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Abstract: In recent years, the rapid economic development of China, the increase of the urban
population, the continuous growth of private car ownership, the uneven distribution of traffic flow,
and the local congestion of the road network have caused traffic congestion. Traffic congestion has
become an inevitable problem in the process of urban development, bringing hazards and hidden
dangers to citizens’ travel and urban development. The management of traffic congestion first lies
in the accurate completion of the identification of road traffic status and the need to predict road
congestion in the city, so as to improve the use rate of urban infrastructure road facilities and better
alleviate road congestion. In this study, a deep spatial and temporal network model (DSGCN) for
predicting traffic congestion status is proposed. First, our study divides the traffic network into grids,
where each grid represents a different independent region. In this paper, the centroids of the grid
regions are abstracted as nodes, and the dynamic correlations between the nodes are expressed in the
form of adjacency matrix. Then, Graph Convolutional Neural Network is used to capture the spatial
correlation between regions and a two-layer long and short-term feature model (DSTM) is used to
capture the temporal correlation between regions. Finally, the DSGCN outperforms other baseline
models and has higher accuracy for traffic congestion prediction as demonstrated by experiments on
real PeMS datasets.

Keywords: urban traffic; deep learning; graph convolution; trajectory data

1. Introduction

In recent years, with the continuous development of social economy and increasing
urban population, traffic congestion has become an important factor troubling urban
development. Traffic road congestion not only brings people lower travel efficiency and
higher travel cost, but also causes energy waste and air pollution due to higher fuel
consumption. Accurate prediction of traffic congestion can help people to travel efficiently
and reduce the waste of resources.

At present, the main methods for traffic congestion prediction at home and abroad are
based on neural network prediction [1–4], support vector machine (SVM) prediction [5,6],
deep learning prediction [6–10], etc. Vlahogianni et al. [11] proposed a neural network
approach to obtain both spatial and temporal features to predict short-time traffic data.
The algorithms they propose are predicted using a time period, but real traffic data are
different every day, and considering only the data of adjacent time periods for prediction,
the prediction results are very different from the actual data. Lu et al. [12] proposed an
improved SVM algorithm based on a weighting algorithm to predict traffic congestion in
cities by assigning different weights to each feature. To address the problems of existing
traffic congestion prediction methods in which the predicted results differ greatly from the
actual data and the predicted data set is small. In this paper, a deep spatial and temporal
network model (DSGCN) for traffic congestion prediction based on deep learning [13–20]
is proposed. The model is mainly used for the prediction of time-series traffic flow in urban
areas. The main contributions of this study are as follows.
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• Unlike the previous division of cities into equal-sized grids, we divide the transporta-
tion network into grids based on the attributes to which urban area belongs. Each grid
represents an independent region. In this paper, the centroids of the grid are abstracted
as nodes and the adjacency matrix is used to represent the spatial correlation between
the nodes.

• In this study, a DSGCN model is designed to accomplish the traffic congestion pre-
diction task. DSGCN consists of two important parts. The first part is an optimized
graph convolutional neural network module that can obtain better spatial features.
The second part is a two-layer DSTM unit, which allows better sequential learning of
long-term and short-term temporal features.

• In this paper, experimental validation is performed on the PeMS dataset. The results
show that DSGCN cannot only adequately calculate the time dependence, but can
also enhance the spatial correlation of nodes in the traffic network. Meanwhile,
the prediction effect of the DSGCN model proposed in this study is better than the
existing baseline.

2. Related Work

Traffic congestion has a direct or indirect impact on a country’s economy and the
health of its inhabitants. Ensuring economic growth and the comfort of road users are two
requirements for the development of a country, so traffic congestion forecasting is gaining
increased attention from government agencies. With the increase of data volume and com-
plexity, regression models [21,22] are used less and less in traffic congestion prediction. The
main idea of support vector machine (SVM) is to map nonlinear data to a high-dimensional
linear space where the data can be linearly classified by hyperplanes. Tseng et al. [23] used
support vector machines to determine the driving speed when predicting real-time conges-
tion, but the increase in training data during the training process improved the accuracy
and computation time, which made it difficult to perform real-time congestion prediction.
Zhang et al. [24] applied the spatio-temporal feature selection algorithm (STFSA) to traffic
flow sequence data to select a subset of features as the input matrix. They introduced an
attention mechanism layer between the LSTM and the prediction layer, and the attention
layer mechanism extracts features from the traffic flow data sequences to capture the traffic
congestion state. However, this algorithm does not guarantee optimality for traffic conges-
tion prediction considering its heuristics, biases, and trade-offs. Di et al. [25] introduced
convolution to provide input to the LSTM model to form the CPM-ConvLSTM model. The
graph convolutional neural network (GCN) applies spectral convolution to learn structural
dependencies and feature information. Zhao et al. [26] proposed a new neural network,
the traffic prediction time-graph convolutional network (T-GCN), which uses GCN to
capture the static spatial features of the traffic network and designs a gated recursive unit to
capture the dynamic temporal features of traffic data. However, T-GCN does not fully use
the spatial information of traffic flow. Guo et al. [27] proposed an attention-based spatio-
temporal graph convolutional network (ASTGCN) to enhance the dynamic spatio-temporal
correlation of spatio-temporal data of traffic data while capturing spatial features using
graph convolution and commonly describing temporal features using standard convolu-
tion. Yu et al. [28] proposed a new neural network approach, the spatio-Temporal Graph
Convolutional Network (STGCN), for traffic prediction tasks. The architecture consists of
multiple spatio-temporal convolutional blocks. The spatio-temporal convolutional blocks
combine graph convolution and gated temporal convolution to extract the most useful
spatial features and capture the most essential temporal features. However, the STGCN
model consists entirely of convolutional structures, which are parallelized at input and
slow to train with many parameters. To address the above problems, this paper designs a
DSGCN model to accomplish the traffic congestion prediction task.
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3. Methodology

The structure of the DSGCN model proposed in this study is shown in Figure 1.
DSGCN mainly consists of GCN and two layers of DSTM, which can handle complex
time-dependent and spatial dependencies. First, the input data are processed by GCN to
capture the spatial features of traffic data. Second, the two-layer DSTM can capture the
temporal features of traffic data and can have better adaptability with time changes. At
each time slice, the DSTM can analyze the temporal correlation of traffic congestion more
accurately. Finally, the fully connected layer is used to calculate the predicted values.
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3.1. Data Definition
3.1.1. Problem Definition

For the task of traffic congestion prediction in complex traffic networks. First, this
study divides the traffic network into independent grids, abstracts the centroids of the
grids into nodes, and uses the adjacency matrix to represent the spatial correlation between
the nodes. Second, this article uses the optimized graph convolutional neural network to
capture the spatial features of the traffic network. Finally, a two-layer DSTM is used to
capture the temporal characteristics of the traffic network and achieve the prediction of
traffic congestion. The above process can be abstracted as Equation (1). Where X denotes
historical traffic congestion data, A denotes the grid matrix of area division, and Y denotes
the prediction result of future traffic congestion. F denotes the modeling process of the
GSDCN model.

Y = F(X, A) (1)

3.1.2. Grid Division Method

It is not suitable for global traffic congestion prediction when data are collected only
from highways, streets, etc. Therefore, in this article, the traffic network is divided into
grids, and each grid represents an independent area. As shown in Figure 2a. In this article,
the center points of the grid are abstracted as nodes. As shown in Figure 2b.

In this paper, the traffic data will be transformed into graphically structured data
based on the distance of nodes. G = (V, E, A), where V denotes the set of all nodes and E
is the set of distances between nodes. A ∈ RN is the adjacency matrix constructed by
calculating the distance between two nodes based on longitude and latitude. The adjacency
matrix can reflect the spatial-based regional relationship information to a certain extent;
the smaller the distance, the stronger the correlation between two points. The process of
calculating the distance between two nodes by latitude and longitude is demonstrated in
Equation (2).

d = R ∗ arcos[cos(Y1) ∗ cos(Y2) ∗ cos(X1 − X2) + sin(Y1) ∗ sin(Y2)] (2)

where d denotes the distance between two nodes. R is the radius of the earth. Y1 is the
latitude of node 1, Y2 is the latitude of node 2, X1 is the longitude of node 1, and X2 is the
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longitude of node 2. The distances between all the nodes form the adjacency matrix A. This
is shown in Figure 3.
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Figure 2. Grid division method. (a) The traffic network is divided into grids, and each grid represents
an independent area. (b) The center points of the grid are abstracted as nodes. The darker the color,
the more severe the congestion.

Information 2023, 14, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 2. Grid division method. (a) The traffic network is divided into grids, and each grid repre-

sents an independent area. (b) The center points of the grid are abstracted as nodes. The darker the 

color, the more severe the congestion. 

In this paper, the traffic data will be transformed into graphically structured data 

based on the distance of nodes. G = (V, E, A), where V denotes the set of all nodes and E 

is the set of distances between nodes. A ∈ 𝑅𝑁 is the adjacency matrix constructed by cal-

culating the distance between two nodes based on longitude and latitude. The adjacency 

matrix can reflect the spatial-based regional relationship information to a certain extent; 

the smaller the distance, the stronger the correlation between two points. The process of 

calculating the distance between two nodes by latitude and longitude is demonstrated in 

Equation (2). 

𝑑 = 𝑅 ∗ 𝑎𝑟𝑐𝑜𝑠[𝑐𝑜𝑠(𝑌1) ∗ 𝑐𝑜𝑠(𝑌2) ∗ 𝑐𝑜𝑠(𝑋1 − 𝑋2) + 𝑠𝑖𝑛(𝑌1) ∗ 𝑠𝑖𝑛(𝑌2)] (2) 

where 𝑑 denotes the distance between two nodes. 𝑅 is the radius of the earth. 𝑌1 is the 

latitude of node 1, 𝑌2 is the latitude of node 2, 𝑋1 is the longitude of node 1, and 𝑋2 is 

the longitude of node 2. The distances between all the nodes form the adjacency matrix 

A. This is shown in Figure 3. 

 

Figure 3. Construction of adjacency matrix based on node distance. 

  

Figure 3. Construction of adjacency matrix based on node distance.

3.2. Input and Output Definitions

As shown in Figure 4. In the prediction traffic congestion problem, the future traffic
congestion data depends on the traffic congestion data in the past time slices. Suppose that
predicting the number of traffic congestions at time step tp and all nodes beyond, the input
data are defined in this paper as shown in Equation (3). The output data are defined as
shown in Equation (4). Where S is the size of the time step and N is the total number of
all nodes.

XIn =
{

Xtp−s, Xtp−s+1, . . . , Xtp−1

}
εRN×S (3)

Yout =
{

Ytp , Ytp+1, . . . , Ytp+s−1

}
εRN×S (4)
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3.3. Spatial Feature Extraction

In this study, we capture features for the spatial features of the data after grid division,
and we capture spatial features using a graph convolutional neural network after grid
division, and this article optimizes the graph convolutional neural network. In the spectral
domain graph convolutional neural method, the graph structure is represented by its
corresponding Laplacian matrix. First, in this paper, the grid matrix is transformed into
a Laplace matrix as shown in Equation (5). Where A is the adjacency matrix, the degree
matrix D ∈ RN×N is the diagonal matrix, and In is the unit matrix. In addition, using
the real symmetric and semi-positive properties of the regularized Laplacian matrix, it is
decomposed into as shown in Equation (6).

L = In − D−
1
2 AD−

1
2 (5)

L = UΛUT (6)

where Λ = diag([λ0, . . . , λN−1]) denotes the diagonal moment and U is the Fourier basis.
In graph convolution, the signal of the graph is a feature vector consisting of various nodes,
which can be represented as X ∈ RN ,where Xi denotes the i-th node. The graph convolution
operation is shown in Equation (7). f (x) denotes the Fourier transform and g ∈ RN

denotes the graph convolution kernel, which is the basic principle of the spectral domain
graph convolution.

X ∗ Gg = f−1( f (X)� f (g)) = U
(

UTX�UT g
)

(7)

When the number of nodes in the traffic network is large, the time complexity of the
Laplace matrix eigen decomposition is large, leading to a decrease in the training effect of
the model. Therefore, in this article, Chebyshev polynomials are used to approximate this
problem effectively, as shown in Equations (8) and (9).

L(x) =
k−1

∑
k=0

θkTk

(
L̃
)

x (8)

L̃ =
2

λmax
L− In (9)
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where Θ is a vector of polynomial coefficients. λmax denotes the maximum eigenvalue
of the Laplace matrix The recursive definition of the Chebyshev polynomial is shown in
Equation (10). where T0(x) = 1, T1(x) = x. In this article, the kernel is approximated as a
truncated expansion of order k − 1 using the Chebyshev polynomial Tk(x).

Tk(x) = 2× Tk−1(x)− Tk−2(x) (10)

3.4. Time Feature Extraction

To capture the long-term and short-term time dependence of traffic data, a DSTM
model is proposed in this article. the DSTM model can capture the temporal features,
while the model can avoid the problem of gradient explosion during the training process.
First, three stages are obtained by splicing training using the current input Xt of the DSTM
and ht−1 passed down from the previous state. The long-term feature capture phase, the
short-term feature capture phase, and the long-term and short-term feature fusion phase
are used, respectively. The long-term feature capture phase is mainly used to update
the long-term temporal features of the traffic data. The short-term feature capture phase
updates the short-term temporal features for the input Xt. The long-term and short-term
feature fusion phase updates the long-term and short-term temporal features of the input
traffic data.

lt = σ
(

W f ·[ht−1, Xt] + b f

)
(11)

mt = σ(Wi·[ht−1, Xt] + bi) (12)

st = σ(Wo·[ht−1, Xt] + bo) (13)

C̃t = σ(Wc·[ht−1, Xt] + bc) (14)

As shown in Equations (11)–(14), the information lt obtained from the long-term
feature capture phase, the information mt obtained from the long-term and short-term
feature fusion phase, and the information st obtained from the short-term feature capture
phase are all converted to values between 0 and 1 by a sigmoid activation function after
multiplying the splicing vector by the weight matrix as a kind of feature capture phase. In
addition, C̃t is the result will be converted to a value between −1 and 1 by a tanh activation
function. The formula for calculating the long and short memories of DSTM is shown in
Equations (15) and (16).

Ct = ft ∗ Ct−1 ∗ (1− it) + C̃t (15)

ht = (1− ot) ∗ tanh(Ct) (16)

As shown in Figure 5, the DSTM cell structure accepts two inputs, namely the output
value ht−1 at the previous moment and the input value Xt at the current moment, from
which the two parameters enter the long-term feature capture phase and update the long-
term temporal features of the traffic data to obtain the information lt. Then we enter the
long and short term feature fusion phase to obtain the information mt that determines the
information to be updated and the cell state C̃t at the current moment. Then enter the
short-term feature capture stage to update the short-term temporal features of the traffic
data to the information st. Finally, the output values from these three stages are combined
to obtain the long-time Ct short-time ht information, and finally the storage operation and
the input to the next neuron.
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4. Experimental Section
4.1. Data Preparation

The dataset selected for this paper is a traffic dataset on California highways in the
United States. The dataset is open to the public for download. PeMS is an Archived Data
User Service (ADUS) that provides more than a decade of historical analysis data. The
system contains more than 44,681 detectors that cover the freeway system in all major
cities in California, reporting data every 30 s, and once the compilation of a 30-s data
set is complete, without any gaps, the data are aggregated into 5-min increments. We
randomly select 141 detectors among multiple detectors to be abstracted as nodes of the
traffic network. For these 141 nodes, 5 min of traffic data from 1 April 2021 to 25 April 2021
are selected as time slices for node data collection, for a total of 7200 time slices. The dataset
is normalized by zero mean and 80% of the dataset is set as the training set and 20% of the
dataset is set as the validation set.

4.2. Experimental Setup

All experiments were implemented on Windows 10 (CPU: Intel(R) Xeon(R) W-2133
CPU@3.60 GHz; GPU: NVIDIA GeForce RTX 2080 Ti) using Python and Pytorch 1.9.0.
During the training period, the batch size is set to 32, the learning rate is 0.001, and the
decay parameter is set to 0.9. We use the Adam optimizer for model optimization with a
convolution kernel of size 3 × 3. We repeated the experiment five times and reported the
average values for different runs to obtain the optimal parameters.

In this article, we choose the mean absolute error MAE, root mean square error RMSE
and mean absolute percentage error MAPE as the evaluation metrics of the experimental
results. In this paper, five baseline models are set up to validate the performance of the
models. All models are trained and evaluated on the same dataset. The experimental
results are the average of multiple training and evaluation results, and the model structure
of each baseline in the experiment is as follows.

• CNN: One convolutional layer can describe the short distance dependence of
spatial regions well, while two convolutional layers can further describe the long-
distance dependence.

• LSTM: A special type of RNN model. By adding input gates, forgetting gates, and
output gates to control the transmission state of data, long-time memory is preserved,
and unimportant information is forgotten compared with RNN.

• ConvLSTM: With the time-series modeling function of LSTM, it can also capture local
features by CNN, so it can learn the spatio-temporal features of spatio-temporal data.

• T-GCN: This model combines a GCN and a gated recursive unit GRU. the GCN is
used to learn complex topologies to capture spatial dependencies and the GRU is used
to learn dynamic changes in traffic data to capture temporal features.
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• STGCN: STGCN consists of two temporal graph convolution blocks (ST-Conv Block)
and one output fully connected layer (Output Layer). The spatio-temporal convo-
lution block consists of two temporal gated convolutions and a spatial graph con-
volution. The spatio-temporal dependence is modeled by graph convolution and
gated convolution.

4.3. Quantitative Experimental Analysis

In this experiment, we perform initial screening and denoizing of the traffic flow data
and select data with true values that do not have zero values. We compared the prediction
results of the DSGCN model with those of the five baseline models. Tables 1–3 show the
prediction results of the DSGCN model and the other baseline method models at 15, 30,
and 45 min of the data set, respectively. From Tables 1–3, it can be seen that CNN and
LSTM are less effective in predicting highly discrete traffic flow data, with mean values
of MAE up to 44.57 and 35.76, respectively, mean values of RMSE up to 55.47 and 49.82,
respectively, and mean values of MAPE up to 37.18% and 28.24%, respectively. CNN and
LSTM are the basic deep learning models, CNN is commonly used for spatial sequence
modeling and LSTM is commonly used for time-series modeling. However, if they are
used to model complex traffic data with many influencing factors, just modeling spatial
correlation or temporal correlation cannot fit the data, so the prediction results of these
two models are the worst among all models. Compared with the CNN model, the MAE of
ConvLSTM was reduced by 53.57% on average and the RMSE was reduced by 49.08% on
average. Compared with the evaluation parameters of LSTM, the MAE of ConvLSTM is
reduced by 42.14% on average and the RMSE is reduced by 43.31% on average. Although
the prediction effect of ConvLSTM was partially improved, the spatial dependence of the
acquired data and its irregularity prevented the CNN from effectively extracting spatial
features, and thus the prediction results were not satisfactory.

Table 1. Results of the evaluation of the DSGCN model and other baseline method models in the
dataset at 15 min.

Model MAE RMSE MAPE

CNN 44.35 55.24 36.89%
LSTM 36.44 50.23 28.56%

ConvLSTM 20.26 27.85 16.93%
T-GCN 17.53 26.97 13.87%
STGCN 11.81 19.87 12.49%

DSGCN 9.98 16.63 9.35%

Table 2. Results of the evaluation of the DSGCN model and other baseline method models in the
dataset at 30 min.

Model MAE RMSE MAPE

CNN 44.52 55.49 37.24%
LSTM 35.86 49.91 28.25%

ConvLSTM 20.78 28.34 17.19%
T-GCN 18.26 27.13 14.13%
STGCN 12.16 20.03 12.67%

DSGCN 11.39 17.39 10.11%
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Table 3. Results of the evaluation of the DSGCN model and other baseline method models in the
dataset at 45 min.

Model MAE RMSE MAPE

CNN 44.84 55.68 37.41%
LSTM 34.98 49.32 27.91%

ConvLSTM 21.03 28.53 17.63%
T-GCN 19.23 27.65 14.30%
STGCN 13.08 20.25 13.12%

DSGCN 10.76 17.16 9.82%

T-GCN adds GRU to the GCN to extract time-series features. Compared with the
ConvLSTM model, the MAE of T-GCN decreased by 11.35% on average and the RMSE
decreased by 3.51% on average. STGCN uses a spatio-temporal convolutional block con-
sisting of two layers of sequential network and one layer of GCN, which can extract
spatio-temporal correlations in different dimensions, so the feature extraction is more
effective. As a result, the MAE decreased by an average of 32.66% and the RMSE decreased
by an average of 26.42% compared to the T-GCN. Its prediction performance is the best
among the five baseline models. DSGCN fully considers the spatio-temporal correlation
between traffic speed and the factors influencing the geographic structure of the road.
The GCN is used to obtain spatial features and the two-layer DSTM to obtain temporal
features. From Tables 1–3, it can be seen that DSGCN has the best prediction performance
with an average improvement of 13.27%, 14.9%, and 38.07% in MAE, RMSE, and MAPE
metrics, respectively, compared to STGCN. The experimental results fully demonstrate the
effectiveness of the model structure design.

4.4. Qualitative Experimental Analysis

In this experiment, we evaluate the state of traffic congestion by normalizing the traffic
flow data so that the data are limited to the range (0, 1). The line graphs represent the
degree of fit of the DSGCN and baseline models to the real data, and the effectiveness of the
models in predicting traffic congestion is reflected according to the degree of fit. The scatter
plot compares the difference between DSGCN and baseline models with the real data to
predict congestion, where the diagonal line of the scatter plot indicates the state in which
the predicted data are consistent with the real data, as shown in Figures 6 and 7. From (a),
we can see that the prediction results of LSTM and CNN show a huge gap with the real
data, and for intervals with continuous fluctuations, LSTM and CNN show underfitting
problems. CNN can describe the short distance dependence of spatial regions well, but
cannot capture the temporal features of the data. While LSTM can be effectively used
to train the time-series of data to obtain the temporal features of the data, they lack the
design phase of spatial structure to obtain the spatial features of the data. From (b), we can
see that the prediction results of CNN and LSTM models cannot fully fit the real traffic
congestion data.

Compared with CNN and LSTM models, the essence of ConvLSTM is the same as
LSTM, using the output of the previous layer as the input of the next layer. The difference
lies in the addition of convolutional operations to obtain the temporal features of the data
with the time-series modeling function of LSTM and capture the spatial local features by
CNN. As shown in Figure 8, ConvLSTM can initially fit the trend of congestion data better,
but the fit becomes worse over time.
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The prediction results of DSGCN compared with T-GCN and STGCN are shown in
Figures 9 and 10, respectively. the T-GCN model uses GCN to obtain spatially correlated
features between nodes in a graph structure. the T-GCN uses the gated recursive unit
GRU to learn the dynamic changes in traffic data to capture the temporal dependencies.
Although GCN can achieve feature extraction of irregular spatial structure by spectral
domain transformation, GCN is not sufficient to extract temporal features. Therefore T-
GCN joins GRU to extract time-series features. As shown in Figure 9, T-GCN can show
a good degree of dispersion at small-scale aggregation points, but it is a poor fit for
traffic congestion data with peaks. The degree of fit of the scatter plot is not satisfactory.
STGCN includes a time-domain gating transformation module based on a one-dimensional
convolution and gating mechanism and a GCN-based space-domain graph transformation
module. Spatio-temporal correlations in different dimensions can be extracted, so feature
extraction is more effective. From Figure 10, we can see that the prediction results of
STGCN show a better advantage in each interval, but it also only predicts the general
trend of traffic congestion changes, and the fitting of some details is not accurate. DSGCN
can accurately predict congestion data with high dispersion by considering the temporal
and spatial characteristics of traffic congestion data. The comparison of the prediction
results in Figures 6–10 shows that the model in this paper fits the traffic congestion data
more accurately.
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5. Conclusions

In this paper, we propose a traffic congestion prediction model DSGCN based on
spatio-temporal feature learning. The proposed model takes into account the independent
regions of the city, and the traffic network is divided into grids, each grid represents an
independent region. The DSGCN takes into account both temporal and spatial character-
istics of the traffic network. We use an optimized graph convolutional neural network to
capture the spatial features of the traffic network and a two-layer DSTM to capture the
temporal features of the traffic network. Experimental evaluation results show that our
model enhances the spatial correlation features of traffic data while ensuring adequate com-
putation of temporal dependence. Meanwhile, our proposed DSGCN model outperforms
the existing baseline in prediction. In the future, we will consider other types of traffic
data and use all these data to generate more types of traffic congestion forecasts. Thus, the
generalization of the prediction model is enhanced and the applicability of the algorithm is
further improved.

Author Contributions: Conceptualization, Y.Q.; methodology, Y.Q.; software, Y.Q.; validation, Y.Q.
and Z.C.; formal analysis, Y.Q.; investigation, Y.Q.; resources, Y.Q.; data curation, Y.Q.; writing—original
draft preparation, Y.Q.; writing—review and editing, Y.Q.; visualization, Y.Q.; supervision, Z.C.;
project administration, Z.C.; funding acquisition, Z.C. All authors have read and agreed to the
published version of the manuscript.
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