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Abstract: In recent years, there has been rapid development in computer technology, leading to
an increasing number of medical systems utilizing electronic medical records (EMRs) to store their
clinical data. Because EMRs are very private, healthcare institutions usually encrypt these data before
transferring them to cloud servers. A technique known as searchable encryption (SE) can be used by
healthcare institutions to encrypt EMR data. This technique enables searching within the encrypted
data without the need for decryption. However, most existing SE schemes only support keyword or
range searches, which are highly inadequate for EMR data as they contain both textual and digital
content. To address this issue, we have developed a novel searchable symmetric encryption scheme
called SSE-RK, which is specifically designed to support both range and keyword searches, and it
is easily applicable to EMR data. We accomplish this by creating a conversion technique that turns
keywords and ranges into vectors. These vectors are then used to construct index tree building and
search algorithms that enable simultaneous range and keyword searches. We encrypt the index tree
using a secure K-Nearest Neighbor technique, which results in an effective SSE-RK approach with a
search complexity that is quicker than a linear approach. Theoretical and experimental study further
demonstrates that our proposed scheme surpasses previous similar schemes in terms of efficiency.
Formal security analysis demonstrates that SSE-RK protects privacy for both data and queries during
the search process. Consequently, it holds significant potential for a wide range of applications in
EMR data. Overall, our SSE-RK scheme, which offers improved functionality and efficiency while
protecting the privacy of EMR data, generally solves the shortcomings of the current SE schemes.

Keywords: searchable symmetric encryption; electronic medical record; keyword search; range
search; search over encrypted data

1. Introduction

Electronic medical records use electronic devices to preserve and manage digital
clinical medical records, thus replacing traditional handwritten ones. Over the past few
years, with the continued development of information technology, an increasing number
of medical systems are using EMRs as routine storage means. The large number of EMRs
will entail large management costs for healthcare organizations. To solve this issue, EMRs
can be outsourced to cloud computing service systems that have powerful storage and
computing capabilities. Since medical data are highly private, medical institutions usually
need to encrypt EMR data before uploading them to cloud servers to protect patient
privacy. However, this protection method brings great inconvenience to the EMR retrieval
operation. A simple way is to download all EMR data stored on the cloud platform to
the user side and then retrieve them locally. However, this approach will cause great
transmission consumption. To improve search efficiency, we can use searchable encryption
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(SE) technology to encrypt these documents. This encryption technology can retrieve
encrypted EMRs without decrypting them, and it can return the target documents to the
querying user while protecting data security.

Motivation. SE allows data users to retrieve encrypted documents that are stored on
cloud servers by utilizing an encrypted token without decrypting the documents. Thus far,
most SE schemes support either multi-keywords search [1–3] or range search [4–6]. But, in
a medical system, data users will perform a query containing both digital and textual fields.
For an electronic medical record [7], it may contain both digital values and keywords. As
shown in Figure 1, age and ID are numeric fields, while gender, disease, and department
are keyword fields. Moreover, the user’s query also contains both range and keywords
content, e.g., age ∈ [18, 45] AND disease ∈ (diabetes, enteritis). If an SE scheme supporting
only keyword search or range search is used to implement searching over encrypted EMR
data, two EMR systems will be maintained: one that contains only text fields, and the other
that contains only numeric fields. This not only increases the time and space complexities
of the search process, but also reveals more intermediate information. Considering such an
actual demand, it is necessary to build a SE scheme that can support range and keyword
searches simultaneously.

Figure 1. An example of an electronic medical record.

Recently, two SE schemes [8,9] were proposed to satisfy the above practical need. In [8],
Miao et al. proposed a conversion method that can transform digital points and keywords
in each document to a vector representation. Using a secure K-Nearest Neighbor (KNN)
algorithm to protect vector confidentiality, they presented an encryption scheme that can
support range and keyword search simultaneously. Later, Wang et al. presented a SE
scheme supporting spatial keyword queries. Their solution can support arbitrary geometry,
as well as keyword, queries, which can be applied to realize both textual keywords and
digital range queries. In their scheme, by utilizing the techniques of gray code and bloom
filter, files and queries can be transformed into a series of “0-1-*” strings. For privacy
preserving purposes, the obtained strings are encrypted by applying the symmetric-key
hidden vector encryption (SHVE) scheme [10].

However, the above two schemes still have two issues that are causes for concern.
First, only integer range query is supported in these two schemes. The reason why these
two schemes cannot support decimal range searches stems from the specificity of their
core methods. The scheme given in [8] uses the modulo operation to support multi-
dimensional range queries. Since the modulo operation is an integer operation, this scheme
can only support integer range queries. The scheme presented in [9] adopts the “gray
code” encoding method to convert ranges into “0-1” bit strings. This encoding method only
supports integer ranges as a legal input. However, in an electronic medical record, the range
query containing decimals is very common, such as white blood cell count, blood glucose
level, tumor size, etc. To overcome this shortcoming, two range encoding methods have
to be given to implement range search, which can support range searches with decimals.
Second, the efficiency of these two schemes could be still improved. More precisely, the
scheme proposed in [8] adopts an index structure with a linear search time complexity,
while the scheme in [9] will enumerate many gray codes to perform a range search. To
address this issue, we take advantage of the tree-based index structure to construct an
efficient SSE scheme that supports range and keyword queries simultaneously.
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Contributions. In the interest of clarity, we list the major contributions of this article.

(1) We propose a keyword conversion method that can transform a collection of keywords
into a vector. Furthermore, based on the characteristics of the range query, we give
two ways through which to convert a range query into a vector. These vectors can be
utilized to perform both range and keyword searches efficiently.

(2) We design an index tree construction algorithm to speed up the query process. The
internal node of the index tree contains only one range vector, and the leaf node
contains a small number of vectors for both points and keywords. Based on the index
tree, through an efficient prune algorithm, the query time of the proposed scheme is
sublinear to the number of documents.

(3) Through using the secure KNN scheme [11] to encrypt the index tree and query, we
propose an SSE scheme that can support both range and keyword queries (SSE-RK),
which can be applied in searching electronic medical records efficiently.

To show the security of the proposed scheme, we will give a detailed security analysis
of SSE-RK. In addition, we conducted quantitative experiments on SSE-RK on a medical
dataset. The experimental results show that the proposed scheme can effectively perform
ciphertext retrieval on EMR data.

Related Work. According to the characteristics of its secret key, searchable encryption
(SE) schemes are usually divided into symmetrical and asymmetrical approaches.

For searchable symmetric encryption (SSE), the data uploader and the authorized
query user hold the same key. Song et al. [12] designed the first SSE scheme, which
only supports single keyword queries. Goh then developed a more formal definition of
security for SSE, and they utilized Bloom Filter technology to build an SSE scheme [13]
that supports multi-keyword queries. Subsequently, many works [14–17] have focused
on the efficiency improvement of SSE schemes. However, these schemes will return all
the matched documents without sorting, which requires a great deal of computing and
communication costs. To address this problem, two SSE schemes that support ranked
search were proposed in [18,19]. A ranked search scheme will return the k most relevant
documents based on a given similarity evaluation criterion. As a result, the solution will
significantly reduce communication and storage consumption. In response to the problem
that the scheme in [18,19] only supports single-keyword queries, Cao et al. proposed
a ranked search scheme that supports multi-keyword queries [20]. However, the query
efficiency of this scheme is linearly related to the number of documents due to its using a
forward index. To improve the query efficiency, tree index-based schemes were proposed
in [21,22]. The search time complexity of these schemes is sublinear to the number of
documents. Recently, Liu et al. [23] presented a scheme for protecting spatial data privacy
and user query privacy in location-based service providers (LBSP). The scheme uses Hilbert
curves and an SSE algorithm as the basic building blocks to achieve accurate range queries.
By utilizing a special inverted index structure and an oblivious memory access algorithm,
an SSE scheme that supports single-keyword range queries with efficient performance
was proposed in [24]. Zheng et al. [25] proposed an efficient and privacy-preserving exact
set similarity search scheme under a single cloud server using symmetric key predicate
encryption and B+-tree indexing. By combining attribute-based encryption (ABE) with
fog computing architecture, a secure and efficient fine-grained searchable data sharing
and management scheme in IoT-based smart healthcare systems was introduced in [26].
This scheme can achieve secure and efficient fine-grained searchable data sharing and
management. In addition, there are many works devoted to constructing SSE schemes
with more expressive queries, such as semantic search [27,28] and fuzzy search [29,30],
which greatly improve the flexibility of ciphertext retrieval schemes. Considering that
the attributes of a document will contain both digital and keyword content, two SSE
schemes [8,9] that support range and keyword queries simultaneously were proposed to
meet this practical requirement. But, the efficiency and functionality of these schemes can
be improved. Thus, we designed a scheme to solve these problems in this paper.
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Searchable asymmetric encryption, also known as searchable public key encryption
(SPE), contains a pair of secret keys in which the public key is used to encrypt the data
and the private key is used for privacy queries. Boneh et al. first proposed the definition
of SPE, and they created an SPE scheme that supports single keyword retrieval [31]. To
support conjunctive keyword searches, Park et al. proposed a public key encryption with
conjunctive keyword search (PECK) scheme [32]. To support disjunctive keyword searches,
Katz et al. proposed a predicate encryption scheme [33]. To support both conjunctive and
disjunctive keyword retrieval, Zhang and Lu proposed a public key encryption with a
conjunctive and disjunctive keyword search (PECDK) scheme [34], which is based on the
inner product encryption scheme [35]. To increase the security of SPE, an SPE that resists
keyword guessing attacks [36] and an SPE with access control capability [37] have also
received more attention.

Organization. The structure of this paper is as follows. The formal definition of
the system and security model will be given in Section 2, and the design goals of the
proposed scheme are introduced. Various conversion methods, index generation, and
retrieval algorithms will be given in Section 3. Section 4 will give the concrete scheme and
the security analysis of the scheme. Theoretical and experimental analysis will be given in
Section 5. Section 6 concludes the paper.

2. Problem Formulation

First, we define the system model of the SSE-RK scheme. Then, the threat model faced
by the SSE-RK scheme is presented. Finally, we summarize the design goals of the SSE-RK
scheme. For the sake of clarity, we summarize the notation of this paper in Table 1.

Table 1. Notation descriptions in the SSE-RK scheme.

F A set of documents { f1, f2, . . . , fd}.

d The number of documents in F

DIC = {dic1, dic2, . . . , dicN} The dictionary of a corpus.

Wi = {wi1, wi2, . . . , wi|Wi |} The keyword set for the document fi, where i ∈ [1, d].

|Wi| The number of keywords in Wi, and i ∈ [1, N].

wij The j-th keywords in Wi, and i ∈ [1, N], j ∈ [1, |Wi|].
−→
Wi The vector representation for Wi.

pi = {xi1, xi2, . . . , xim} The multi-dimension point for a document fi, where i ∈ [1, d].

m The dimension of a multi-dimension point.

u A node in the index tree.

Iu The encrypted node u in the index.

IT The encrypted index tree of F.

uP The vector set for a multi-dimension point in a leaf node u.
−→uW The vector representation for a keyword set in a leaf node u.
−→uR The vector representation for a range in an internal node u.

Q = (QR, QW) A query tuple.

QR A query range.

QW A query keyword set.
−→
QR The vector representation used to search internal nodes.

QP The vector set for search leaf nodes.
−→
QW The vector representation for making keyword search.

TQ The trapdoor of the query Q.
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2.1. System Model

As shown in Figure 2, similar with most SSE schemes [12–16], the system model
of SSE-KR consists of three different roles: data owner (DO), data user (DU), and cloud
server (CS). For SSE-RK, four main protocols are included: key generation, index building,
trapdoor generation, and secure search. Specifically, the responsibility of the DO is to
encrypt all documents, build secure indexes, and send them to a CS. The responsibility of
the DU is to issue queries, i.e., generate secure trapdoors, and to send them to a CS. The CS
is responsible for performing the secure search and returning the query results to the DU.

Cloud Server
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rapdoor

Secret Key
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Figure 2. System model of SSE-RK.

To clarify the system model, the specific duties for each role are formally described as
follows.

(1) Data owner (DO). Before outsourcing a document set F = { f1, f2, . . . , fd} to a CS,
the DO first generates the secret key, then encrypts F using traditional symmetric
encryption algorithms (e.g., AES, etc.), and then constructs a secure index using the
generated key. Finally, they upload the encrypted data and the secure index to a CS
for storage. When a legitimate DU requests a query, the DO shares the secret key with
the legitimate DU through authorization.

(2) Data user (DU). When an authorized DU wants to launch a query Q, DU generates a
trapdoor using the secret key shared by DO. After this, the DU sends the trapdoor to
a CS. Once the DU receives the encrypted documents back from a CS, they decrypt
these documents using the secret key to recover the original plaintext.

(3) Cloud server (CS). The main function of a CS is to store files and perform retrieval.
A CS stores the encrypted data and secure index uploaded by the DO. When an
authorized DU uploads a trapdoor without any decryption, a CS performs a matching
query on the secure index and the trapdoor, as well as returns the encrypted result of
the query to the DU.

2.2. Threat Model

Through this paper, like many SE schemes [19–21], we assume that the DO and
DU are credible and that the CS is “honest-but-curious”. This means that the CS executes
algorithms of SSE-RK honestly and correctly, but it will curiously infer and analyze obtained
data to learn extra private information. According to the above assumption, the two threat
models introduced in [20] were considered in the proposed scheme.
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- Known ciphertext model. Only contains information of ciphertexts, secure indexes,
and trapdoors that can be obtained by a CS, which means that only ciphertext-only
attacks can be performed in this model.

- Known background model. A CS can obtain more background knowledge, e.g., term
frequency (TF)-inverse document frequency (IDF), than the aforementioned model.
This information is commonly acquired from documents by statistical means. The CS
can conduct the statistical attack by utilizing such information.

2.3. Design Goals

Recall that our goal is to create a secure, efficient SSE scheme that supports both
range and keyword searches. For the sake of clarity, we present the explicit design goals
as follows.

(1) Functionality. The document fi of SSE-RK contains a point set pi = {xi1, xi2, . . . , xim}
and a keyword set Wi = {wi1, wi2, . . . , wi|Wi |}. The query Q of SSE-RK can be a
hybrid of a range set QR = {[a1, b1], [a2, b2], . . . , [am, bm]} and a keyword query QW =
{q1, q2, . . . , qs}. The search result of the SSE-RK scheme can be ranked, thus meaning
that SSE-RK only returns documents whose point xij is in the query range [aj, bj] and
whose keyword set Wi is strongly correlated with the query keywords QW as the
search result, where i ∈ [1, d] and j ∈ [1, s].

(2) Efficiency. The query time of the SSE-RK is sublinear to the number of documents.
Specifically, the proposed scheme has better search efficiency than other similar
schemes without sacrificing much index building efficiency.

(3) Privacy preserving. Similar to previous schemes [19–21], the SSE-RK scheme dis-
allows CSs to obtain extra private information. This information can be inferred
from ciphertexts, secure indexes, and trapdoors. More explicitly, we list the privacy
requirement of SSE-RK as follows.

- Index and trapdoor privacy. SSE-RK prevents CSs from inferring plaintext informa-
tion that is hidden in indexes and trapdoors. That is to say, information including
points, keywords, and their corresponding vectors cannot be disclosed to CSs.

- Trapdoor unlinkability. In real-world scenarios, CSs sometimes receive the same
query request. If a CS can easily capture two trapdoors that are generated from a
single query request, an adversary can launch statistical attacks, e.g., an increase
in the frequency of a certain query may indicate that the user tends to retrieve
popular content, thus compromising the privacy of the query request.

- Keyword privacy. CSs cannot utilize background knowledge and statistics to
infer whether a trapdoor contains a particular keyword. When CSd can infer
the frequency of keyword occurrences from the trapdoor, it can infer the main
content of the ciphertext data.

3. Algorithms for Index Building and Searching

We first introduce some of the useful conversion methods used in the proposed scheme,
which includes a keyword conversion approach and two range conversion methods. Then,
based on these conversion methods, we present a method for building an index tree. This
method consists of three steps: the construction of leaf nodes based on all documents; the
construction of internal nodes based on all leaf nodes; and the use of a recursive algorithm
that builds an index tree based on all nodes. Finally, the algorithm for searching the index
tree is presented. A detailed description of these methods is proposed in the following
sub-sections.

3.1. Keyword Conversion Method

In the proposed scheme, both the document and query are converted into vectors.
When a query is executed, by calculating the similarity between vectors, the documents
with the highest scores are returned as the search result. In our scheme, we take advantage
of a keyword conversion method based on a term weighting formula called TF−IDF to
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implement rank search [20]. Through adopting the TF−IDF formula, a document and a
query are converted into a TF-vector and an IDF-vector, respectively. Similar to the method
introduced in [28,38], we introduce the keyword conversion method adopted in SSE-RK
as follows.

(1) Creating a dictionary DIC = {dic1, dic2, . . . , dicN} by extracting keywords in the
corpus, where dict is a keyword and t ∈ [1, N].

(2) Given a keyword set Wi = {wi1, wi2, . . . , wi|Wi |}, this approach first creates a zero

vector
−→
Wi = {xi1, xi2, . . . , xiN}. Then, it sets xit = TFwij according to the Equation (1)

if wij = dict, where t ∈ [1, N], i ∈ [1, d] and j ∈ [1, |Wi|].

TFwij =
1 + ln(nwij)√

∑wij∈Wi
(1 + ln(nwij))

2
(1)

In Equation (1), nwij is the number of times wij appears in the document fi.
(3) Given a keyword set QW = {q1, q2, . . . , qs}, this approach first initializes a zero vector

−→
QW = {v1, v2, . . . , vN}. Then, it sets vt = IDFqj according to the Equation (2) if
qj = dict, where t ∈ [1, N] and j ∈ [1, s].

IDFqj = ln(1 +
N
nqj

) (2)

The variable nqj in Equation (2) represents the number of documents that contains the
keyword qj.

Given
−→
Wi and

−→
QW , we can utilize Equation (3) to calculate the similarity between fi

and QW .
Score( fi, QW) =

−→
Wi ·
−→
QW (3)

We can obtain a list of documents that are most relevant to the query by taking
advantage of the similarity score between each document and the query.

3.2. Range Conversion Methods

For range queries, there are two frequently used operations. The first is to check
whether a value x is in the range of [a, b]; the last is to judge whether a range [x, y] intersects
with a range [a, b]. In this subsection, to adopt the vector space model mentioned previously,
we present two range conversion methods to vectorize these two operations as above.

Method M1. Given a value x and a range [a, b], we can construct Equation (4) to check
whether x ∈ [a, b].

f (x) = (b− x)(x− a)

= −x2 + (b + a)x− ab
(4)

Based on the root and coefficient of f (x), two vectors, −→x = {x2, x, 1} and
−→
ab = {−1, a +

b,−ab}, were created, where −→x and
−→
ab are for the value x and the range [a, b], respectively.

It is easy to verify that x ∈ [a, b] if −→x ·
−→
ab >= 0. For simplicity, we denoted this conversion

method as M1. M1 is used to convert the operation of whether a point belongs to a range
into a vector inner product operation. When constructing the leaf nodes of an index tree,
we use M1 to convert the multi-dimensional point of a document into a set of vectors.

Method M2. Given two ranges, [a, b] and [x, y], if [a, b] intersects with [x, y], the mid
value m of [a, b] must be in the range [x− c, y + c], where m = b+a

2 and c = b−a
2 . According

to this property, Equation (5) was constructed.
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f (x, y) = (y + c−m)(m− x + c)

= (y− a)(b− x)

= −ab + ax + by− xy

(5)

Based on Equation (5), the two vectors of [x, y] and [a, b] are −→xy = {1, x, y, xy} and
−→
ab = {−ab, a, b,−1}, respectively. It can be verified that [a, b] intersects with [x, y] if
−→xy ·
−→
ab >= 0. For simplicity, we called this conversion method M2. M2 was employed to

convert the operation of whether two ranges intersect into a vector inner product opera-
tion. When constructing the internal nodes of an index tree, we used M2 to convert the
multi-dimensional range of an internal node into a vector.

3.3. Algorithm for Creating the Leaf Node

Since the index tree is constructed in a bottom-up manner, we built the leaf nodes first.
In our scheme, each document fi contains one multi-dimension point pi = {xi1, xi2, . . . , xim}
and a keyword set Wi. The algorithm for creating leaf nodes is given in Algorithm 1. The
set of leaf nodes produced by Algorithm 1 will be used as the input to the index tree
building algorithm.

The formal definition of any node u on the index tree is u =< ID,−→uW , −→uR, uP, Pl ,
Pr, FID >. ID represents the identity information of u, which is generated by a random
function GenID(). −→uW is a vector representation of the keyword set Wi associated with the
leaf node, and −→uR is a vector representation of the range associated with the internal node.
uP is a set of vector representations of the multi-dimensional points contained in the leaf
node. Pl and Pr are pointers to the left and right child nodes, respectively. FID is the ID of
the document associated with the leaf node.

The algorithm for leaf node construction is given in Algorithm 1. Specifically, for each
document fi containing the tuple (Wi, pi), the algorithm runs GenID() to assign a value to
u.ID and sets u.FID to the identifier of fi. Since leaf nodes have no children, both u.Pl and
u.Pr were set to null values. Through applying the keyword conversion method introduced
in Section 3.1 to Wi, we converted Wi into a keyword vector −→xi and set −→uW = −→xi . For the
point pi of fi, each value in pi was transformed into a vector by adopting the method M1.
More specifically, for each xij ∈ pi, a vector −→xij = {x2

ij, xij, 1} can be created. After this, uP

is set to be {−→xi1,−→xi2, . . . ,−→xim}.

Algorithm 1 Creating leaf nodes.
Input: A set of tuples {(W1, p1), (W2, p2), . . . , (Wd, pd)}, where Wi and pi are the keyword
set and multi-dimensional point for fi, respectively, and i ∈ [1, d].
Output: A Lea f NodeSet that contains all leaf nodes.

1: for each i ∈ [1, d] do
2: initializes a leaf node u for fi;
3: runs GenID() to set a unique identifier for u.ID, assigns the identifier of fi to u.FID,

and sets u.Pl = u.Pr = NULL.
4: runs the keyword conversion method to transform Wi to −→xi , and sets −→uW = −→xi ;
5: For each xij ∈ pi, creates a vector −→xij = {x2

ij, xij, 1}, and sets up = {−→xi1,−→xi2, . . . ,−→xim}.
6: Inserts u to Lea f NodeSet;
7: end for
8: return Lea f NodeSet

3.4. Algorithm for Building the Index Tree

The algorithm takes a set of leaf nodes as the input and builds the internal nodes of
the tree in a bottom-up manner by calling the algorithm recursively, which means that an
internal node is constructed by two child nodes. As such, before putting forward the tree
building algorithm, we first propose a method for constructing an internal node, and we
called this method M3.



Information 2023, 14, 643 9 of 23

Method M3. In our scheme, each internal node u has a set of ranges, e.g., [x1, y1],
[x2, y2],. . ., [xm, ym]. Suppose that min(α, β) and max(α, β) are two simple functions, where
min(α, β) and max(α, β) output the minimum and maximum values of α and β, respectively.
For the two nodes u′ and u′′, the range of the internal node (parent node) u is constructed
as follows.

(1) Let u′ and u′′ be two leaf nodes, where the points in u′ and u′′ are p′′ = {x′1, x′2, . . .,
x′m} and p′′ = {x′′1 , x′′2 , . . ., x′′m}, respectively. For each sub-range [xj, yj] in u, xj and yj
are set to be min(x′j, x′′j ) and max(x′j, x′′j ), respectively, where j ∈ [1, m].

(2) Let u′ and u′′ be two internal nodes, where the ranges in u′ and u′′ are [x′1, y′1],
[x′2, y′2],. . ., [x′m, y′m] and [x′′1 , y′′1 ], [x

′′
2 , y′′2 ], . . ., [x′′m, y′′m], respectively. For each sub-range

[xj, yj] in u, this method sets xj = min(x′j, x′′j ) and yj = max(y′j, y′′j ), where j ∈ [1, m].

After obtaining u’s range, we need to convert the range into a range vector. Given
the range [x1, y1], [x2, y2],. . ., [xm, ym] of u, a vector −→uR={1, x1, y1, x1y1, 1, x2, y2, x2y2, . . ., 1,
xm , ym, xmym} can be created by M2, where {1, xj, yj, xjyj} is the vector for the sub-range
[xj, yj].

Inspired by the index tree construction algorithm in [28,38], the approach for construct-
ing the index tree is given in Algorithm 2. Lea f NodeSet contains a set of nodes. Each node
in Lea f NodeSet does not have a parent node and is needed to be processed. The overall
idea of the algorithm is to construct an internal node using every two nodes in Lea f NodeSet
until there is only one node left in Lea f NodeSet, which means that this unique node is the
root of the tree. Specifically, suppose Lea f NodeSet[i] and Lea f NodeSet[i + 1] are any two
nodes in Lea f NodeSet, then their parent node u is created as follows. First, let u.Pl and u.Pr
point to nodes Lea f NodeSe[i] and Lea f NodeSet[i + 1], respectively, and generate unique
ID for u with GenID(); then, by taking advantage of M3, create −→uR based on the range
vectors of Lea f NodeSet[i] and Lea f NodeSet[i + 1]; and finally, add u to TempNodeSet. Note
that, if |Lea f NodeSet| is odd, the last node in Lea f NodeSet will be inserted to TempNodeSet
directly. When the parents of all nodes in Lea f NodeSet have been created and added to
TempNodeSet, Algorithm 2 will be called recursively with TempNodeSet as the input until
the index tree is constructed.

Algorithm 2 The index tree building algorithm, declared by BuildIndexTree(LeafNodeSet)
Input: Lea f NodeSet including all the leaf nodes.
Output: An index tree T.

1: Sets k = |Lea f NodeSet|;
2: if k == 1 then
3: return Lea f NodeSet; \\This only node is the root of the tree.
4: end if
5: Initializes an empty set TempNodeSet;
6: for each i ∈ [1, k/2] do
7: Constructs a parent node u for Lea f NodeSet[2 ∗ i− 1] and Lea f NodeSet[2 ∗ i];
8: Utilizes GenID() to generate an unique ID for u.ID;
9: Sets u.Pl = Lea f NodeSet[2 ∗ i− 1] and u.Pr = Lea f NodeSet[2 ∗ i];

10: Generates a vector −→uR for its corresponding range according to M3;
11: Inserts u to TempNodeSet;
12: end for
13: if k%2 == 1 then
14: Inserts Lea f NodeSet[k] to TempNodeSet;
15: end if
16: Lea f NodeSet = BuildIndexTree(TempNodeSet); \\calls BuildIndexTree recursively.
17: return Lea f NodeSet;

Example 1. To better understand Algorithm 2, we show an example of the index tree construction
in Figure 3, which consists of two steps. Suppose that F = { f1, f2, . . . , f8}, then it first transforms
each document fi into a leaf node ui by Algorithm 2, where i ∈ [1, 8]. Concretely, for each fi that
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contains a point pi and a keyword set Wi, we convert pi and Wi into up and −→uW by utilizing M1
and the keyword conversion method, respectively. The second step is to build the index tree based
on the leaf nodes from the bottom up. More specifically, we generate the range vector −→uR of each
internal node u from the range vectors of its two child nodes by adopting M3. After these two steps,
the plaintext index tree is built.

!""

!#" !##

$# $% $&

!

!"#

!#% !#&

$' $( $) $*
Step 1: Convert each document into a leaf node by using the algorithm 1.

Step 2: Create internal nodes by using the algorithm 2 in bottom-up manner.

②: $+

$"
①:$. , $/

①: create 01 and 02 for each leaf node by using keyword conversion method and 34, respectively.
②: create 05 for each internal node by 36.

Figure 3. An example of how to build an index tree (Algorithm 2).

3.5. Algorithm for Searching the Index Tree

Before proposing the search algorithm, we first give a method for converting a query
Q = (QR, QW) into a query tuple that contains three elements (

−→
QR, QP,

−→
QW), where QR is

a query range, QW is a query keyword set,
−→
QR is a vector used to search internal nodes,

QP is a group of vectors used to search leaf nodes, and
−→
QW is a vector for conducting a

keyword search. The query transformation approach, declared by QueryTrans f orm, is
given as follows.

(1) Given the query range QR, based on M2, each sub-range [aj, bj] is converted into

{−ajbj, aj, bj, −1}, where j ∈ [1, m]. According to this conversion, a vector
−→
QR =

{−a1b1, a1, b1, −1, −a2b2, a2, b2, −1, . . ., −ambm, am, bm, −1} can be created.
(2) Based on M1, each sub-range [aj, bj] of QR is converted into −→vj = {−1, bj + aj,−ajbj},

and QP is set to be {−→v1 , −→v2 , . . ., −→vm}.
(3) Apply the keyword conversion method to transform QW into ~v, and set

−→
Qw = ~v.

Inspired by the index tree search algorithm introduced in [28,38], the search algorithm
used in SSE-RK is presented in Algorithm 3. In Algorithm 3, we used RList to store
the k documents that are currently most relevant to the query and their corresponding
similarity scores, as well as designate the k-score as the minimum similarity score in RList.
Initially, RList is an empty list and the k-score is set to a very small number. Given a
query tuple (

−→
QR, Qp,

−→
QW) of Q, an index tree root node u, and an empty result list RList,

the goal of the index tree search algorithm is to obtain the k documents that satisfy the
range query and are most relevant to the query keywords. The search process is divided
into two scenarios. (1) When an internal node is retrieved, the inner product between
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−→
QR and −→uR is calculated. The pruning method in our scheme is verifying whether the
query range QR = {[a1, b1], [a2, b2], . . . , [am, bm]} in Q intersects with the range {[x1, y1],
[x2, y2],. . ., [xm, ym]} in an internal node u. If the range in u intersects with the range QR,
then it must be −→uR ·

−→
QR > 0, which means that the subtree of the internal node still needs

to be traversed. Thus, the algorithm continues to be called for the subtree of this node. If
the inner product is less than 0, then the subtree is pruned and will not be visited further.
(2) When the leaf node is retrieved, then the first step is to determine whether Qp satisfies
up. That is, let uP be {−→x1 ,−→x2 , . . . ,−→xm}, and let QP be {−→v1 , −→v2 , . . ., −→vm}. Moreover, the
search algorithm tests whether −→xj · −→vj equals 0 for all j ∈ [1, m]. If so, it represents that the
multi-dimensional point p implied by the leaf node belongs to the query range QR, and that
it requires further computation of the correlation score between

−→
QW and −→uW . If the score

is greater than the document with the smallest relevance score in the current RList, the
document corresponding to that leaf node is added to the RList, and the document with the
smallest relevance score in the RList is removed. Otherwise, the document corresponding
to this leaf node is discarded.

Algorithm 3 The index tree search algorithm, declared by SearchIndexTree( ~QR, QP, ~QW , u, RList)

Input: A query tuple (
−→
QR, QP,

−→
QW) of query Q, the index tree’s root node u, and an empty result list RList.

Output: RList.
1: if u is an internal node then
2: if −→uR ·

−→
QR > 0 then \\ Determine whether the query range QR intersects the range uR implied by the internal node.

3: SearchIndexTree((
−→
QR, QP,

−→
QW), u.Pl , RList);

4: SearchIndexTree((
−→
QR, QP,

−→
QW), u.Pr, RList);

5: else
6: return
7: end if
8: else
9: if −→xj · −→vj = 0 for all j ∈ [1, m] then \\ Determine whether the multi-dimensional point p implied by the leaf node belongs to

the query range QR.
10: if −→uW ·

−→
QW > k-score then \\ Calculate whether the correlation score between the document keywords and the query

keywords is greater than the smallest score in the current RList.
11: Removes the document with the smallest relevance score in the RList;
12: Adds the tuple < Score(uW , QW), u.FID > to the Rlist;
13: Sets the k-score to the smallest relevance score in the current RList;
14: end if
15: end if
16: return
17: end if

Example 2. In this example, we suppose that only the top-1 file will be returned to the data user, and
Figure 4 was constructed to show the index tree search process. When using the query transformation
approach, a query Q = (QR, QW) is converted into a tuple (

−→
QR, QP,

−→
QW). According to the index

tree shown in Figure 3, the search algorithm starts from the root node r and reaches the internal
node r11 first. Since the inner product between the −→uR of r11 and

−→
QR of Q was larger than 0, the

search algorithm accessed its child nodes. Because the inner product between the −→uR of r21 and
−→
QR

of Q was smaller than 0, then the two child nodes u1 and u2 of r21 will not be reached. Since the
node r22 matches the query Q, Algorithm 3 computes the relevant scores between u3 and Q, as well
as adds u3 to RList directly since the number of documents in the RList had not reached the upper
limit. When reaching u4, Algorithm 3 computes the relevant score between u4 and Q, as well as
compares this score to the k-score. If the relevant score between u4 and Q is larger than the k-score,
Algorithm 3 deletes u3 from RList and adds u4 to RList instead; otherwise, nothing happens. When
the left subtree is checked, Algorithm 3 will detect node r12. Since the query Q was not related to the
node r12, the subtree with r12 as the root node would not be accessed. After this, Algorithm 3 output
RList. Numbers 1–6 in Figure 4 illustrate the tree traversal process. It can be seen that subtrees
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with r12 or r21 as the tree root will not be visited. This pruning improves the query efficiency of
the scheme.

Figure 4. An example of the search process (Algorithm 3).

4. Proposed Scheme

In this section, we used the algorithms introduced in Section 3 to construct a con-
crete SSE-RK scheme, as well as to perform a theoretical analysis of the security of the
proposed scheme.

4.1. Construction of SSE-RK

According to the system model proposed in Section 2, the SSE-RK scheme first needs to
create an algorithm that can generate secret keys. Secondly, for data owners and users, SSE-
RK needs to build algorithms that can generate secure searchable indexes and a trapdoor.
Finally, for the cloud server, SSE-RK should construct a search algorithm to enable the
secure retrieval of the encrypted index. According to the above description, the SSE-RK
scheme consists of four algorithms: the secret key generation algorithm, KeyGen; the index
building algorithm, IndexBuild; the trapdoor generation algorithm, TrapdoorGen; and the
secure search algorithm, Search. In order to better demonstrate the relationship between
the roles of the system model and the four algorithms mentioned above, we constructed
Figure 5 to show the interaction process between these roles. Specifically, the DO runs
the KeyGen algorithm to generate the secret key sk, and then sends sk to the authorized
DU. The DO uses the CreatLea f Node algorithm (Algorithm 1) and the BuildIndexTree
algorithm (Algorithm 2) to transform the document set into an index tree. The IndexBuild
algorithm is then used to generate the tree into a secure index, which is then sent to a CS.
Whenever the DU wants to perform a query, the DU generates a trapdoor regarding Q via
the TrapdoorGen algorithm, which is then sent to a CS. Once the CS receives the trapdoor, it
executes the Search algorithm and returns the search result, RList, to the DU. The detailed
construction process of these four algorithms is given below.
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Figure 5. The process of interaction between the roles in the system model.

• KeyGen(γ): Given a security parameter γ as input, it first randomly generates
two 3× 3 invertible matrices M11 and M12; two 4m× 4m invertible matrices M21
and M22; and two (N + L)× (N + L) invertible matrices M31 and M32. Then, it
randomly generates three vectors S1, S2, and S3, where the dimensions of S1, S2,
and S3 are 3, 4m, and (N + L), respectively. Finally, it outputs the secret key
sk = {S1, M11, M12, S2, M21, M22, S3, M31, M32}.

• IndexBuild(sk, F): Given the document set F, it applies Algorithm 2 to build a plain-
text index tree T, and it then encrypts T. The encryption process can be classified into
two situations.

(1) For each internal node u =< ID, NULL,−→uR, NULL, Pl , Pr, NULL >, the algo-
rithm generates two random vectors {−→uR

′
,−→uR

′′} of−→uR. More precisely, if S2[i] = 0,
it sets −→uR

′
[i] +−→uR

′′
[i] = −→uR[i]; if S2[i] = 1, then {−→uR

′
[i],−→uR

′′
[i]} are set to two ran-

dom numbers that satisfy condition −→uR
′
[i] = −→uR

′′
[i] = −→uR[i], where i ∈ [1, 4m].

This procedure can be represented by the following equation.{ −→uR
′
[i] +−→uR

′′
[i] = −→uR[i], i f S2[i] = 0;

−→uR
′
[i] = −→uR

′′
[i] = −→uR[i], i f S2[i] = 1.

}
i ∈ [1, 4m].

Then, it generates the encrypted internal node Iu =< ID, NULL, {MT
21
−→uR
′
,

MT
22
−→uR
′′}, NULL, Pl , Pr, NULL >.

(2) For each leaf node u =< ID,−→uW , NULL, uP, Pl , Pr, FID >, the encryption process
contains two steps.

- The algorithm initializes an empty set ûP. For each vector −→xj in uP, the
algorithm generates two random vectors {−→xj

′
,−→xj

′′} of −→xj , where j ∈ [1, m].
Similarly, this procedure can be represented by the following equation.{ −→xj

′
[i] +−→xj

′′
[i] = −→xj [i], i f S1[i] = 0;

−→xj
′
[i] = −→xj

′′
[i] = −→xj [i], i f S1[i] = 1.

}
i ∈ [1, 3].

After this, it adds {MT
11
−→xj
′
, MT

12
−→xj
′′} into the ûP.
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- For the keyword vector −→uW in the leaf node, the N-dimension vector −→uW is
stretched to a (N + L)-dimension vector −−→uWE. For −−→uWE, the value of −−→uWE[i]
is set to be −→uW [i] when i ∈ [1, N], and the value of −−→uWE[i] is set as a random
number εi when i ∈ [N + 1, N + L]. Then, the algorithm generates two
random vectors {−−→uWE

′
,−−→uWE

′′} of −−→uWE according to the following equations.{ −−→uWE
′
[i] +−−→uWE

′′
[i] = −−→uWE[i], i f S3[i] = 0;

−−→uWE
′
[i] = −−→uWE

′′
[i] = −−→uWE[i], i f S3[i] = 1.

}
i ∈ [1, N + L].

After these two steps, it generates the encrypted leaf node Iu =< ID, {MT
31
−−→uWE

′
,

MT
32
−−→uWE

′′}, NULL, ûP, Pl , Pr, FID >.

Finally, when the encryption operation is completed for each node, the algorithm
outputs the encrypted index tree IT .

• TrapdoorGen(sk,Q): For a query Q = (QR, QW), this algorithm applies the query

conversion method introduced in Section 3.5 to generates a query tuple (
−→
QR, QP,

−→
QW).

After this, it will encrypt the query tuple. The encryption process can be classified into
three situations.

(1) For
−→
QR, it generates two random vectors {−→QR

′
,
−→
QR

′′}. This division process
is similar to the index building algorithm and can still be represented by the
following equation.{ −→

QR
′
[i] +

−→
QR

′′
[i] =

−→
QR[i], i f S2[i] = 0;

−→
QR

′
[i] =

−→
QR

′′
[i] =

−→
QR[i], i f S2[i] = 1.

}
i ∈ [1, 4m].

After this, it replaces
−→
QR with {M−1

21
−→
QR

′
, M−1

22
−→
QR

′′}.
(2) The algorithm initializes an empty set Q̂P. For each vector −→vj in QP, the algo-

rithm generates two random vectors {−→vj
′
,−→vj

′′} of −→vj according to the following
equations, where j ∈ [1, m].{ −→vj

′
[i] +−→vj

′′
[i] = −→vj [i], i f S1[i] = 0;

−→vj
′
[i] = −→vj

′′
[i] = −→vj [i], i f S1[i] = 1.

}
i ∈ [1, 3].

After this, it adds each {M−1
11
−→vj
′
, M−1

12
−→vj
′′} into Q̂P.

(3) The N-dimension vector
−→
QW is expanded to a (N + L)-dimension vector

−−→
QWE.

For each i ∈ [1, N], it sets
−−→
QWE[i] =

−→
QW [i]. For each i ∈ [N + 1, N + L], it chooses

a random number 0 or 1, and it sets
−−→
QWE[i] to be equal to 0 or 1. Then, it adopts

the following equations to create two random vectors {−−→QWE
′
,
−−→
QWE

′′}.{ −−→
QWE

′
[i] +

−−→
QWE

′′
[i] =

−−→
QWE[i], i f S3[i] = 0;

−−→
QWE

′
[i] =

−−→
QWE

′′
[i] =

−−→
QWE[i], i f S3[i] = 1.

}
i ∈ [1, N + L].

After this, it replaces
−→
QW with {M−1

31
−−→
QWE

′
, M−1

32
−−→
QWE

′′}.

Finally, this algorithm outputs the trapdoor TQ = {{M−1
21
−→
QR

′
, M−1

22
−→
QR

′′}, Q̂P,

{M−1
31
−−→
QWE

′
, M−1

32
−−→
QWE

′′}} for Q.
• Search (IT , TQ): Given an encrypted index tree IT and a trapdoor TQ, this algorithm

executes the search operation in a pre-order traversal manner. When an internal node
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Iu =< ID, NULL, {MT
21
−→uR
′
, MT

22
−→uR
′′}, NULL, Pl , Pr, NULL > is accessed, it computes

the following:

(MT
21
−→uR
′ ·M−1

21
−→
QR

′
) + (MT

22
−→uR
′′ ·M−1

22
−→
QR

′′
) = −→uR

′ · −→QR
′
+−→uR

′′ · −→QR
′′

= −→uR ·
−→
QR

(6)

When reaching a leaf node Iu =< ID, {MT
31
−−→uWE

′
, MT

32
−−→uWE

′′}, NULL, ûP, Pl , Pr, FID >,
the computation process has two steps.

(1) For each −→xj
′
,−→xj

′′
in ûP and each −→vj

′
,−→vj

′′
in Q̂P, where j ∈ [1, m], it computes the

following:

(MT
11
−→xj
′ ·M−1

11
−→vj
′
) + (MT

12
−→xj
′′ ·M−1

12
−→vj
′′
) = −→xj

′ · −→vj
′
+−→xj

′′ · −→vj
′′

= −→xj · −→vj
(7)

(2) To evaluate the relevance score, it computes the following:

(MT
31
−−→uWE

′ ·M−1
31
−−→
QWE

′
) + (MT

32
−−→uWE

′′ ·M−1
32
−−→
QWE

′′
) = −−→uWE

′ · −−→QWE
′
+−−→uWE

′′ · −−→QWE
′′

= −−→uWE ·
−−→
QWE

(8)

According to the above Equations (6)–(8), the computation result between the en-
crypted node Iu and the trapdoor TQ is identical to that between the plaintext u and
the query Q. Thus, this algorithm can take advantage of Algorithm 3 to execute a
ranked search.

4.2. Security Analysis

As described in Section 2.3, the proposed scheme needs to satisfy three security require-
ments such as “Index and trapdoor privacy”, “Trapdoor Unlinkability”, and “Keyword
privacy”. In the following, we will analyze the security of the proposed solution in detail
based on these three requirements.

Index and trapdoor privacy. For a privacy-preserving scheme, the objective is to
preserve as much sensitive information about the adversary as possible while successfully
obtaining the correct result. Based on the method in [39], we give the following definition
before conducting the security proof.

History: According to Table 1, F = { f1, f2, . . . , fd} is the set of documents, where
fi represents the i-th document, IT is the index tree constructed from F using the index
building algorithm, and QS = {Q1, Q2, . . . Qt} is the set of queries that have been executed.
The history associated with QS is defined as HQS = {F, IT , QS}.

View: View represents what can be seen by adversaries in the scheme. Specifically, we
use the AES scheme to encrypt F. The ciphertext of F is denoted as C∗. Furthermore, we
use the secure KNN scheme to encrypt the index tree and queries. The encrypted index tree
and trapdoors are denoted as IT∗ and TD∗, respectively. The adversary’s view is defined as
{C∗, IT∗, TD∗}.

Trace: Traces of history are additional information that adversaries can obtain during
the execution of a scheme. It is mainly the access pattern and search pattern leaked by the
user when the user makes queries on the encrypted index IT∗ when using the trapdoor
collection TD∗. The access pattern is the query results that correspond to each query, while
the search pattern is a matrix where, if the element in row i and column j of the matrix is 1,
then it means that the query condition qi is the same as the query condition qj.

Based on the definitions of the terms above, we give the following lemma and provide
detailed steps of the proof of the lemma.

Lemma 1. Given the two histories with the same trace, the proposed scheme is said to be secure if
the adversaries of the probability polynomial time cannot distinguish their views.
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Proof. For a particular trace, if a polynomial-time simulator S exists, it can generate a
simulated index ITS∗, a series of simulated trapdoors TDS∗, and a simulated encrypted
document set CS∗, i.e., a simulated viewS = {CS∗, ITS∗, TDS∗}. We say that the proposed
scheme is secure if the adversary cannot distinguish the simulated viewS from the real view
with a non-negligible probability. Below, we give the concrete simulation procedure for
the proof.

- S generates a simulated encrypted document set CS∗. Firstly, S generates f S
i ∈

{0, 1}{| fi |}, where 1 ≤ i ≤ d and {0, 1}{| fi |} are represented as a binary string of length
| fi|. Then, S encrypts f S

i to create f S
i ∗ such that | f S

i ∗ | = | fi ∗ |, where | f S
i ∗ | and | fi ∗ |

are the ciphertexts of f S
i and fi, respectively. Finally, S outputs CS∗ = { f S

i ∗ |1 ≤ i ≤ d}.
Since the AES scheme is secure, it is guaranteed that CS∗ and C∗ cannot be distin-
guished by an adversary.

- S generates the simulated trapdoor set TDS∗. S generates t query conditions, i.e.,
Q′ = {Q′1, Q′2, ..., Q′t}. For each Q′j, the TrapdoorGen algorithm can be utilized to
produce it as a trapdoor, where 1 ≤ j ≤ t. Since the essence of the TrapdoorGen
algorithm is to encrypt Q′j using the secure KNN scheme, it ensures that TDS∗ and
TD∗ cannot be distinguished by an adversary.

- S generates the simulated index tree ITS∗. For each simulated document f S
i , S generates

the simulated multi-dimensional point pS
i and the keyword set WS

i based on the query

set Q′. For each query Q′j = (Qj
R, Qj

W) in which 1 ≤ j ≤ t, the pS
i generated by S

needs to satisfy pi ∈ Qj
R and pS

i ∈ Qj
R and Score(Wi, Qj

W) = Score(WS
i , Qj

W). Here,
pi and Wi are the multi-dimensional point and keyword set of the real document fi,
respectively, where 1 ≤ i ≤ d. S will generate a simulated index tree ITS for all the the
simulated points and keyword sets using the index tree building algorithm, and it will
encrypt the ITS using the IndexBuild algorithm to create an encrypted index tree ITS∗.
Since the secure KNN scheme we use is secure under a known ciphertext model, the
SSE-RK scheme can guarantee the indistinguishability of ITS∗ from IT∗.
By utilizing the TDS∗ to query ITS∗, it can be verified that the simulated viewS will pro-

duce the same trace as the real view. Since the AES and secure KNN schemes are provably
secure, this means that, based on the same trace, there is no probabilistic polynomial time
adversary that can distinguish between the simulated viewS and the real view. Therefore,
we argue that the proposed scheme is secure.

Trapdoor unlinkability. The proposed scheme will first expand the keyword vector
−→
QW into a vector

−−→
QWE that contains “noise” in the process of generating trapdoors. Here,

“noisy” refers to the random integer that is added in the third step of the TrapdoorGen
algorithm when expanding

−→
QW into

−−→
QWE. Since the added “noise” is random, even

the same
−→
QW will be expanded into a different

−−→
QWE. In addition, the

−−→
QWE is randomly

partitioned in the process of encrypting
−−→
QWE via the secure KNN scheme. Based on the

above two operations, the SSE-RK scheme can encrypt the same Q into different trapdoors,
thus achieving the unlinkability of the trapdoors.

Keyword privacy. Since the attacker can obtain the statistical information of the
dataset under the known background model, it can make use of the word frequency
information to analyze the query keywords in the trapdoor. To avoid such an attack, the
proposed scheme expands the keyword vector −→uW for each node when building the index
tree. Specifically, vector −→uW is extended with L dimensions, where each dimension is set
to a random “noise” εi. In this way, the similarity score of any query is obfuscated by the
value of ∑ εi. As L increases, the probability of obtaining the same similarity score for the
same query will be further reduced due to the interference of ∑ εi. Although the addition
of “noise” increases privacy, it leads to a decrease in search precision. To balance privacy
and precision, as analyzed in [21], we can make a trade-off by adjusting L and εi.
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5. Performance Evaluation

In order to better demonstrate the performance of the proposed scheme, we will
perform a theoretical analysis of the proposed scheme based on the experimental results.
The experimental data are obtained from 50,000 documents, which were randomly selected
from a real medical dataset named “OHSUMED” [39]. The experimental PC contained
an Intel(R) Core(TM) i7@2.90GHz CPU and 16 GB RAM. To better illustrate the merit of
the proposed scheme, we performed simulation experiments on two schemes related to
the proposed scheme, and we then compared them with our scheme. The performance
comparison mainly focused on three aspects: index building, trapdoor generation, and
ciphertext retrieval. For convenience, we denote the two schemes [8,9] to be compared by
Miao18 and Wang19, and we listed some of the parameters that may affect the efficiency
of these schemes in Table 2. In addition, we constructed Table 3 to show the efficiency
comparison between these schemes. In the next sub-section, we will verify the theoretical
analysis through experimental data and validate the effectiveness of the proposed scheme.

Table 2. Notations for the comparison analysis.

N The number of keywords in the dictionary.

d The number of documents in the corpus.

m The dimension of the point in the document.

L The average length of a query range.

M The dimension of bloom filter used in Wang19.

θ The average number of documents that match the query.

Table 3. Comparative analysis of the scheme efficiency.

Schemes Index Building Trapdoor Generation Search

Miao18 2d(N + 3m)2 (N + 3m)2 d(N + 3m)

Wang19 dLM2 LM2 L(M + m)

SSE-RK dm2 + dN2 (N + 3m)2 + (4m)2 θ(N + 7m)

5.1. Efficiency of Index Building

According to Figure 6, the time cost of the index building in Miao18 is squarely related
to N and linearly associated with d. This is because the vector length of each document
of Miao18 is N + 3m. Thus, its index encryption process needs to perform d(N + 3m)2

product operations. For Wang19, since each leaf node contains m points and a BF vector
of length M, the d leaf nodes in its index tree need to perform the d(m + M) encryption
operations of SHVE. In addition, since the internal node contains m ranges [ai, bi] and a BF
vector, the internal node needs to perform the dL(m + M) encryption operations of SHVE,
where L is the average length of [ai, bi] and i ∈ [1, m]. Because the range of the internal node
needs to include the points associated with all its leaf nodes, L will increase as d increases.
Based on the above analysis, it can be inferred that the time consumption of index building
in Wang19 is proportional to d2. This conclusion is corroborated by the experimental results
shown in Figure 6a. In addition, since Wang19 uses BF to index its keyword domain, the
index-building time of Wang19 is independent of N. For the proposed scheme, since each
leaf node of the index tree corresponds to a vector of length N + 3m, the encryption of the
leaf nodes needs to perform d(N + 3m)2 product operations. Moreover, the internal node
corresponds to a vector of length 4m, so the internal node needs to perform d ∗m2 product
operations. Since m is much smaller than d and N, we reckon that the time cost of index
building in the SSE-RK scheme is squarely related to N and linearly associated with d. The
experimental results in Figure 6 are consistent with the theoretical analysis.
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To sum up, as shown in Figure 6, the time cost of index building in Wang19 is much
longer than that of Miao18 and the proposed scheme because its encryption process requires
enumerating all points in the range associated with the internal node, and the SHVE
encryption operation it uses is more time-consuming than the product operation. In
addition, the time cost of index building in the SSE-RK scheme is slightly more than that of
Miao18 because the proposed scheme needs to encrypt d internal nodes.
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Figure 6. Impact of d (a) and N (b) on the time consumption of index building. N = (1000; 2000; 3000;
4000; 5000) and d = (10,000; 20,000; 30,000; 40,000; 50,000).

5.2. Efficiency of Trapdoor Generation

For Miao18, the vector length of its trapdoor is N + 3m; as such, its trapdoor generation
process needs to execute (N + 3m)2 product operations. For Wang19, assuming that
its query range length is L, its trapdoor generation needs to execute the L(m + M) key
generation operations of SHVE since its query contains L(m + M) vectors. The trapdoor
of the proposed scheme contains two vectors. One’s length is N + 3m and the other’s
length is 4m. Thus, its trapdoor generation process needs to execute (N + 3m)2 + (4m)2

product operations.
According to Figure 7a, it can be seen that all schemes are independent of d. Further-

more, the proposed scheme requires slightly more trapdoor generation time compared
to Miao18. And the time cost of trapdoor generation in Wang19 is more than that of the
other two schemes. This result could be explained by the fact that the time consumption of
the key generation algorithm of SHVE used in Wang19 is more than that of the product
operation in Miao18 and our scheme. In addition, according to Figure 7b, it can be seen that
both Miao18 and the proposed scheme are squared with N, while Wang19 is independent of
N. As N keeps increasing, the time cost of trapdoor generation in Miao18 and the SSE-RK
scheme will be higher than that of Wang19.
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Figure 7. Impact of d (a) and N (b) on the time cost of trapdoor generation. N = (1000; 2000; 3000;
4000; 5000) and d = (10,000; 20,000; 30,000; 40,000; 50,000)

5.3. Efficiency of Search

For Miao18, since the vector length of each document is N + 3m, the test algorithm
requires performing d(N + 3m) product operations. Considering that the index structure of
Wang19 is a tree, assuming that θ represents the average number of documents that satisfy
the query, its test algorithm needs to visit at least θ internal, as well as θ leaf, nodes. The test
algorithm requires performing the L(m + N) and m + M decryption operations of SHVE
for each internal node and leaf node, respectively. Thus, the total test time complexity is
θL(m + N). For the proposed scheme, like Wang19, it is necessary to visit at least θ internal,
as well as θ leaf, nodes. For each internal node and leaf node, 4m and 3m + N product
operations need to be performed, respectively. Thus, at least θ(7m + N) product operations
need to be performed in total.

The results in Figure 8 corroborate the above analysis. As shown in Figure 8a, the
proposed scheme has a sub-linear relationship with d as d increases. Compared with Miao18,
the test time of the proposed scheme is lower since the proposed scheme utilizes the tree
structure to reduce the access of a large number of irrelevant documents, thus making θ
much smaller than d. Although both Wang19 and our scheme utilize the tree structure to
improve the query efficiency, the search efficiency of the SSE-RK scheme is preferable to
that of Wang19 since the decryption operation of SHVE is more time-consuming than the
product operation. According to Figure 8b, the query time of Wang19 is independent of N,
while that of Miao18 and our scheme grows slightly as N increases. Since the decryption
operation of SHVE used by Wang19 is more time-consuming than the product operation,
its query efficiency is still the lowest.
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Figure 8. Impact of d (a) and N (b) on the time cost of search. N = (1000; 2000; 3000; 4000; 5000) and
d = (10,000; 20,000; 30,000; 40,000; 50,000)

5.4. Discussion

As shown in the experimental results, when d = 10,000 and N = 1000, the time cost
of search in SSE-RK is 5.9 s while that in Miao18 is 12.7 s. However, the index building
time of SSE-RK is nearly 2 s longer than that of Miao18. Since search operations are more
frequent than index building operations, we can argue that SSE-RK is more practical than
Miao18. Compared with Wang19, the proposed scheme has a significant improvement in
index construction and query efficiency. Although the time cost of trapdoor generation
in Wang19 is less than that of the proposed scheme when N gradually increases, we
reckon that the SSE-RK scheme is still practical since the trapdoor generation operation
is a relatively small part of the overall user query process. The experimental analysis
shows that Wang19 is less efficient. An objective reason for this is that Wang19 is designed
to realize queries for arbitrary geometric ranges. In contrast, the proposed scheme and
Miao18 are specifically designed to support range and keyword searches. In conclusion,
based on the experimental results, we can find that the proposed scheme improves the
query efficiency without sacrificing too much index building time. Considering the need
for frequent queries on EMR data, we believe the proposed solution is more suitable for
medical information systems.

Most of the existing SSE schemes only support keyword search. Compared to these
schemes, the proposed scheme can support more complex query conditions. In order to
quantify the cost of enhanced query functionality, we chose a highly efficient SSE scheme
that only supports keyword search for an experimental comparison. We denote this scheme
Zhang22 [38], and we show the experimental results in Figure 9. The experimental data
show that the proposed scheme has an advantage in terms of index building time. This is
because the internal nodes of the index tree of SSE-RK are constructed using range data,
while that of Zhang22 are created using keyword vectors. Thus, the time complexity of the
index tree building of SSE-RK is dN2 + dm2, while that of Zhang22 is 2dN2. The trapdoor
generation time for the proposed scheme is a little higher than the one for Zhang22. This is
because the trapdoor for SSE-RK will include range information in addition to keyword
information. The search time for the proposed scheme is somewhat higher than the search
time for Zhang22. This is because the query process of SSE-RK not only involves the
similarity calculation of the keyword vectors, but also the determination of whether the
ranges overlap. Zhang22, on the contrary, only needs to perform the similarity calculation
of the keyword vectors. Therefore, the search time complexity of the proposed scheme is
7m + N, while that of Zhang22 is N. The experiment results illustrate that the proposed
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scheme does incur a certain query cost when implementing more complex query conditions.
Therefore, meaningful future work could be to improve the search efficiency of the scheme.

Figure 9. Comparison with the SSE scheme that supports only keyword search.

In addition, since the SSE-RK scheme can support both range and keyword search,
it can also be utilized in applications such as location-based services [40] and protein
prediction systems [41], etc. It is not difficult to find that the data in these applications will
generally contain both numeric and textual types.

6. Conclusions

In this paper, we constructed a searchable encryption scheme that supports both range
and keyword queries, and this scheme can perform a secure and fast search over encrypted
EMR data. The construction of the SSE-RK scheme is divided into three main parts. Firstly,
a keyword conversion method and two range conversion methods were proposed. These
methods can transform keyword sets, range sets, and multi-dimensional points into vectors.
Secondly, we designed an index tree-building algorithm. This algorithm makes use of the
converted vectors to build all of the documents into a binary balanced tree in a bottom-
up manner. Finally, the security of the SSE-RK scheme is ensured by encrypting each
node in the index tree with a secure KNN algorithm. Furthermore, it is experimentally
demonstrated that the query efficiency of the proposed scheme is sub-linearly related to
the number of EMRs, and that it has better practicality than previous similar schemes.

In medical information systems, in addition to the range and keyword queries, user
queries usually include more query conditions, such as in fuzzy queries, semantic queries,
and Boolean queries. Therefore, our future work is to build a searchable encryption scheme
that supports complex query conditions to enable a more accurate search over EMR data.
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