluated using various performance measurement indicators. Results showed
similarities between the mean, median, and typical deviations of the rolling bottle test and
model’s values. The high efficiency of the developed model was confirmed by low mean
absolute error, average square error, and values of fractional bias.

Arifuzzaman et al. [18] developed various models of adhesion properties of NTC and
polymers of bitumen binders. Using the corresponding standard method, damage caused
by humidity and oxidation was simulated in various samples. The study developed a
neural network of the radial base function (RBFNN), including various parameters such as
asphalt chemistry, polymer and CNTs type and percentages, and various environmental
exposures for predicting the adhesive strength of asphalt to nanoparticles. The adhesive
properties of SB-modified asphalt were found to be more consistent than that of nano-
modified asphallt.

Vyas et al. [19] surveyed the suitability of using ANN numerical predictive models
for structural performance parameters of flexible pavement to optimize the pavement
maintenance system. The parameters of functional performance of the paved roadways as
well as the environmental and foundation ground characteristics were correlated with the
results of the FWD deflection, namely SCI and BCI.

Marcelino et al. [20] proposed a model for predicting pavement performance in re-
stricted data environments. Results show that accurate performance prediction of models
can be attained with limited data when a transfer learning approach is implemented. All
models derived from this approach outperformed the basic models with regard to long-term
forecasts.
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Pantusos et al. [21] developed a negative binomial regression model for predicting
pavement age-related degradation. The model was compared to traditional nonlinear
regression models. Specifically, the linear empirical Bayesian (LEB) approach combines
deterioration and measured conditions for improving the predictions. The proposed model
can predict the average square error of pavement conditions in the following year based on
the measured pavement condition without further modeling of pavement degradation.

Kirbas and Karasahin [22] utilized different techniques for predicting pavement de-
terioration, including deterministic regression analysis, an artificial neural network, and
multivariate adaptive regression splines. Results reveal that the ANN model exhibited the
greatest accuracy.

Channelized traffic can be reduced by altering lane width and programming a de-
signed lateral wandering and distributing wheel load frequency. However, another im-
portant factor that can negatively impact pavement performance due to the automated
bogie platoon is the next expected reduced distance. Reducing the next average distance
may result in reduced air resistance and, therefore, fuel savings of 2-12% based on the next
average distance [23].

Duckworth et al. [24] used ANN models for predicting pavement performance, con-
sidering the impact of rehabilitation measures on the inputs like traffic load, climate, and
environmental factors. The most promising models were found to be Pavement Condition
Rating and International Roughness Index. The ANN model showed to characterize the
behavior of pavement, even when the statistical measurements fell outside the appropriate
range. Rehabilitation measures were effectively integrated into the model and proved to
be accurate.

Issa et al. [25] investigated six of the most commonly encountered pavement defects.
Using the Federal Highway Administration Long-Term Pavement Performance database, a
hybrid model was proposed for identifying the pavement condition index. To verify the
robustness of the model, a non-sampled performance analysis as well as cross-validation
analysis were conducted.

Morris et al. [26] proposed a novel model pipeline for detecting pavement wetness
based on direct images of road scenes taken by traffic cameras. Two of the most popular
gradient enhancement algorithms (XGBoost and CatBoost) were assessed along with a
conventional logistic model for the classification task. Based on experimental data with the
custom dataset, the CatBoost classifier exhibited the best performance.

Ranjbar et al. [27] provided a brief explanation of computational intelligence (CI)
and an overview of CI frameworks. In addition, the methodology for the latest and most
efficient techniques in the various CI applications, like data learning, optimizing, and
solving problems with uncertainty, are discussed. The authors also gave an overview of CI
applications in another portion of the pavement management system (PMS).

A comparison of methods used in the prediction of flexible pavement performance is
shown in Table 2.

Table 2. Comparison of methods used in prediction of flexible pavement performance.

Reference

Numerical Experimental Methodology

Sadat Hosseini et al. [3]

< v Artificial Neural Networks (ANN), Linear Regression (LR),
Gaussian Process Regression (GPR)

Behnke et al. [4]

Finite Element Method (FEM)

Ciaburro et al. [5]

4 Artificial Neural Networks (ANNSs)

Iannace et al. [6]

Multi-Layer Perceptron Artificial Neural Network
(MLPNN)

Ziyadi and Al-Qadi, [8]

) S N RN

Multi-Layer Perceptron Artificial Neural Network
(MLPNN)
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Table 2. Cont.

Reference Numerical Experimental Methodology
. Convolutional Neural Networks
Moussa and Owais, [9] V4 (CNN)
e Multi-Layer Perceptron Artificial Neural Network
Seitllari et al. [10] 4 (MLPNN)
Multi-Layer Feed-Forward Neural Network
Moghaddam et al. [11] & 4 (MLEN)
Multi-Layer Feed-Forward Neural Network
Ahmed et al. [12] 14 (MLEN)
Gravitational Search Algorithm
El-Badawy et al. [13] 4 (GSA)
Majidifard, [14] 4 Gene Expression Programming (GEP)
Beetle Antennae Search
Huang, [15] v v (BAS), Random Forest (RF)
Shafabakhsh et al. [16] 4 4 Artificial Neural Network (ANN)
Arifuzzaman et al. [17] 4 4 Support Vector Regression
(SVR)
Arifuzzaman et al. [18] 4 4 Radial Basis Function Network (RBFNN)
Vyas et al. [19] V4 Artificial Neural Networks (ANN)
Marcelino et al. [20] & Artificial Neural Network (ANN)
Pantuso et al. [21] 4 Linear Empirical Bayesian (LEB)
Kirbas and Karasahin, [22] 4 Multivariate Adaptive Regression Splines (MARS)
Duckworth et al. [24] V4 Artificial Neural Networks (ANN)
Issa et al. [25] 4 4 Artificial Neural Networks (ANN)
Morris, et al. [26] 24 24 XGBoost and CatBoost
Ranjbar et al. [27] 4 computational intelligence (CI)

Summary

ANN is the most effective and practical model compared to others in predicting the performance of
asphalt pavement and most of the studies conducted were numerical.

3.2. Flexible Pavement Maintenance

Different numbers of hidden layers and neurons in various cases of MLPNNs have
been developed to anticipate the critical reactions of pavement to the failure of the descend-
ing crack. In addition, various architectures and training algorithms of MLPNN have been
used to accurately predict the maximum tensile stress exerted by different aircrafts. In
general, based on the complexity of the problems, the scale of the neural network should
be determined [28,29].

Hussan et al. [30] demonstrated that the performance of rutting is one of the important
indicators of a flexible pavement design. Many studies have focused on applying ANNSs in
predicting rutting performance to eliminate time-consuming tests.

Lau et al. [31] applied the Visual Geometry Group network using an MLPNN for
the classification of automated crack, which obtained high precision in publicly available
datasets. For improving the CNN classifiers, 3D distress images were utilized to improve
the distress function and reduce noise. Afterward, various sensitive field sizes were studied
to select the optimal hyperparameters of CNNs.
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Huyan et al. [32] detected different sealed /unsealed cracks under complex roadbeds.
The influences of off-balance lighting, markings, and shading were considered by develop-
ing a CrackDN using a Region-based Convolutional Neural Network (R-CNN) architecture.

Song and Wang [33] applied Faster R-CNN to autonomously find different pavement
areas, like cracks, potholes, oil bleeds, and surface points. CNNs based on the region’s
proposal, even by using Faster R-CNN, could not respond to requests to localize in real time.

Du et al. [34] compared Faster R-CNN to the “You Only Look Once’ (YOLO) model to
assess the distress detection performance on the pavement regarding the precise location
and processing speed.

Ukhwah et al. [35] reached a compromise accuracy by adopting multiple YOLO
architectures with various backend networks, including YOLO v3, tiny YOLO v3, and
space pyramid pooling YOLO v3 (SPP). Furthermore, the SSD was also used for the rapid
detection of distress on the pavement with little computational effort.

Kang et al. and Liu et al. [36,37] suggested a two-stage segmentation methodology to
improve timeliness. The distress segmentation of the pavement was performed within the
delineation box generated by the location, thereby reducing computing time in unserved
areas. Both works have given a new outlook on the rapid segmentation of distress on
the pavement.

FWD and Gaussian System Regression (GPR) are two well-known test devices for the
collection of fast, high-frequency data. Following the acquisition of test data, a variety of
data mining techniques can be utilized to derive valuable information and evaluate the
condition of the pavement’s structure. In particular, ANNs have been used for estimating
pavement deviations. The retrospective calculation of the pavement module is a critical
technique for assessing the condition of the pavement structure using the deflection vessel
parameters at the front [38].

GPR has been largely applied to inspect the distress of a pavement structure, such as
reflective crack, surfacing of asphalt, and uneven settlement. Many researchers have started
to apply deep learning to automatic distress detection due to the difficulty in identifying
defects from GPR images. Some studies have extracted time-frequency function vectors
from GPR signals through a variety of data processing methods. In addition, recognition
algorithms based on MLPNN have been designed for automated detection of conditions
like humidity, damage, and monitoring of asphalt road density. Furthermore, a deeper
MLEN was used to directly extract the GPR signal feature and then identify any unusual
internal defects and signals. Research suggests that CNNs are better suited for GPR image
processing [39].

Luca [40] demonstrated that the roughness of flexible pavement is an essential factor
for the safety and comfort of vehicles. Many studies established the correlation between
IRI and other kinds of distress metrics, such as rutting, cracks, propagation, and pothole
(in addition to pavement surface) defects by using MPLNNSs. This is pertinent since the
condition of a pavement structure impacts IRL

Fathi et al. [41] analyzed the LTPP database, which includes quality control parameters,
such as mineral aggregate voids (VMA), mixture air voids (VA), asphalt concrete field
density, pavement structure age, and deterioration indexes. Subsequently, the researchers
developed a hybrid Machine Learning (ML) method combining Random Forest (RF) and
ANN for Alternating Direction Implicit (ADI) prediction. The results show that the ML
hybrid technology is capable of rigorously forecasting road deterioration.

Hafez et al. [42] selected the appropriate maintenance and rehabilitation treatments
for the low-volume routes utilizing MLPNN, which covered a range of treatment levels
from waterproofing to stacking.

Ziari et al. [43] suggested an ANN forecast approach for short- or long-term IRI values
of flexible pavements. Multiple LM-based MLP arrays were utilized for sensitivity analysis.
The study concluded that the future state of flexible pavement with satisfactory precision
in the short or long term can be predicted by ANN.
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Wu et al. [44] used neuronal network models for estimating SIF at fatigue and reflective
cracking to remedy the inaccuracy of multivariate regression models and the computational
burden of FEA. ANN models showed to be effective enough to achieve results once
developed, while their performances have also proven to exceed the non-linear regression
counterparts. Six backpropagation ANN models were developed according to the database
generated from the FEM.

Yoo and Kim [45] proposed a BP-based MLP 8-12-8-2 model to distinguish between
cracks of pavement and sound objects of pavement imagery. The datasets were used for
instruction and validation, respectively, and the model yielded very accurate predictive
capability.

Alavi et al. [46] demonstrated that Fn is recognized as one of the best predictors of the
rutting potential of asphalt blends. The effectiveness of the proposed model was verified
through the validation steps. Fn was found to be more influenced by PC than by other
mixing properties. The results indicated that the MPMM model significantly outperforms
various CI models. In addition, the MGGP model encompasses the effects of most of the
necessary parameters to establish an optimal mixing plan.

Hoang [47] established an automated approach for detecting potholes in pavement.
Image processing technologies, including GF, SF, and IP, were synergistically used for
extracting the characteristics of digital pavement images. Specifically, two GF levels were
used as a picture denominator technique, and GF-aided SF was applied for generating a
pothole resilience map. The IP analysis based on such a map was carried out to digitally
present the characteristics and recognize potholes of an image of special interest.

Mamun et al. [48] conducted some CI techniques for analyzing the damage of moisture
in lime and chemically-modified asphalts. Under both dry and wet conditions, statistical
methods were developed. Results showed that to capture the complex system of rela-
tionships between various chemical functional groups that could affect the adhesion and
intermolecular cohesion forces of lime-modified asphalt, chemically-induced moisture
damage can be used.

Arifuzzaman [49] reported that flexible pavement failure is a main global concern
due to damage caused by moisture. In this research, the causes and forecasting of such
damage were studied. The asphaltic binder was altered with carbon nanotubes (CNTs) with
very low percentages, then polymer and CNTs were added to the liquid asphalt binder to
investigate whether the resultant modified binder improved resistance to moisture damage.
An artificial intelligence modeling technique was used for determining the behavior of
moisture damage to the modified binder.

Bezerra et al. [50] used DNCNSs to distinguish between two classes of discontinuities
and U-NET architecture by manually defining objects representing the two classes in some
layers of the 3D image. The network was applied to the complete image to distinguish
between pores and cracks after optimization (Figure 2). The final network was subsequently
applied to pictures of different pellets with good results.

Guo et al. [51] predicted two functional indices, namely the international roughness in-
dex (IRI) and RD, considering multiple influencing factors using a comprehensive learning
model that deploys a gradient-strengthening decision tree (GBDT). The proposed model
can yield more accurate performance values of pavement, provide accurate references for
pavement maintenance, and optimize the budgetary availability for highway authorities.

Zhang et al. [52] predicted rutting in paved road segments by combining an empirical
mechanistic method with material analysis. Results showed that the expected DR was less
than that measured in real-time, but in practice, the measured value was close to the values
of previous months.

Choi and Do [53] proposed a model for predicting indicators, such as DR, IRI, and
crack rate, using input data derived from Korea’s pavement monitoring database based
on RNN. The model predicted IRI with good accuracy but produced imperfect results
in DR and cracking rates with coefficients of determination below 0.80. Because ANNSs
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require large amounts of data, they have a better capability for image analysis and distress
detection.

Figure 2. Applying a DL network in three different layers of the reference specimen; pores are
indicated in red, cracks in blue, and solids in gray adapted with permission from Ref. [50]. 2023, Jério
Coelho.

Gong et al. [54] developed a MEPDG model using a set of inputs representing four ma-
jor influencing criteria to predict rutting: climate, traffic, structure and material properties.

Alatoom et al. [55] used an ANN to develop pavement roughness based on the
smartphone measure. IRI values were investigated by considering pavement age, traffic
loading, and traffic volume. The results showed that the ANN can anticipate the upcoming
IRI with a relatively low average error.

Kouchaki et al. [56] found a strong positive relationship between pavement texture
and friction data by analyzing the correlation between the mean depth of the profile and
friction data of DFT and GT.

Haddad et al. [57] developed a rutting depth prediction model taking into account the
lack of data and resources available in developing countries and local road agencies. Data
were extracted from the LTPP database, including a set of climate, traffic, asphalt, base, and
subgrade properties. Simplified family models were produced and offered road agencies
an extreme lack of resources and a reliable alternative to implementing their pavement
management systems.

Pérez-Acebo et al. [58] developed an RFR model to predict the IRI of asphalt pavements
by considering 19 different entry characteristics, including environment, traffic, pavement
structure, and deterioration. The RFR model exhibited the potential to outperform linear
regression methods in training and test packages. However, the cost of calculation time
was high because of the large number of trees, confirming the long processing time of
traditional GBM and random forest methods.

Liu et al. [59] combined an image-capturing platform, image processing algorithm,
and path planning method with a modified 3D printer based on FDM to form an automated
pavement crack sealing platform, which is capable of automatically detecting and sealing
pavement cracks. The results showed that 3D printing is an efficient technique for the
automated sealing of cracks in the pavement.

Liu et al. [60] demonstrated that automated sealing of pavement cracks is a challenging
task which has been studied over the past few years, including automated crack detection
and Al-based segmentation methods.

Olowosulu et al. [61] used RF and DT algorithms to analyze a comprehensive database
from Nigeria’s Federal Department of Electricity, Works and Housing, which includes
fatigue cracks, average rut depth, and drainage conditions. The results of the analysis
showed the performance trend and highway surface condition classification according to
surface constraints. The RF and DT algorithms achieved a more precise classification of
constraints compared to the NB algorithm.
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Furthermore, the use of experience-based models that can meet the challenges of
missing data in a dataset has been suggested for developing an optimal PMS in Nigeria.

Aleadelat et al. [62] examined the ability of an inexpensive depth camera (D435i) to
measure IRI as pavement indicator rugosity. The D435i depth camera was able to estimate
the IRI of asphalt roads with reasonable certitude relative to a standard profiler. The
statistical analysis revealed no differences between the two measurement methods.

Elwardany et al. [63] developed a reliable multivariate regression and ANN model to
predict fatigue life based on mixture parameters, test temperature, applied deformation,
and rest period. The ANN model was used to estimate the impact of a truck platoon on
the fatigue life of the pavement as a result of the anticipated reduction in distance and
subsequent rest periods. The platoon fatigue coefficient (PFLR) was affected by temperature,
applied stress level, and mixing parameters. The significant factors for PFLR also include
the level of applied deformation and the binder content.

Duo Ma et al. [64] developed a method for detecting pavement cracks based on a CNN
comprising several characteristic layers. The model extracts multiscale characteristics to
raise the precision of pavement crack recognition. The results demonstrated that the model
could be used to identify cracks in real-time using multi-scale ratio anchorage boxes and
multi-scale characteristic maps.

Ghanizadeh et al. [65] analyzed the flexible structure of pavement and identified its
critical responses under the effect of a standard axle load with an ANN. In order to analyze
the pavement section, multilayered elastic analysis theory and critical pavement responses
were considered. Results showed that the ANN has many benefits, such as reducing
analysis time, predicting fatigue and rutting lives, and the optimal design of pavement
structure.

Omranain et al. [66] used the Superpave mix model, ANN, and Supporting Vector
Machine (SVM) techniques to quantify the impact of aging on the rutting of asphalt mixture
behavior. Lengthening the aging period reduced the cumulative strain, while increasing the
temperature raised the relevant value of all the analyzed samples. The results showed that
ANN was the best technique for predicting the impacts of aging on the rutting of flexible
pavement.

Solatifar et al. [67] extracted DTCP data to develop a pavement deterioration model
using BPNN. The results suggest that the BPNN model could predict pavement roughness
degradation with very high precision and less error compared to the polynomial regression
model.

Domitrovic et al. [68] evaluated the condition of existing roads and its possible applica-
tion to define the strategy for maintaining national roads using ANNs. A neuronal network
of retro-propagation was applied to 481.3 km of national roads in Osijek-Baranja County.
Results demonstrated that an ANN was useful to maintain pavement and strategies of
rehabilitation and also for assessing road conditions at the project and network levels.

Inkoom et al. [69] used a step-by-step introduction of partition, bootstrap forest,
gradient-doped trees, nearby K-neighbours, naive Bayes, and traditional multivariate linear
regression techniques. In order to evaluate each model’s stability and robustness, predictive
accuracy, relative differences, and the level of predictive precision were estimated.

Yu et al. [70] carried out a study for developing deterioration patterns based on preface
findings from a typical successful maintenance survey. A long-term performance database
for semi-rigid asphalt pavement was evaluated using a large quantity of survey data and
associated environmental parameters by a combination of engineering practices. The per-
formance degradation models for the semi-stiff asphalt pavement were constructed using
the statistical regression method. The deterioration models were practical to determine the
maintenance decision for semi-rigid asphalt pavements.

Hoang et al. [71] developed a model to classify cracks of flexible pavement. In order
to extract functions, image processing techniques, including steerable filters, the projective
integral of the image, and an enhanced method of image thresholding were used. As a
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result, the proposed automatic approach may be of assistance to transport agencies and
inspectors for assessing the condition of roadways.

Shuai et al. [72] introduced a new methodology for detecting and segmenting pave-
ment cracks based on 2D images. In particular, an adjustable filter was employed to
improve the contrast of the cracks and the surrounding pavement and capture fracture
discontinuity and curvature. Analysis of the crack fouling chart revealed a region of the
coarse crack and approximate estimates of crack properties. The coarse cracking zone was
introduced into a working contour model, and a step-by-step method was implemented
for the crack segmentation model.

Wang et al. [73] investigated the issues of inadequate maintenance procedures, mainte-
nance times, and excessive use of funds to maintain highway asphalt pavements in China.
A pavement maintenance and prediction model was developed for preventative road
maintenance using a neural network. The results demonstrated that the predictive model
conforms to the trend of the development of measured results. The study is of critical
importance to future road management.

Han et al. [74] offered an automated vision detection method of pavement cracks
with deep learning technology, where a CNN was developed to learn crack characteristics
from images with no pre-treatment. The CNN design was prepared using a database of
images based on the open-source frame TensorFlow by the Google Brain team and data
with high accuracy. Test results showed that the performance of the proposed methodology
is satisfactory and, therefore, could be useful to offer an alternative to automated pavement
crack detection.

Kumar et al. [75] trained and tested an ANN model using various algorithms, includ-
ing LM, BR, and SCG algorithms. Stress data on flexible pavements collected from field
surveys were used to develop and test the ANN model. The LM algorithm outperformed
the BR and SCG algorithms, while the ANN model demonstrated greater accuracy than
SVM and RF models.

Kim et al. [76] developed an ANN model to predict the indirect traction resistance
(STI) of the middle layer of all sections of paved asphalt on a freeway, using IRI, surface
distress, rut depth, and equivalent single axle load as variables. ITS was predicted by a
transmission process ahead of the training stage. The model was validated by analyzing
the correlations among the planned TSIs based on data from the training and test systems.
Lastly, the model was supplemented with the respective min and max TSIs measured in
the target section.

Naseri et al. [77] selected the strongest evolutional and metaheuristic algorithms
to solve the M&R planning optimization problem, such as WCA, AOA, DE, ACO, GA,
and PSO. After comparing the algorithms, WCA and AOA demonstrated the highest
performance.

A comparison of the mentioned models and goals in asphalt mixture maintenance is
summarized in Table 3.

Table 3. Comparison of models and goals in asphalt mixture maintenance.

Reference

Rezaei-Tarahomi et al. [28]

Model Goal Finding
Computing the critical stress responses is associated with
MLPNN Crack top-down cracking in multiple-slab rigid airfield
pavements.

Tarahomi et al. [29]

Top-down critical tensile stress sensitivity was determined

MLPNN Tensile stress similarly to the 3D-FE model.

Hussan et al. [30]

High prediction performances of artificial neural network
ANN Rutting (ANN) modelling technique was compared to nonlinear
regression modelling technique.

Lau et al. [31]

Deep learning technique could solve pavement crack

MLPNN Crack segmentation tasks accurately.
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Table 3. Cont.

Reference

Model

Goal

Finding

Huyan et al. [32]

R-CNN

Crack

The performance of sealed crack detection is better than
unsealed crack detection for most background conditions.

Song and Wang, [33]

R-CNN

Crack, Pothole

Comparing the CNN and K-value method, the optimal
Faster R-CNN located pavement distresses with bounding
boxes more precisely.

Du et al. [34]

R-CNN, YOLO

Distress

OLO-based approach was able to detect PD with high
accuracy, which requires no manual feature extraction and
calculation during detecting.

Ukhwah et al. [35]

YOLO

Distress

YOLO technique had a high opportunity to be developed
and implemented as a tool for road assessment.

Kang et al. [36]

ANN

Distress

The modified DTM algorithm provided high accuracy with
respect to crack length.

Mousa et al. [38]

ANN

Deflection

Bonding index varied with the characteristics of the base
layer. Non-stabilized base layers experienced relatively
weak interface bonding at the AC/base interface.

Gao et al. [39]

MVA, ANN

Distress

Through these two models, by simply knowing the IR], it
was possible to indirectly evaluate the “Bearing Capacity”
at any point of the runway

Luca, [40]

MPLNN

IRI

Through these two models, by simply knowing the IR], it
was possible to indirectly evaluate the “Bearing Capacity”
in any point of the runway

Fathi et al. [41]

ML, ANN

Distress

The hybrid ML technique was capable of predicting
pavement deterioration rigorously.

Hafez et al. [42]

MLPNN

Distress

The implementation gaps of pavement-preservation
activities among CDOT regions result from limited
maintenance funding.

Ziari et al. [43]

ANN

IRI

ANN models predict future conditions of pavement with
high accuracy in the short and long terms; GMDH models
do not have accepted accuracy.

Wu et al. [44]

ANN

Fatigue

Advantage of ANN over multivariable regression on the
prediction accuracy:.

Yoo and Kim, [45]

MLP

Crack

An intelligent algorithm was developed which can
distinguish crack and noise by eliminating the noise.

Alavi, [46]

MGGP

Rutting

The MGGP model performs superiorly to the models found
in the literature.

Hoang, [47]

ANN

Pothole

The proposed Al approach used with LS-SVM has high
potential to assist transportation agencies and road
inspectors in the task of pavement pothole detection.

Hassan et al. [48]

ANN, SVR

Moisture damage

The ensemble of CI along with statistical measurement
provide better accuracy than any of the individual CI
techniques.

Arifuzzaman, [49]

ANN

Moisture damage

Multi-Layer Perceptron (MLP) provides the best prediction
for wet and dry samples.

Bezerra et al. [50]

DCNN

Crack

The network was applied to the full image, successfully
discriminating between pores and cracks.

Guo et al. [51]

GBDT

IRI

The proposed model can provide more precise pavement
performance values and may be useful for providing
accurate reference for pavement maintenance.

Zhang et al. [52]

ANN

Rutting

The combination of PME and MEA proves to be appropriate
to evaluate rutting potential in project level pavements.
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Table 3. Cont.

Reference

Model

Goal

Finding

Choi and Do, [53]

RNN

IRI

The life cycle of road pavement can be optimized by
increasing its life expectancy and reducing its maintenance
budget.

Gong et al. [54]

RFR

IRI

Both of the developed NN, particularly the NN20,
exhibited significantly better predictive performance than
the two MLR models.

Alatoom et al. [55]

ANN

IRI

ANN models are more accurate in IRI prediction than the
regression models.

Kouchaki et al. [56]

DFT

Friction

The developed LLS prototype was able to scan the
pavement surface texture more reliably and precisely than
the CTM in terms of vertical and horizontal resolution.

Haddad et al. [57]

DNN

Rutting

Generic family rutting predictive curves corresponding to
specific traffic, climate, and performance combinations were
developed to render rutting predictions available to all road
agencies.

Liu et al. [59]

FDM

Crack

3D printing is an effective method for automated pavement
crack sealing, which is recommended in the field of
automatic road maintenance and repair.

Liu et al. [60]

ANN

Crack

The precision, recall, and F1 score of the proposed method
are higher than other state-of-the-art pavement crack
detection methods.

Olowosulu et al. [61]

RE DT

Distress

The RF and DT algorithms yielded more accurate
classification compared to the NB algorithm, which could
not handle instances of missing data efficiently.

Aleadelat et al. [62]

ANN

IRI

The proposed approach has the potential to be a baseline for
an inexpensive data collection system suitable for local
agencies.

Elwardany et al. [63]

ANN

Fatigue

The Platooning Fatigue Life Ratio (PFLR) was found to be
dependent on temperature, applied strain level, and
mixture parameters.

Duo Ma et al. [64]

CNN

Crack

The model was optimal in terms of F1 score and
precision-recall curve, was less affected by shadows and
road markings, and detected the crack boundaries more
accurately.

Ghanizadeh et al. [65]

ANN

Fatigue

Application of artificial neural networks for pavement
analysis reduces the analysis time and can be used as a
quick tool for predicting fatigue and rutting lives of
different pavement sections.

Omranain et al. [66]

ANN, SVM

Aging

The developed model can be embraced by the pavement
management sector for a more precise estimation of the
pavement life cycle.

Solatifar et al. [67]

BPNN

IRI

Results revealed that predicted IRI values with the
developed ANN model have a good correlation with
measured values rather than the polynomial regression
model for both GPS-1 and GPS-2 sections.

DOMITROVIC et al. [68]

ANN

Rehabilitation
strategies

Artificial neural networks could be used for the
optimization of maintenance or rehabilitation strategies and
for the assessment of pavement condition at the project and
network level.

Inkoom et al. [69]

MLRT

Crack

The machine learning methodologies were promising in
predicting the crack of pavement based on the R2 statistics.
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Table 3. Cont.

Reference

Model Goal Finding

Yu et al. [70]

The proposed deterioration models were useful and
RF, DT Distress practical for the establishment of the maintenance decision
of the semi-rigid asphalt pavements.

Hoang et al. [71]

The proposed automatic approach can assist transportation
SVM Distress agencies and inspectors in the task of pavement condition
assessment.

Yu et al. [72]

The estimated crack properties provide information to
ANN Crack automatically adjust the parameters of the active contour
model for effective and efficient crack segmentation.

Han et al. [74]

Results show the prospects and potential limitations of

CNN Crack DL-based methods in SHM applications.

Kumar et al. [75]

The ANN model is capable of predicting the PCI with a

SCG, BR Distress high level of reliability.

Kim et al. [76]

An artificial neural network model was developed for
predicting the indirect tensile strength (ITS) of the
intermediate layer of all asphalt pavement sections in an
expressway.

ANN IRI

Naseri et al. [77]

Compared to AOA, DE, ACO, PSO, and GA, WCA's
WCA, AOA, DE, Distress objective function was calculated to be 45%, 74%, 74%, 77%,
ACO, GA, PSO and 83% less, while its M&R cost was cheaper by 13%, 16%,
27%, 19%, and 18%, respectively.

Summary

ANN model and predicting crack in asphalt pavement have been the most effective and practical
models in flexible pavement maintenance field.

3.3. Flexible Pavement Construction

Mallick [78] introduced a framework using a computational approach based on ar-
tificial intelligence (AI) to accelerate a pavement combination design. It was found that
the optimum values were obtained by combining various tests, and the test properties
may be strongly interrelated. Precise machine learning models can be developed using the
test database.

Androji¢ and Dolacek-Alduk [79] examined the influence of different types of asphalt
mixtures, humidity content, hourly capacity, and production temperature to anticipate the
natural gas consumption in the process of producing HMA using MLNPN. Meanwhile,
aggregate temperature showed to be a vital factor affecting the consumption of energy in
HMA generation.

Abed et al. [80] proposed an ANN model to predict the impact of deflection, tempera-
ture, and additives on the stiffness of HMA. Numerous variables, lab test conditions, and
data acquisition were combined to develop the model. The results revealed that the ANN
model can effectively estimate the stiffness of HMA as well as a good relationship between
the actual and expected values and a determination factor.

Specht et al. [81] presented results for measuring and simulating viscosity in AR
binders. To reduce the cost and duration of the experiments, various combinations of
parameters were chosen from a statistical design scheme. For predicting the involved
parameters and optimizing the AR binders, MR analysis, ANN, and fuzzy logic were used.

Ozturk and Kutay [82] introduced an ANN model to predict Superpave asphalt
mixture design properties like the percentage of VIM at various levels of rotation and
maximum density. The dataset used consists of a large number of randomly selected mixing
schemes for training. The most precise ANN design was determined to be LM-based MLP
18-300-300-600-4 after 800 tests. The model was capable of producing good results and
reducing the design process by a minimum of 3-6 days.
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Leiva-Villacorta et al. [83] developed ANN models that can reliably predict pavement
seam modules. A database was also created using a stratified-elastic analysis for a flexible
three-ply structure of pavement. A total of 100,000 data points were generated per ANN.
The most appropriate model was found to be a BP-based MLP 13-20-20-3 network, which
achieved highly correlated estimates.

Sebaaly [84] developed an AMO model based on ANN and GA to automate the
selection of aggregate gradation and binding grade in the design of an asphalt mix, using
an advanced neural propagation network with a single hidden MLP layer. Implementation
of the approach was successful on the Marshall blends. Comparing the ANN predictions
with the results measured in the laboratory shows that the ANN can predict Marshall
properties within the ASTM accuracy range.

Fadhil et al. [85] introduced an ANN model as a HMA design tool based on actual
data for the work composition formula. The model showed to reduce the cost, time, and
data for designing the mixture, exhibiting high correlation based on a high-quality analysis,
and thus could be used as a design tool for HMA.

Zou et al. [86] proposed a neuronal network model to predict SFC as a function of 3D
pavement microtexture and macrotexture parameters. The experiment contained 60 pairs
of friction and pavement texture data. A porTable 3D laser scanner and a digital sand
tester were used to collect information on the pavement texture, while a SCRIM was
applied to acquire SFC data on the pavement. 3D texture data were then decomposed
into microtexture and macrotexture. Next, the TD values of the digital sand tester and the
height, functionality, and hybrid parameters of the 3D microtexture and macrotexture were
prepared to characterize the pavement texture.

Enriquez-Ledn et al. [87] demonstrated that the most widely used segmentation
technique, namely the manual selection of the threshold (TH), depends considerably on the
competencies of the operator, homogeneity of the image, and material complexity. These
factors may restrict the reproducibility of the TH method. As part of the study, images of a
sample of flexible pavement were acquired from a modern high-resolution microscanner to
identify its audiovisual content using various segmentation tools.

Mohamed Jaafar [88] focused on modeling the progress of deteriorating asphalt pave-
ment conditions and performed computer simulations of un-grooved and cracked flexible
pavement subsurface models. The research achieved three aims: to evaluate and improve
predictive models of deteriorating pavement conditions; to evaluate retrospective design
methods of modules for characterization of layers of selected test sections; and to inspect
the impact of cracking on pavement responses and implementation of pavement condition
decay models to improve the structural design and management of flexible pavements.

Deng et al. [89] suggested a method to obtain flexible pavement layer modules, includ-
ing a power function describing the AC layer module gradient at various frequencies of
loading. Fast Fourier transform, finite element model updating, the kriging model, and
artificial intelligence were used. Layer modules of the proposed method were compared
with other retrospective computing software for validation.

Soloviev et al. [90] introduced a deep CNN model for identifying defects in road
surface imagery. The model was implemented as a simplified and optimized version of
the most popular networks that are currently completely connected. Training and learning
techniques of the network were performed in two stages, according to the specificity of the
problem to be solved. The work demonstrates that such architectures can be successfully
constructed by using a small amount of initial data on the conditions.

Georgiou et al. [91] studied ANN and SVM to predict the IRI based on several years of
data collection. The results showed that both models can predict the index and are useful
in pavement engineering strategies.

Amandio et al. [92] studied a gap in the literature regarding the sustainability and
earnings associated with the implementation of multipurpose optimization in the plan-
ning of projects to rehabilitate pavements (Figure 3). The input is associated with the
development of a system that can support decision-making throughout the design phases.
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The results show the feasibility of the system to rapidly produce optimal solutions that
support decision-making and improve flexibilities and efficiencies from the perspective of
decision-makers.

New Pavement

Old Pavement -

Figure 3. Pavement rehabilitation production line [92].

Table 4 presents a comparison of goals in asphalt mixture construction based on the
literature.

Table 4. Comparison of goals in asphalt mixture construction.

Reference Goal Additive
Mallick [78] Optimization of design -
Androji¢ and Dolacek-Alduk [79]  Natural gas consumption in HMA -
Abed et al. [80] Optimization of construction 4
Specht et al. [81] Optimization of construction 4
Ozturk and Kutay [82] Design properties -
Leiva-Villacorta et al. [83] Predicting pavement layer moduli -
Sebaaly [84] Predict aggregate gradation -
Fadhil et al. [85] Reducing design time -
Zou et al. [86] Pavement SFF -
Enriquez-Leon et al. [87] AV content -
Deng et al. [89] Layer moduli -
Am’andio et al. [92] Pavement rehabilitation production -

3.4. Flexible Pavement Cost

Newstead et al. [93] built a test section with various pavement materials to assess
and understand how preservation methods differ from traditional methods of flexible
pavement. Before construction, the current conditions of the pavement were considered,
including stone mastic asphalt (SMA) and high traffic asphalt (HTA), at specified locations
along a 1.5 km stretch of urban arterial roadway. The costs, timelines, and placement of
materials were evaluated. It was found that SMA and HT may increase the lifespan of
the pavement.

Han et al. [94] proposed a smart decision-making model for the maintenance of pave-
ment plans using algorithms to optimize proximal policies to meet the increasing demand
for the maintenance and cost of roadways. The decision-making model considers the full
maintenance cost-benefit ratio throughout the road’s lifecycle, leading to decision-making
between the pavement condition and data-based maintenance plans. This incorporates ex-
traction technology to overcome the issues of manual decision-making based on experience.
Furthermore, a method to construct an enhanced learning environment module based on a
network of deep artificial neurons was proposed, and a reward feature was designed for
highway maintenance decisions.
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Nahoujy [95] proposed a new ANN approach to calculate deviations at any arbitrary
point along a measured roadway using FWD to supplement and replace experimental
measurements. The model was developed based on backpropagation by a multilayer
perception network for asphalt pavement. This method offers great potential for optimizing
traditional measurements in terms of measurement costs and can significantly improve the
precision of route maintenance planning by addressing the problem of limited or missing
datasets.

Gomes et al. [96] presented and applied different ANN architectures to roadway
distress detection. In a supervised environment, Variational Autoencoder (VAE) offers an
excellent distinction between good and bad pavement. The developed ANN models can be
used as an alternative solution for reducing operating costs relative to expensive business
systems and to improve the user-friendliness of traditional road surface classification
methods.

Tohidi et al. [97] compared the efficiencies of the genetic algorithm and PSO in the
determination of economically-optimum pavement depth. Using algorithms for pavement
design, a simulation-optimization model was developed. The results showed that the use of
GA and PSO reduced costs of design relative to manual design and that GA outperformed
PSO in terms of cost savings.

Fani et al. [98] proposed a stochastic model, considering annual budget and pavement
deterioration rate as uncertain pavement factors. They found that the complexity of
the model increased as the number of network sections and scenarios increased. The
Progressive Hedging Algorithm was used to reduce the cost of maintenance. Compared
with a deterministic model, the proposed model demonstrated better results in the field of
maintenance and rehabilitation.

4. Discussion

A significant increase in research activity in recent years can be observed in Figure 1.
The extracted literature is classified by the origin country of the establishment of the first
declared author, as shown in Figure 4. A general overall research distribution is discernable,
and the chart shows that the United States hosts most of the establishments of the authors.
Further, Figure 5 displays the extracted literature classified according to the publisher,
revealing Taylor & Francis at the forefront of the field.

This research systematically analyzed the utilization of Al in various types of flexible
pavement, such as pavement design, construction, cost, and maintenance.

Table 5 compares some of the models in various references.

Miran

WUsA

W Germany

M Italy

M Portugal

mEgypt

M Canada

Mirag
Croatia

M China

i Brazil
Korea
Vietnam
Saudi Arabia
India

Spain

Other Countries

Figure 4. Chart of countries of the first author of the extracted research.
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Figure 5. Chart of publishers of the extracted research.

Table 5. Comparison of models.

M Elseveir

W ASCE

m Taylor & Francis
M Springer

M IEEE

W Hindawi

W SAGE

W Other

Problem Model R2 RMSE Best Result
ANN 1 0.89
SVR 0.9 0.34
Viscoe.lastic DT 0.98 0088 ER
Behavior
GPR 1 0.34
ER 0.99 0.0031
Model R2 MSE Best Result
MGGP 0.94 1088
GEP 0.77 4573
Flow Number MGGP
MEP 0.89 2137
GP 0.89 2121
Model NRMSE MAPE Best Result
Moisture SVR 0.61 0.16
Damage ANN 0.6 0.15 ANN
ANFIS 0.69 0.25
Model R2 MSE Best Result
Asphalt ANN 0.81 0.054
Performance ANN
MLR 0.47 0.032
Model R2 RMSE Best Result
ANN 0.84 0.25
IRI
RFR 0.88 0.21 GBM
GBM 0.9 .19
Model R F1 Score Best Result
YOLO 94.5 0.88
Crack RCNN
RCNN 96.5 0.92
Model MSE RMSE Best Result
Pavement ANN 0.04 0.07
Deterioration ANN
Polynomial 0. 275 0.275
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5. Conclusions

In this paper, a systematic review of Al applications in flexible pavement was per-
formed with a particular focus on advanced research at different stages of pavement
engineering. More than 200 research papers were extracted from databases of digital scien-
tific literature and reduced to 90+ papers relevant to the topic. Quantitative and qualitative
analyses reveal an overall introduction of Al applications, which have been particularly
significant in recent years. Based on the analyses, the following research fields, along with
the topics discussed most in each field, were identified:

- Maintenance field, cracking

- Cost field, budget

- Construction field, design parameters
- Performance field, deformation

This study presents an efficient approach for the application of neural networks in
pavement engineering. Pavement performance modeling continued to be a major research
area since local calibration of mechanical empirical models must be carried out, after
having switched from mechanical modeling. Although data collection became almost fully
automated, there were technological implementations, especially in cracking classifying
methods and tools.

From the above analysis, it can be concluded that the proposed neural network
is appropriate for the classification of data on pavement conditions to determine the
global performance index and optimal maintenance strategy. The implementation of Al
in a pavement management system would provide a high-quality tool that will facilitate
decision-making in the selection of maintenance procedures and the rehabilitation of
pavement in individual sections.

The authors suggest a more direct interaction between experts in pavement to further
improve pavement engineering. For instance, mathematicians should aim to provide
optimization tools that can be easily used by non-experts. The intention of this report
was to analyze and summarize all the efforts that have been made in the field of flexible
pavement. The following aims are suggested for future works:

- Analyze and compare the effect of various additives in flexible pavement in the
construction field.

- Inspect and compare various distresses in the maintenance field using Al

- Combine and compare experimental and numerical in the performance field.

- Inspect the costs of design, construction, performance, and maintenance process in
the flexible pavement field.
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