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Abstract: Superficially, read and spontaneous speech—the two main kinds of training data for
automatic speech recognition—appear as complementary, but are equal: pairs of texts and acoustic
signals. Yet, spontaneous speech is typically harder for recognition. This is usually explained by
different kinds of variation and noise, but there is a more fundamental deviation at play: for read
speech, the audio signal is produced by recitation of the given text, whereas in spontaneous speech,
the text is transcribed from a given signal. In this review, we embrace this difference by presenting a
first introduction of causal reasoning into automatic speech recognition, and describing causality as a
tool to study speaking styles and training data. After breaking down the data generation processes of
read and spontaneous speech and analysing the domain from a causal perspective, we highlight how
data generation by annotation must affect the interpretation of inference and performance. Our work
discusses how various results from the causality literature regarding the impact of the direction of
data generation mechanisms on learning and prediction apply to speech data. Finally, we argue how
a causal perspective can support the understanding of models in speech processing regarding their
behaviour, capabilities, and limitations.

Keywords: automatic speech recognition; causality; speaking styles; data generation processes;
annotation

1. Introduction

Automatic speech recognition (ASR) has been a well-established and continuously
advancing discipline for several decades [1–3]. Its core application is the transformation of
speech signals into a textual representation, i.e., into an orthographic or other grapheme-
based transcription. With time, this has progressed from finite vocabulary command
recognizers to automatic transcription of spontaneous conversation, and from the fixed
idiolect of a single speaker to various dialects of arbitrary speakers [4]. In parallel, mobile
and ubiquitous computing devices have become more and more integrated into daily
life, including natural language interfaces. Facilitated through the continuous increase in
computation power and advances of machine learning technology, the utilization of ASR
for speech-based conversational agents has come into close reach [5]. This will open new
possibilities of interaction with machines, such as voice user interfaces, voice assistants,
voice-based assistive technologies [6,7], and similar methods which can make information
technology and computational power more accessible to diverse groups of people.

All these goals require speech recognition models which are strong, robust, and flexible.
Such an objective may be partially in line with the competition for a better-than-state-of-
the-art performance still mostly present in current-day machine learning, but requires
methodology to go beyond it. While in some settings, ASR systems are able to reach human
levels of recognition performance, there is still ground to be covered in many domains
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and aspects. This could originate from the separate investigation of speech recognition
as an engineering and modelling problem, where engineering is focused on recognition
and de-emphasizing the environment in which speech data are being generated [8–10].
Especially in spontaneous or conversational settings, peculiarities of certain speaking styles,
variation in and between speakers, audio quality and overlapping speech, and not least,
imperfect transcription remain challenges at the frontier of speech technology. Notably,
the properties complicating the recognition of spontaneous speech cannot just be dismissed
as a different amount of noise; it is not that annotators are working sloppily, but the fact that
transcription is necessary at all, and the perfect reconstruction of speech is fundamentally
impossible, which distinguishes spontaneous from read speech data.

This review stands in line with the recent works of Jin et al. [11] and Feder et al. [12],
which introduce causal reasoning into natural language processing, but is, to our knowl-
edge, the first study to apply causal reasoning to ASR. By reviewing from a causal perspec-
tive the assumptions made by speech recognition models about data, we aim to contribute
to ASR in a similar vein, covering three main areas:

1. Since the causal perspective requires a researcher to be explicit about the assumptions
and relations of the data generation process, we rigorously analyse different scenarios
of ASR, outline their influencing factors, and introduce a classification scheme, thus
providing insight into how read speech and spontaneous speech do not conform to
the same data generation process, and hence, differ in their sources of noise (Section 2).
Notably, there is no real ground truth for annotations in the case of spontaneous
speech data. Learning from it therefore constitutes a noisy-label problem, and must
be qualitatively analysed and interpreted differently from read speech.

2. We present consequences of the causal mechanisms involved in the generation of
speech data to allow for better interpretation and explain failures and successes in
learning from it (with a focus on spontaneous speech and its transcription), and ulti-
mately provide directions for future model architectures (Section 3). Concrete aspects
of this involve theoretical considerations resulting from speech recognition in causal
and anti-causal prediction settings, such as the effectiveness of semi-supervised learn-
ing, and a discussion of possible distribution shifts occurring in ASR.

3. The perspective of causal reasoning offers a foundation for the judgement of per-
formance, robustness, and transferability of estimates—in short, the generalization
behaviour of prediction models when the assumptions of inference diverge from the
actual data generation. Through this, we hope to facilitate scientific interpretation
and advance the analysis of learning behaviour, and reconcile the two viewpoints of
engineering and modelling.

2. Some Characteristics of ASR Data

There are a few unsupervised approaches for speech recognition [13,14], but almost all
ASR systems are supervised, and hence, trained from labelled data; a corpora of recorded
speech chunks, together with the corresponding texts [15]. Yet, what exactly is the relation
between speech and text in these corpora? Unlike in domains where existing pairs of data
are often readily found (such as, e.g., medical images and diagnostic results), labelled
ASR data almost always need to be produced specifically for the task. The acquired data
typically fall into two broad categories, known as read speech and spontaneous speech. In
read speech, pre-specified text prompts are used as stimuli and their read-aloud realizations
are recorded; read speech corpora include, for instance, the widely used TIMIT [16] and
LibriSpeech [17]. For spontaneous speech, on the other hand, annotators are asked to ortho-
graphically transcribe existing recordings of speakers talking freely (e.g., the Switchboard
corpus [18], IMS GECO [19], or the spontaneous part of the Kiel corpus [20]). Other exam-
ples fall outside this dichotomy: speech data with different characteristics include rereading
previously transcribed or artificially constructed free speech, often called “prepared speech”
(used to create “spontaneous-like” data sets under very controlled conditions), or the tran-
scription of read speech signals where the original text is unavailable (e.g., news broadcast
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corpora such as those in Weninger et al. [21] and Radová et al. [22]). Furthermore, we can
have a recitation of memorized text or content, constricted speech, such as when dictating
or addressing a voice interface, and conversational speech—the case of spontaneous speech
involving an interaction between two or more speakers [23–25].

To be able to talk more precisely about these nuances, we will characterize speech
data through the two-dimensional schema illustrated in Figure 1. The first dimension, style,
is used close to the typical meaning in the research community, and describes different
degrees of (apparent) spontaneity, as they would be captured by the distribution of ut-
terances modelled by a language model. We can consider spontaneity a coincidence of
two components which strongly correlate in a specific context, and depend on modality,
adaption of the speaker, and pragmatic and social constraints. From a speech production
perspective, spontaneity expresses through directedness and locality—how much is an
utterance planned ahead, or even revised (also referred to as “temporality”; cf. Auer [26]).
In terms of reception, it typically aligns with variety or register, i.e., the distinction between
(formal) written and (informal) spoken language. We will, henceforth, describe the axis as
being delimited by the two poles of unplanned utterances, which are produced extempora-
neously and informally, and planned utterances, which are formal and carefully deliberated
(think of an unprepared monologue compared to a rhetorically crafted oral presentation).
As the second dimension, which is not an established distinction, we use mode to refer to the
directionality of the relationship between text and speech. This characterizes the process
by which one part of the data is acquired from the other: is the text used as a stimulus to
elicitate a recited speech signal, or is an existing speech signal transcribed to text? Under this
schema, read speech is an example of stylistically planned speech in recited mode, whereas
spontaneous speech can be categorized as transcribed speech in an unplanned style.

Recited

Transcribed

Unplanned

Prepared speech,
scripted dialogue

Spontaneous
speech

Read speech

Planned
Style

Mode

?

Broadcast 
speech

Presentation,
dictation

Figure 1. A finer categorization of ASR data by speech production styles and data acquisition
modes, with exemplary instances. The conventional terms “read speech” and “spontaneous speech”
constitute opposing poles. The style axis is a continuum: “semi-planned” situations, as in dictation or
some news speech, are possible. It is unclear whether completely unplanned recited speech (marked
with “?”) is possible at all (perhaps the oral performance of certain stream-of-consciousness texts
would come closest).

For both modes, one part of the data is given, independently chosen and directly
manipulable, while the second part has to be derived from the first, specifically for the
task, and with extra effort. In this way, style and mode complement each other: where the
former is determined by the independently given part of the data, the latter characterizes
the relation between it and derived part. The established terms of read and spontaneous
speech constitute the prototypical cases on the opposing diagonal poles of this schema.
In a sense, they follow the “natural” correlation that utterances in unplanned style are
more likely to be transcribed; but in any case, in practise they constitute the data categories
most frequently used for training ASR systems. Hence, from now on, our attention will be
directed at these two kinds, especially insofar as they differ in mode, which will turn out to
play an important role in our causal analysis.

2.1. The Case of Spontaneous Speech

Read and spontaneous speech could superficially appear to be just two complementary
forms of producing the same kind of data—pairs of text and signals. Even so, they have
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been observed to result in remarkable differences—see the historical trends in Figure 2.
While for read speech, a human-like performance of less than 5% word error rate can be
achieved, a worse limit seems to exist for spontaneous speech [27,28], where 20% to 50%
have been typical at least until the arrival of deep learning, and values below 10% are still
an exception [29–32]. Several factors are responsible for this gap in performance. Whereas,
in terms of style, read speech mostly conforms to prescriptive norms (as the language of
text prompts is usually in planned, written style), and speakers are more likely to apply
clearer pronunciation, spontaneous speech tends to deviate from these characteristics.
Being unplanned, it shows syntactic signs of its on-line production [26], higher degrees of
segmental reduction [33], and more intricate forms of variation (speech rate, fillers, self-
corrections, repetitions, etc.) than read, and thus, planned, speech. Consequently, already
due to its grammatical and acoustic peculiarities, it is to be expected that spontaneous
speech is harder to automatically process than read speech, and does not allow for simply
reapplying models trained on read speech. This is a seemingly obvious but still widely
ignored argument in the field of speech technology. For example, Schuppler [34] questions
the transferability of improvements between speaking styles, and recommends that the
nature of the data needs to be taken into account already when defining the concepts and
basic assumptions of a speech recognition method.

1%

2%

4%

10%

100%

1990 1995 2000 20102005

W
ER

2015 2020
Prepared/broadcastRead Spontaneous/conversational

Range of human error in transcription
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speech
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Figure 2. The historical progress of speech-to-text benchmarks, extended from Ajot and Fiscus [35]
(as cited in Valenta and Šmídl [28]). We have added new points after 2009 from collected benchmark
results of deep learning methods trained on newer data sets, using the best results for each year
as listed in Synnaeve [36]. Of these, LibriSpeech is (mostly) read speech; TED-LIUM contains
prepared and spontaneous speech; HUB5’00 is built from Switchboard and CallHome, which are
types of conversational speech; CHiME and its successor CHiME6 consist of noisy low-resource
conversational speech. We can see how performance gains become flatter the more spontaneous the
speaking style becomes.

Besides these more directly noticeable differences in style, mode is also a factor compli-
cating speech recognition for spontaneous speech: since transcriptions are added through a
process of annotation, such speech lacks a real textual ground truth, or “gold standard”.
This lack manifests itself in the form of “noisy labels” (transcriptions, in our case), a known
problem in machine learning [37] as well as in natural language processing, where learning
under annotation noise has been theoretically shown to result in biases for certain classi-
fication problems [38]. Due to the more complicated grammatical and acoustic nature of
unplanned utterances, ranging from simple ambiguity up to extreme reduction causing
“disappearance of words” [39], spontaneous speech transcription is also afflicted with errors
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of usually 5% to 10% [40]. Accordingly, negative impact on recognition can be observed at
least on the lexical [28] and phonetic level [41]. In addition, the result of the transcription
process, unlike with the arguable objectivity of the text prompt in data created through
recitation, is not just noisy: it might not congrue with any concept present “in the head of
the speaker”, even if all annotators agree in their perception of what has been said. Any
kind of annotation presupposes linguistic theory, as well as language competence and
experience of the annotators, and is, therefore, an act of human interpretation. Hence,
orthographic transcription can also never be perfect, even if apparently objective crite-
ria are used [42] (Chapter 4.2); this is exactly what we refer to here as a “lack of a real
ground truth”.

To mitigate uncertainty induced by data collection under these conditions, annotation
processes usually involve multiple iterations and corrections by trained annotators, using
an annotation schema which should be as well-defined as possible [43]. The reliability of
the annotated data can at least be judged by estimating the base level variability through
the comparison of multiple annotated texts, and quantified with inter-annotator agreement
measures [44]. Alternatively, explicit models of annotation can be used, which allow for
more nuanced analyses of annotation noise and make the quantification of reliability more
interpretable [45,46]. In speech science (phonetic studies, prosodic labelling, etc.), inter-
annotator agreement is frequently reported, but to our knowledge, no studies regarding the
relation between inter-annotator agreement and recognition performance for ASR systems
exist. In application-oriented machine learning, such considerations seem to be taken
less seriously than in (computational) linguistic research; for example, Geiger et al. [10]
found that of all investigated publications on a certain text classification task, only about
70% report inter-annotator agreements at all, about 50% provide no information about
annotation guidelines, 85% provide no details about the training of annotators, and 45% do
not even specify the number of annotators.

The orthographic transcription of spontaneous speech is an extreme case of imperfect
annotation, as the vocabulary and space of acoustic realization are both unbounded and the
involved variation can be extremely diverse, leading even to unanswerable situations
of stark disagreement between annotations, or labelling as “incomprehensible”—not to
mention the case of a basic lack of competence, such as with unfamiliar dialects or topic
knowledge. For illustration, consider two examples from the GRASS corpus [23], with inac-
curate transcriptions of a German conversation involving a “Reflow-Ofen” (reflow oven; a
certain technical apparatus):

• musst einen <?>Ofen bauen “[you] must build a <?> oven”
• hast einen <*ENG>reflow offen “[do you] have a reflow open”

In the first chunk, the full technical term was apparently unknown to the annotator
and transcribed as partly incomprehensible with <?>. In the second one, the English
part was understood and transcribed correctly, but “Ofen” was mistaken as a separate
adjective “offen” (open), even though the initial vowels of both words are phonetically
different. While in this case, the “correct” transcription is obvious to someone familiar
with the term, there are clearly cases when this is impossible, and parts of utterances are
completely unrecoverable.

3. Modelling beyond Prediction: The Relevance of Causal Reasoning

Were it only for different amounts of uncertainty arising from unplannedness and
transcription, achieving human-level performance in recognition of spontaneous speech
would pose merely an engineering problem, which could be hoped to be solved by using
more data, more complex models, and more computational effort. However, there is a more
fundamental factor of discrepancy at play: while the prediction problem solved by ASR
is the same for read and spontaneous speech, going from speech to text, the two different
modes of data correspond to oppositely directed data generation processes, which are not
aligned with the direction of prediction, as depicted in Figure 3. Concretely, in ASR on data
from recited speech, the textual ground truth is sought to be recovered backwards from the
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output signal after the recitation by the speaker. (This distinction is similar to the notions of
“forward” and “inverse” problems with respect to a physical theory; cf. Tarantola [47].) In
contrast, in ASR on transcribed speech, a learner is fit to emulate the process of transcription,
going forwards from the speech signal to the textual output. These two settings both contain
a transformation mechanism and sources of stochasticity, and so could be considered as just
two sides of the same coin, with the corresponding prediction problems convertible into
each other by using the opposite directions of Bayes’ rule—which is also what generally
is carried out. However, this conversion cannot, in general, be held up when variables or
relationships in the data generation process undergo change. For instance, in read speech,
a change in the recording environment, skewing the signal, would not be mirrored in the
corresponding text because it is the text prompt which causes the speech signal, while the
same change could considerably impact the transcribed text in the spontaneous speech case.
Conversely, exchanging annotators (with their idiosyncratic behaviour) for spontaneous
speech cannot affect the underlying recording—as the transcription does not cause the
original signal—as opposed to manipulating the text prompts in read speech, which does
(in general) massively change the recordings. These examples illustrate how conditional
probabilities—as in Bayes’ rule, which may already be difficult to calculate in practise due
to the potentially intractable posterior densities [48]—are not automatically compatible
with changes in the causal mechanisms underlying the data. In addition, the different
behaviour under manipulation also implies different effects on prediction. In order to
provide a language to analyse these kinds of differences and their consequences through
mathematical and graphical tools, we introduced causal reasoning.

Spontaneous speech

Causal mechanism
(transcription)

Causal ASR

Read speech

Causal mechanism
(recitation)

Anticausal ASR

Figure 3. Conceptual illustration of the different generative processes underlying read and spon-
taneous speech. Solid arrows indicate the direction of the process, dashed arrows the direction of
the prediction.

3.1. Formalization of Causal Models

Naive application of predictive statistical methods to observed data can lead to wrong
or even paradoxical results when applied carelessly to scientific enquiry [49]. Causal
reasoning attempts to conceptualize the causal assumptions of a domain, and provide
the tools to remedy this situation by a mathematically sound framework [50,51]. In ASR
literature, the term “causal” is often used to describe alignment with the flow of time, such
as the prediction of future events given the past. For example, in Healy et al. [52], a “causal”
algorithm may only use past time frames in the context of real-time speech processing,
similarly to the notion of a causal filter in signal processing. Like Granger causality [53],
these usages refer to causation in a weaker, observational sense than the counterfactual
definition prevalent in causal reasoning. They generally only describe prediction, not
causation, by capturing assumptions such as that the past may affect the future, but not vice
versa, without considering the structure of underlying physical mechanisms. By providing
new concepts and formalisms to align predictive modelling with the underlying data
generating processes, causality extends the expressivity of models and the instruments
available to analyse them [50]. As such, it is expected that causally correct modelling will
yield solutions that are inherently more in line with the data generation process, and thus,
more in line with changes in the environment [54,55], and can address the apparently
divergent goals of prediction and explanation [56].

One of the main definitions of causality is based on the notion of counterfactuals: “We
think of a cause as something that makes a difference, and the difference it makes must be
a difference from what would have happened without it. Had it been absent, its effects—
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some of them, at least, and usually all—would have been absent as well.” [57]. This
perspective considers the hypothetical (“would have”) outcomes of an event if the value of
the cause had differed from what it actually was. In the case of causes resembling a binary
treatment, counterfactual is the fictitious outcome if the treatment would have been absent.
An alternative definition is given by Pearl and Mackenzie [58], who state that causality is
simply the answer to the question: Why? What unifies the different schools of thought in
regard to causality is that they all seek to rigorously formalize the connection between the
observations—the data—and the representation of the data generation process in the form
of causal models.

Such causal generative models support the interpretation and explanation of observed
phenomena, especially when applied in scientific contexts [59,60]—being able to reason
about the inner workings of a system is a necessary requirement for understanding its
causal structure, which consists of the mechanisms and noise sources relating the individual
components. This motivation is usually claimed for “plain” generative models, but results
only from their causal interpretation (Pearl [51] (p. 22) notes that generative models are
typically, even if unintentionally, constructed with causal mechanisms in mind). Causal
models go one step further and decidedly require the applicant to make their assumptions
about the real underlying mechanisms explicit. Defining a causal model means to specify
the generative processes, which, in contrast to observed associations, are considered to
correspond to real, physical mechanisms:

[C]ausal relationships are more “stable” than probabilistic relationships. We
expect such difference in stability because causal relationships are ontological,
describing objective physical constraints in our world, whereas probabilistic
relationships are epistemic, reflecting what we know or believe about the world.
Therefore, causal relationships should remain unaltered as long as no change has
taken place in the environment, even when our knowledge about the environment
undergoes changes. [51] (p. 25)

Such information cannot simply be derived from data alone, but must generally be ac-
quired through independent reasoning and domain knowledge, thereby serving as a poten-
tially stronger inductive bias for learning. (Note that this is not an absolute preclusion; there
is a growing body of work on causal discovery and structure learning (cf. Vowels et al. [61]),
which we will not examine further. In the case of read and spontaneous speech, the di-
rections of the causal mechanisms are clearly given.) Causal statements requiring such
assumptions are often eschewed, be it on epistemological grounds or simply due to a lack
of mathematical formalization, but can in fact be made statistically rigorous [62]. The
important ingredients therefore are the concepts of mechanisms and manipulation: where
non-causal predictive models only exploit associations (“association is not causation”),
causal generative models aim to faithfully represent how data are created through a series
of causal mechanisms [63]. These independent causal mechanisms (ICM) [64] are supposed to
share no information and remain constant, even if the environment changes, also known as
independent mechanism assumption [65]. Complex systems are often assumed to comprise
several independent internal dynamics, but when observed, only a mixture of them can be
studied. An example is given by Gresele et al. [66], who analysed the cocktail party problem,
where the content of the speech signal is considered to be independent of the placement
of the microphone and room acoustics, and furthermore, the effects of the positions of
individual speakers on the recorded signal are independent. Their causal generative model
can capture these dependence and independence relationships, and allows for an improved
separation of speakers.

Different formalizations of causal structure can be used to mathematically express and
analyse the consequences of noise and structure changes onto the behaviour of learned
models; there are a variety of approaches to define causal generative models. So-called
causal diagrams, as those in Figure 3, are a simple graphical way to capture the essential
causal relationships [67,68], going back to Bayesian networks (i.e., directed graphical
models), with their nodes representing variables, and directed edges direct causal relations
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(i.e., mechanisms, not only statistical dependencies), together forming a directed acyclic
graph. Causal diagrams offer an intuitive way to study the causal relationships, but the
nature of the relations is left unspecified. Structural causal models (SCMs) represent another
major causality framework, connecting causal graphs with structural equations, and are
able to express the specific relations between variables in closed form [51]. SCMs also
formalize do-notation [69], which aims to rigorously describe the effect of interventions
modelled via random variables and their probabilities. A third formalization based on the
counterfactual definition of causality is the so-called potential outcome framework [70].

Unlike a pure statistical model, which defines a specific probability distribution,
a causal model includes a structural representation entailing multiple distributions [64].
The complete causal model then is considered a rendering of the data generation process,
i.e., the associations in the data are considered the result of the causal effects. If the causal
model is correct and no assumptions are violated, an improved interpretation of the ob-
served data is possible, since it provides explanatory power (“why is . . . happening?”) and
affords counterfactual questions (“what will happen if . . . ?”). This allows for us to reason
about the real world even under hypothetical manipulation by explaining phenomena
through entities connected through causal relationships. In contrast, a model not respecting
causal relationships can only make predictions in the form of likely associations generalized
from past observations. When wrong or incomplete mechanisms are assumed (by misspec-
ifying or leaving out causal relationships), predictions based on these wrong assumptions
might fail [68,71]. Not only does the insistence on working with a causally justified gen-
erative model facilitate the correct probabilistic interpretation of interventions, it can also
provide a formal explanation for the occurrence of different biases in estimates derived
from observational data (e.g., unaccounted confounders or selection bias), and means to
their remediation.

3.2. A Causal Analysis of ASR Data Generation

It should by now be clear that read and spontaneous speech, insofar as they differ in
mode, need to be described by separate models of data generation (cf. Figure 3). From
a purely probabilistic standpoint, if we denote the complete text by W and the speech
signal by S, the joint density pW,S can be validly decomposed as either pS(s)pW | S(w | s) or
pW(w)pS |W(s |w) (ignoring more fine-grained factorizations, such as the internal structure
of the language model or the intricacies of the transcription or speech production process).
Choosing any one of these decompositions and fixing it as a generative model amounts to a
causal interpretation: W → S for recited, and S→ W for transcribed speech, with reversed
roles of cause and effect. There are other causal models implying the same joint distribution,
the simplest cases of which being W ← U → S with some additional unobserved variable
U, and conditionally independent W and S, but the validity of the two named choices
is quite intuitive from a counterfactual perspective. If, in a read speech setting, S is
manipulated, say by cutting the cable of the microphone, the proper model of the situation
will be pW(w)p′S(s), with a new interventional distribution p′S for S; because we have
intervened on the effect S, the relationship to W is rendered independent, as pW and pS |W
are independent mechanisms. We have illustrated how such an intervention can be formally
defined through structural equations in Figure 4. The joint distribution after an intervention
is clearly different from pW(w)pS |W(s′ | w), which is only the probability of observing the
signal of a cut microphone, s′, under the old model. In reverse, if the cause—the text
prompt—is modified, we arrive at an interventional distribution p′W(w)pS |W(s | w), where
the dependency of S on W is preserved. An opposite intervention can be imagined for
transcribed speech S → W, e.g., by editing a recorded signal S, which would directly
affect the transcription mechanism. This effect is relevant especially in spontaneous speech,
where there is no ground truth, and annotation errors arising from homophony, ambiguity,
lack of competence or topic knowledge can skew data sets.
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pW pS|W

pW pŚ

w = fW(noise)
s = fS(w, noise)

Structural causal modelCausal diagram

w = fW(noise)
s = fSʹ(noise)

Before
intervention

After
intervention

Replaced mechanism

Figure 4. An intervention can be explained formally through its relation to structural causal models.
Every conditional distribution with density pY | X can be written in the form of a deterministic
mechanism fY , of which is a function of the values of the parents X and an independent noise
part. The joint distribution of a set of variables is thus given as a structural causal model by the set
of mechanisms and noise distributions. An intervention in this formalism consists of replacing a
mechanism. In the exemplified case—cutting a microphone cable—the dependency on the parent is
removed, resulting in a mechanism independent of the W. The principle of an independent causal
mechanism refers to the fact that W and S are statistically dependent, while their mechanisms fW

and fS can be independently manipulated.

With this knowledge, we can discuss a number of implications of the direction of
causality on downstream tasks. Jin et al. [11] in a study similar to ours highlight the
importance of taking into account causal directions already in the data collection stage,
and of subsequent causality-aware modelling. In their work, they analyse a number of
common NLP tasks, motivated by the case of machine translation, where one sentence
in one language is the cause of the corresponding sentence in another language. For the
different directions in machine translation, they find empirical support for their assumed
independent causal mechanisms by estimating minimum description lengths as approxi-
mations of Kolmogorov complexity [72] (Chapter 7). Interestingly, this setting corresponds
directly to the case of recited speech and spontaneous speech (see Figure 3). Depending
on the direction of translation in the ground truth and the direction of translation the
learned system should make, this is either a case of causal or anti-causal learning, affecting
semi-supervised learning and domain adaptation, of a similar kind to the arguments we
provide next.

3.2.1. Inference in Causal and Anti-Causal Settings

In semi-supervised speech recognition, the goal is to improve the performance of a su-
pervised approach by utilizing additional information from unlabelled inputs [73–75]. This
is feasible since, typically, labelled instances are few and costly—they need to be recorded
or transcribed—while suitable unlabelled audio data can be obtained with much less effort.
The setting of semi-supervised learning is of particular interest in the context of causal and
anti-causal learning, extensively studied by Schölkopf et al. [65], to which we refer to for
more technical background information. We can transfer their theoretical results to ASR
as follows: For the causal model of speech and text in spontaneous speech, S → W with
cause S (signal) and effect W (text), the joint probability pS,W can be causally factorized into
pW | S and pS. Assuming the independence that causal mechanisms hold, the conditional
mechanism pW | S will then be (structurally) independent from the mechanism of the cause,
pS. Thus, the cause does not contain information about the mechanism producing the
effect, and when estimating pW | S via a learning algorithm, knowledge about pS through
unlabelled instances is not expected to improve this estimate. For the anti-causal case
of read speech, W → S, the situation is different: when predicting the cause from the
effect, pW | S, an independence of pS is no longer expected, and hence, can be exploited in a
learning context. Hence, knowledge about pS may improve the prediction in the anti-causal
direction via unsupervised methods to capture the marginal distribution of the effect, so
that in practice, unlabelled training examples (i.e., signals only) may help to improve the
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predictions in the anti-causal setting. Observations from recent semi-supervised deep-
learning-based ASR systems, such as Zhang et al. [32], are in line with this prediction: even
with extremely large unlabelled data sets, better results are still achievable on the test data
of recited modality. Furthermore, in a certain sense, the “self supervision” approach that is
taken when using a model such as Wav2Vec [76] as the basis for a fine-tuned predictor is a
variant of the same technique, and follows the same pattern.

The causal direction also interacts with the distinction of generative and discriminative
methods, i.e., learning via the joint or the conditional distribution. A purely discriminative
approach aims to directly estimate the mechanism that maps the input variables to the
output variable. Depending on the direction of the underlying data generation process,
this may either align with the causal or the anti-causal direction. Blöbaum et al. [77] study
the relationship of the causal direction and the two approaches in machine learning. Their
work is based on the hypothesis that for anti-causal problems, generative approaches
are expected to perform better than for a problem setting where the direction of the
causal mechanism and prediction align. This hypothesis is rooted on the ICM assumption,
where for causal inference, the mechanism of the cause (pS in spontaneous speech) is not
expected to be informative: knowledge about the structure of the signal alone does not
immediately improve the ability to infer correct annotations. In contrast, in anti-causal
inference, knowing the marginal distribution of the effect (pS in read speech) will help in
the estimate of the joint probability of cause and effect (pS,W). Kilbertus et al. [78], on the
other hand, investigate the ability of machine learning models to generalize to unseen
data. For anti-causal problems, they find that what they call strong generalization (model
identification, not only imitation) may not be achieved, even with state-of-the-art deep
learning approaches and large amounts of data. The needed extrapolation outside of the
support of the input is found to be especially problematic for generative approaches. This
prediction is in line with the empirical observation that, while models trained for read or
at least stylistically planned speech perform well on inputs close to their training data,
they badly generalize to other settings such as spontaneous speech. The authors argue that
this should be mitigated by integrating causal knowledge in order to guide search and
validate predictions.

3.2.2. Causal and Anti-Causal Inference under Shifts

Recognizing the potential results of distributional changes and appropriately mitigat-
ing their effects is key to stability, generalizability, and transferability of learned models—
we need to understand all external influencing factors and their relations. It should be
emphasized that such changes are not a purely theoretical concern; on the contrary, the pro-
duction of speech corpora involves many sources of stochasticity, and thus, many variables
which, on purpose or by accident, shift their distribution. Potential sources of change are
speakers, recording equipment or acoustic environment, or the annotators. Indirectly, even
the passing of time itself continuously manipulates the data generation processes, as the
involved annotators or speakers change behaviour (gaining experience or getting more
used to the processes).

Causally, all such changes, be it from manipulation or environment change, can be
treated as interventions. As there are only four possibilities, resulting from the combina-
tions of causal direction (i.e., mode) and the location of the intervention, we propose an
exhaustive terminology of shifts for the bivariate ASR setting following Castro et al. [79],
visualized in Figure 5. Intuitive examples are straightforward to find: prevalence shift
could result from changing text prompts, acquisition shift from different reciting speakers
or recording equipment, population shift from different spontaneous speakers or recording
equipment, and annotation shift from change in annotators or annotation practises. The
appropriate causal model allows for us to identify these shifts and to take steps to improve
robustness under distribution change. The abstract bivariate setting under which both
modes of ASR can be subsumed is studied in detail by Schölkopf et al. [65]. By assuming
only rather weak assumptions about noise structure, such as additive noise models [80],
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they provide a set of mathematical modules and recipes for inference under shifts, cover-
ing well-known concepts such as concept drift (change of mechanism, i.e., acquisition or
annotation shift in our terms), covariate shift (i.e., population shift), or semi-supervised
learning and transfer learning from a causal perspective.

Read speech
(anticausal prediction)

Spontaneous speech
(causal prediction)

Prevalence shift

Population shift

Acquisition shift

Annotation shift

Intervention on cause Intervention on effect

(e.g., new text prompt) (e.g., new reciter)

(e.g., new microphone) (e.g., new annotator)

Figure 5. Classification of shifts in causal and anticausal prediction settings (solid arrows are causal
mechanisms, dashed arrows are prediction directions). Upon intervention on speech signal or text,
a change can propagate via the mechanism from cause to effect. Depending on the direction of
prediction, shifts can have different effects on prediction and call for different measures of mitigation.

On a similar note, Cinelli et al. [71], while also concerned with more general causal
graphical models, investigate several variants of bivariate effect estimation under the
influence of “controls”—third variables directly causally related to cause or effect in a
bivariate model, which can be seen as shifting either variable. Using only non-parametric
assumptions, they classify several possible cases as “good”, “neutral”, or “bad”, analysing
the effect of including the third variable in regression. Depending on the case, such
inclusion (or lack thereof) can lead to improved or degraded precision, or even bias. For
example, including a child of the effect (Z in S → W → Z) results in what is elsewhere
known as “case-control bias”. We can relate this with annotation shift in our terminology,
although it is not caused by an actual intervention; instead, by skewing the observed
distribution through the inclusion of a superfluous variable, the regression acts as if under
a changed environment.

3.3. A Causal Perspective on Learning in ASR Models

The methodology of ASR has always kept up with and innovated upon the devel-
opments in neighbouring disciplines (cf. Furui [81]). Early ASR systems employed a
combination of linguistic theory (phonological and grammatical rules), signal processing
techniques, and search algorithms (e.g., by dynamic programming), which can arguably be
seen in relation to contemporary artificial intelligence and the rise of generative grammar,
trying to mould speech recognition after theories of human language understanding. From
the 1970s on, a trend to algorithmization can be observed, involving more sophisticated, less
explanatory template matching, pattern recognition, and the rise of statistical techniques.
The current state-of-the-art in ASR can roughly be split into two factions.

On one side, a range of more traditional approaches centred around Hidden Markov
models (HMMs), which are a prominent example of generative models. HMMs have been
introduced to speech recognition in the 1980s, and are accompanied by well-developed prob-
abilistic and algorithmic theory (such as the Baum–Welch and Viterbi algorithms [82]). They
enjoy consistent popularity and are available as toolkits such as HTK [83] and Kaldi [84].
These models are parametric generative sequence models, with a factorization implying
specific conditional independence properties’ “hidden” states (so called because they are
usually the target of prediction), and observed values dependent on them. In the context of
speech processing, the Markov model of hidden states is often called the language model,
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and the observation model the acoustic model, because we can imagine a speech production
process first generating an underlying sequence of segments, and then turning it into a
wave form (such as when reading aloud). In practise, these parts are modelled as stochastic
finite state automata selecting conditional mixtures of Gaussians for emission of observa-
tions. Given sufficiently strong transition and observation models (i.e., enough states and
mixture components), HMMs are able to accurately approximate any observation sequence;
however, this does neither mean that they are good models for speech synthesis, nor that
they are well-calibrated representations of the generative process of speech [85].

The generative assumption underlying the vanilla HMM is the model W → S, cor-
responding to the causal generative model of recited (read) speech, together with more
specific assumptions about the factorization, namely W being Markov, and the elements
of S being conditionally independent given W. This implies the interpretation that a well-
defined sequence of segments is a “concept” within the speaker’s mind, which we should
be able to reconstruct. Young et al. [83] (p. 3), as a rare occurrence, make this explicit in the
documentation of HTK: “[s]peech recognition systems generally assume that the speech
signal is a realization of some message encoded as a sequence of one or more symbols”,
and say their goal is to “effect the reverse operation of recognizing the underlying symbol
sequence given a spoken utterance [. . . ]”. They also illustrate this traditional view of the
speech recognition process, as seen in Figure 6. Such an interpretation may be causally
valid in some cases, and may be a viable model for inference in even more, but ignores the
fact that the transcribed case really calls for models of transcription, not of production. In
NLP, several authors suggest that explicit annotator models may be used to improve the
estimation of annotation noise [45,46,86]. From the perspective of causal reasoning, we see
that such annotator models may have yet more advantages: they faithfully represent causal
mechanisms in the data generating process, and may partake in causal analysis.

Wt-1 Wt Wt+1

Wt+1

Concept (sequence of symbols)

Speech 
signal

Speech 
vectors

Parametrization

Recognition

Wt Wt+1

Figure 6. The causal assumptions built into HMM-style models made explicit, as illustrated in the
HTK book (reproduced from Young et al. [83]).

The success which we see from HMMs is in a large part due to their capability
of discrimination: they allow to rather easily learn likelihoods which can be used for
the efficient and accurate prediction of the hidden state sequence, without the need to
model every nuance of the distribution of possible utterances. Yet, in practise, ideal,
accurate HMMs for realistic speech distributions can be too complex to use when acceptable
predictive performance is required. Hence, several modifications to improve predictive
capabilities have been proposed [87–90]. Although such models deviate from the generative
assumptions implied by the original HMM, they improve the predictive performance,
presumably by increasing the mutual information between observations and states [91].
These modifications instead lead to generative models which are not anymore as readily
interpretable as a “read and pronounce” model of ASR data generation.

On the other end of the current state-of-the-art, we have ASR based on neural networks,
which regained popularity during the 2000s and have profited from a fortunate combination
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of increased computational power and technical advances in learning algorithms and
network architectures (convolutional networks, regularization, pre-training, etc. [92,93]),
as well as the availability of larger amounts of speech data. Neural networks have now
improved their ability to deal with the temporal structure of sequential data, due to
advances in recurrent networks [94] and other sequence models, such as the transformer
architecture [95]. This has also led to some hybrid approaches combining neural networks
with genuine speech processing techniques, such as connectionist temporal classification
(CTC) [96,97]. The latest branch of neural ASR is based on deep learning, applying end-
to-end deep neural networks such as Deep Speech 2 [98], or recent architectures based on
self-supervised learning, such as Wav2Vec [76,99] or Whisper [100], which base their success
on fine-tuning general pre-trained feature extractors [75]. A large part of the success of deep
learning comes from the ability to directly train universal approximators as discriminative
problem solvers, utilizing abundant amounts of data. Deep learning has always crossbred
with other machine learning paradigms, and even monolithic end-to-end systems may
contain components corresponding to the language and acoustic models in the HMM-style
paradigm and use established decoding techniques such as Viterbi decoding or beam
search. Yet, these architectures mostly forego any pretence of generative interpretability, of
which is intrinsic in causal models, and are designed to directly maximize the predictive
performance of a discriminative classifier.

Built on the advances in these technologies, recognition rates in ASR are ever-growing
(although read speech still consistently beats spontaneous speech). However, this growth
can also be interpreted as a sign of a preferential focus on prediction instead of explanatory
modelling, which seems to be ingrained into machine learning and its applications [101,102].
A large part of machine learning progress is measured in terms of performance, and less
attention is being paid to analysing and interpreting the generative processes assumed to
underlie the data (cf. Chen and Asch [103]). This indifference to the origins of data has
since long been called out as a “garbage in, garbage out” mentality, such as by Geiger
et al. [10]. A striking example of this includes current deep learning models in natural
language processing, which are trained as black boxes and then retroactively examined
with “probes”, using correlation to come up with possible interpretations of their inner
workings, instead of theory guiding their construction [104].

To a certain extent, the same tendency also holds for ASR [8]. While some approaches,
especially the ubiquitous hidden Markov-type models, can be interpreted as assumptions
about data generation [85], this does not hold for many predictive models such as support
vector machines and most neural networks [105]. Ostendorf [106] and Scharenborg [107]
already call for more theory-guided modelling: to go beyond the “beads on a string” view
of sequential speech data, and towards more cognitively motivated—and hence naturally
causal—approaches, guided by insights about human perception (HMMs, in contrast, are
decidedly models of production). Deng and Jaitly [108], who compare deep discriminative
and generative models in speech recognition, argue from a learning theoretical perspective.
They say that generative models limit the class of distributions that can be expressed by a
model, serving as inductive priors. When applied under correct distributional assumptions,
they are generally more interpretable, facilitate alternative learning modes (e.g., unsuper-
vised or semi-supervised learning), and can achieve faster convergence with fewer data,
given good priors. Discriminative models, on the other hand, who directly express complex
posterior distributions, generally have a superior performance at the test time, can have
better noise robustness, and have more scalable architectures and training algorithms at
their disposal. The authors suggest that for combining their advantages and utilizing re-
cently available computational methods, an integration of more generative approaches into
the primarily discriminative deep learning models is necessary. Manning [109], at least for
part-of-speech tagging (a task conceptually similar to transcribed speech recognition, since
it involves labelled data), suggests to apply more descriptive linguistics in classification
tasks based on annotated data, and reflect on the appropriateness of tag categories in order
to close the gap between predictive classifiers and human annotators:
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Notwithstanding the significant progress that can be made by removing errors
and improving the consistency of the treebank, there are interesting foundational
linguistic issues as to which decisions are linguistically well-justified, and which
turn into arbitrary conventions of treebank annotation.

Switching “treebank” to “speech corpus” is a critique which might equally be applied
to transcribed speech data, and resonates with our arguments in Section 2: the absence
of noise and consistency of transcription are not sufficient criteria for quality, and are not
enough to close the performance gap to humans. Furthermore, orthography and even
specialized annotation schemata are not adapted (well enough) to phenomena of spon-
taneous speech such as disfluencies, fillers, speaker noise of paralinguistic function, etc.
As Reidsma and Carletta [110] note, annotation noise in linguistic data is typically not at
random, and “[machine learning] makes systematic disagreement dangerous, because it
provides an unwanted pattern for the learner to detect”, making pure disagreement mea-
sures insufficient and inflating performance measures. Compare this to the transcription
example at the end of Section 2.1: what would a “word error” even mean in a case like
this, where the transcribed tokens, which are used as a reference, are inconsistent and
questionable themselves?

4. Conclusions

The aim of this work is to provide a new perspective on speech recognition: the intro-
duction of causal reasoning about data and models, and a first overview of its consequences.
Causal reasoning urges us to be very accurate in matters relating to the data generation
process in the modelling and development of systems—in the case of ASR specifically,
the dependency between speech and text. As we have demonstrated, even in such a simple
case as the bivariate setting with one cause and one effect, there is much to say about
the relations between causal structure and modelling. In Section 2.1, we pointed out how
annotation is a fundamental element determining the nature of spontaneous speech data.
Not only is it advisable to take more seriously the lack of a ground truth and noisy nature
of its labels, but further research into its interaction with prediction is necessary: how and
where do annotators and ASR models make errors? Are they the same? What would be a
meaningful measure of correctness, or performance, in the absence of a gold standard?

Section 3.2 indicates several possible directions of future research rooted in the lit-
erature on causal inference and machine learning. The structure of the independent
causal mechanisms determines conditions under which unlabelled data may be benefi-
cial, and hence, when semi-supervised learning can be applied successfully. Our analysis
suggests that the direction of these relations should influence the choice and expected
performance of machine learning modelling, and impacts the suitability of generative or
discriminative approaches, which in turn result in different degrees of interpretability.
The actual extent of these effects remains to be studied more systematically in the field of
speech recognition, as well as the details of the means to deal with distributional changes
or “shifts” occurring in situations such as transfer learning, or just naturally as artefacts
during data collection or generation. By contrasting the generative processes of different
kinds of speech data, we can classify shifts (matching different kinds of error sources
in ASR data), formalize them, make theoretical statements about their consequences in
predictive modelling, and give directions for possible mitigation strategies. More research
is required to make the necessary assumptions explicit, and amend the modelling of all
relevant sources (causally) influencing observed signals. Such results could then be used to
arrive at more robust systems, performing well even in the presence of shifts in the data
reflecting changes in the environment.

From the more abstract observations in Section 3.3, we can highlight that the inter-
action between the characteristics of data generation and modelling in ASR needs to be
investigated further. We need to make explicit the underlying assumptions and mech-
anisms of speech data acquisition, with its two distinct forms of generation processes,
and consequently compare them to the models underlying typical inference algorithms,
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then lay out the specific sources of stochasticity occurring in each, and finally try to give
an interpretation for some of the observable differences between ASR on read and sponta-
neous speech. A concrete step in this direction is the same as suggested by Jin et al. [11]: to
always annotate or indicate the causal direction when collecting new speech data. More
theoretical analyses are needed regarding the interplay between learning theory, causality,
and ASR (for an exemplary argument in this direction, consider Appendix A). The question
of generative vs. discriminative and black-box vs. interpretable modelling finally also
leads back again to the questions we started with: what to make of data in which the
labels themselves are the product of an intricate, non-uniform, and ultimately “subjective”
stochastic process, such as the orthographic transcription of spontaneous speech?

Our examples were reduced to the bivariate setting, and thus limited to a very coarse
granularity; however, we can also take a more fine-grained view and model the internal
structure of the causal relations between variables at each time step. As suggested by the
style/mode distinction, the processes of speech production are structured on two axes:
the “vertical” direction of mode (signal to text or vice versa), and the horizontal time
structure, roughly described by style. For example, the acoustic model for read speech
respects temporal ordering: every frame can depend only temporally on previous tokens.
The Markov assumption used in HMM-style models is a causally valid model for this,
but more complex alternatives are possible. The transcribed tokens in spontaneous speech,
on the other hand, may also depend on the “future” of the speech signal: annotators are
able to move forwards and backwards in recordings, giving the process a window-like
(or attention-like) structure. Even more complicated causal models are needed when
moving beyond single-speaker read and spontaneous speech: in conversations, cross-
wise interactions between multiple participants must be integrated. The transcription of
conversational speech, or multi-stage annotation processes such as typically applied to
increase confidence, can lead to even more complex causal annotation models. Having
gone this far, the integration of speech synthesis as a module in a deep causal model of
participants and their observable and unobservable states offers itself. We, furthermore,
see the explanatory nature of the causal model structure as a starting point for an extended
view on the relations between ASR and speech perception and production, and support
better linking of linguistic insight and technical aspects.

As the next step in this direction, we suggest to develop practically realizable causal
models and feasible inference methods for such fine-grained modular systems. Different
approaches, from approximate Bayesian computation to discriminative machine learning,
could achieve this goal; the concrete methodology of applying them in causal inference
is still a topic of current research (see, for example, Toth et al. [111]). With such methods
available, the discussed topics relating to generalization can be studied: the feasibility of
transfer learning, stability under environment changes or out-of-distribution observations,
or other questions of learning behaviour. Considering a causal perspective may yield more
robust results in conditions such as mobile applications, varying background noise, or the
expected increased interaction with autonomous agents in real-life conditions. On the other
hand, the presented causal framework can serve as the basis for experimental questions
such as the investigation of the relations between utterance style, language complexity,
and predictive performance, the behaviour of annotators and annotation models, or the
intrinsic differences between planned and unplanned speech.

As far as limitations go, we should note that a causally correct model cannot be
expected to automatically outperform an associative model in tasks where shifts can be
ruled out; the goal is restricted to prediction only, and the interpretability of the results is
not a concern [78]. Yet, the benefits of the causal approach, as we have tried to argue, are
numerous, such that we dare say that causal thinking puts the modeller in a significantly
better position in any case, even if resorting to off-the-shelf inference methods in the end.
Despite causality’s well-developed theory having been available for some decades, causal
machine learning can still be considered a newcomer. Reasons for this include that causal
computational methods are still behind traditional ones, and education and statistical
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practise have not yet picked up or fully appreciated causal concepts. This paper can only
be a starting point, indicating possible directions of continuation. However, it makes an
important step towards the introduction of causal reasoning and causal methods to speech
recognition, and towards our understanding of applied ASR models and their behaviour.
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Appendix A. A Note on Model Misspecification

Here, we present a draft for an argument on how ignoring knowledge about the data
generation process may also lead to a potential model misspecification, or at least to a
sub-optimal probabilistic model for inference. As discussed in Section 3.3, HMMs, while
causally correctly capturing the data generation process of read speech, are not automati-
cally suited for speech synthesis. This could be due to the language and emission models
being separately too weak for generation, but still result in a jointly feasible discrimina-
tor [85]. In recognition, HMMs or their extensions are appropriate models for the process
that produces read speech: the text prompt W is identified with a ground truth for hidden
states, from which a speech signal S is observed.

In contrast, for spontaneous speech, we argue that an HMM is a misspecified model.
Indeed, while the common preconception still assumes that there is a sequence of tokens
W “in the head of the speaker” (cf. Figure 6), these tokens are inaccessible to the ASR
system. Instead, training an ASR system on spontaneous speech requires a sequence
of annotations WA, and the ASR system is trained to infer the annotation WA from the
observed speech utterances S. For read speech, though, learning is anti-causal: we want to
infer the variable W causing the speech utterances. Conversely, for spontaneous speech,
learning is causal: we want to infer the variable WA that are caused by the speech utterances.
We cannot aim to directly infer the tokens W in the head of the speaker, because we have
no training data for them. This fact suggests that HMMs may be inadequate models for
recognizing spontaneous speech. Indeed, if at all, then a causally correctly specified HMM
for spontaneous speech should have the speech utterances S as states and the annotations
WA as observations. Such an HMM eludes us, however, since the emission model would
need to characterize the annotation process, whereas all our current understanding concerns
the speech production process in the “standard, read speech-type” HMM.

It has become a common understanding that ASR systems relying on the standard
formulation of HMMs perform poorly on spontaneous speech, and that satisfactory recog-
nition rates can only be achieved using extensions deviating from the original generative
assumptions, or end-to-end learning of neural ASR [93]. While some of this can, as we
have laid out above, be traced back to the stylistic peculiarities of spontaneous speech
(speech rate, fillers, non-canonical pronunciation, etc.), we believe that at least some part
of the shortcomings of HMMs and the superiority of neural ASR can be explained by
model misspecification. Indeed, inference in an HMM essentially relies on “inverting”
the probabilistic model using Bayes’ rule. The structure of the HMM, however, greatly
limits the class of distributions which can be inferred by the designed ASR systems. Specifi-
cally, parameters φ in the “classic” HMM model, consisting of the transition and emission
probabilities, are trainable using a data set D. Setting (incorrectly) the state process to the
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sequence of annotations WA, the optimal parameters of the HMM-type model are thus
obtained by

φ∗ = arg max
φ

∏
(wa , s)∈D

pφ(wa | s) (A1)

in the maximum likelihood sense, via the model parameters which best explain the observed
data. The fact that the conditional probability pφ∗(wa | s) is obtained from the HMM model
for joint probability pφ∗(wa, s) makes explicit the limitations of the HMM assumption. This
assumption, as mentioned above, is not problematic for read speech where the process of
generating training data conforms, at least approximately, to the model inherently assumed
within the HMM.

In contrast, an end-to-end neural ASR directly models the conditional probability as a
function p̂θ(wa | s) parametrized over θ. The structure of this conditional probability is not
limited to conform to the joint probability via Bayes’ theorem, but is only constrained by
the architecture of the neural network implementing it. One can thus reasonably assume
that for spontaneous (or, in general, transcribed) speech we have

∏
(wa , s)∈D

pφ∗(wa | s) < max
θ

∏
(wa , s)∈D

p̂θ(wa | s), (A2)

while for read (recited) speech we may still have

∏
(wa , s)∈D

pφ∗(wa | s) ≈ max
θ

∏
(wa , s)∈D

p̂θ(wa | s). (A3)

This may give an additional explanation for why neural ASR systems or non-generative
HMM extensions outperform HMM-based ASR on spontaneous speech, but not necessarily
on read speech. (We do not speculate about the size of this effect; it may be small, since the
stylistic peculiarities of spontaneous speech may still outweigh effects due to a misspecified
probabilistic model.) As an empirical example, Linke et al. [29] find a deep-learning-based
ASR approach indeed performs better than an HMM on conversational speech, but still
worse than on read speech.

References
1. Pierce, J.R. Whither Speech Recognition? J. Acoust. Soc. Am. 1969, 46, 1049–1051. [CrossRef]
2. Roe, D.; Wilpon, J. Whither Speech Recognition: The next 25 Years. IEEE Commun. Mag. 1993, 31, 54–62. [CrossRef]
3. Hannun, A. The History of Speech Recognition to the Year 2030. arXiv 2021, arXiv:2108.00084.
4. Furui, S. History and Development of Speech Recognition. In Speech Technology: Theory and Applications; Chen, F., Jokinen, K.,

Eds.; Springer: New York, NY, USA, 2010; pp. 1–18. [CrossRef]
5. Galitsky, B. Developing Enterprise Chatbots: Learning Linguistic Structures; Springer International Publishing: Cham, Switzerland,

2019. [CrossRef]
6. Corbett, E.; Weber, A. What Can I Say? Addressing User Experience Challenges of a Mobile Voice User Interface for Accessibility.

In Proceedings of the 18th International Conference on Human–Computer Interaction with Mobile Devices and Services, Florence,
Italy, 6–9 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 72–82. [CrossRef]

7. Messaoudi, M.D.; Menelas, B.A.J.; Mcheick, H. Review of Navigation Assistive Tools and Technologies for the Visually Impaired.
Sensors 2022, 22, 7888. [CrossRef] [PubMed]

8. Furui, S. Future Directions in Speech Information Processing. J. Acoust. Soc. Am. 1998, 103, 2747. [CrossRef]
9. King, S.; Frankel, J.; Livescu, K.; McDermott, E.; Richmond, K.; Wester, M. Speech Production Knowledge in Automatic Speech

Recognition. J. Acoust. Soc. Am. 2007, 121, 723–742. [CrossRef] [PubMed]
10. Geiger, R.S.; Yu, K.; Yang, Y.; Dai, M.; Qiu, J.; Tang, R.; Huang, J. Garbage in, Garbage out? Do Machine Learning Application

Papers in Social Computing Report Where Human-Labeled Training Data Comes From? In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30 January 2020; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 325–336. [CrossRef]

11. Jin, Z.; von Kügelgen, J.; Ni, J.; Vaidhya, T.; Kaushal, A.; Sachan, M.; Schölkopf, B. Causal Direction of Data Collection Matters:
Implications of Causal and Anticausal Learning for NLP. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021; Association for Computational Linguistics: Punta
Cana, Dominican Republic, 2021; pp. 9499–9513.

http://doi.org/10.1121/1.1911801
http://dx.doi.org/10.1109/35.256880
http://dx.doi.org/10.1007/978-0-387-73819-2_1
http://dx.doi.org/10.1007/978-3-030-04299-8
http://dx.doi.org/10.1145/2935334.2935386
http://dx.doi.org/10.3390/s22207888
http://www.ncbi.nlm.nih.gov/pubmed/36298237
http://dx.doi.org/10.1121/1.422797
http://dx.doi.org/10.1121/1.2404622
http://www.ncbi.nlm.nih.gov/pubmed/17348495
http://dx.doi.org/10.1145/3351095.3372862


Information 2023, 14, 137 18 of 21

12. Feder, A.; Keith, K.A.; Manzoor, E.; Pryzant, R.; Sridhar, D.; Wood-Doughty, Z.; Eisenstein, J.; Grimmer, J.; Reichart, R.;
Roberts, M.E.; et al. Causal Inference in Natural Language Processing: Estimation, Prediction, Interpretation and Beyond.
Trans. Assoc. Comput. Linguist. 2022, 10, 1138–1158. [CrossRef]

13. Glass, J. Towards Unsupervised Speech Processing. In Proceedings of the 2012 11th International Conference on Information
Science, Signal Processing and Their Applications (ISSPA), Montreal, QC, Canada, 2–5 July 2012; pp. 1–4. [CrossRef]

14. Baevski, A.; Hsu, W.N.; Conneau, A.; Auli, M. Unsupervised Speech Recognition. Adv. Neural Inf. Process. Syst. 2021, 34,
27826–27839.

15. Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic Speech Recognition: A Survey. Multimed. Tools Appl. 2021,
80, 9411–9457. [CrossRef]

16. Zue, V.W.; Seneff, S. Transcription and Alignment of the TIMIT Database. In Recent Research Towards Advanced Man–Machine
Interface Through Spoken Language; Fujisaki, H., Ed.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 515–525. [CrossRef]

17. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An ASR Corpus Based on Public Domain Audio Books. In
Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 5206–5210. [CrossRef]

18. Godfrey, J.J.; Holliman, E.C.; McDaniel, J. SWITCHBOARD: Telephone Speech Corpus for Research and Development. In Proceed-
ings of the Acoustics, Speech, and Signal Processing, IEEE International Conference On IEEE Computer Society, San Francisco,
CA, USA, 23–26 March 1992; pp. 517–520. [CrossRef]

19. Schweitzer, A.; Lewandowski, N. Convergence of Articulation Rate in Spontaneous Speech. In Proceedings of the INTERSPEECH
2013, Lyon, France, 25-29 August 2013; pp. 525–529.

20. Simpson, A.P.; Kohler, K.J.; Rettstadt, T. The Kiel Corpus of Read/Spontaneous Speech: Acoustic Data Base, Processing Tools and Analysis
Results; Technical Report 1997; Universtität Kiel: Kiel, Germany, 1997.

21. Weninger, F.; Schuller, B.; Eyben, F.; Wöllmer, M.; Rigoll, G. A Broadcast News Corpus for Evaluation and Tuning of German
LVCSR Systems. arXiv 2014, arXiv:1412.4616.

22. Radová, V.; Psutka, J.; Müller, L.; Byrne, W.; Psutka, J.V.; Ircing, P.; Matoušek, J. Czech Broadcast News Speech LDC2004S01;
Linguistic Data Consortium: Philadelphia, PA, USA, 2004. [CrossRef]

23. Schuppler, B.; Hagmüller, M.; Zahrer, A. A Corpus of Read and Conversational Austrian German. Speech Commun. 2017, 94, 62–74.
[CrossRef]
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