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Abstract: Community detection has been (and remains) a very important topic in several fields.
From marketing and social networking to biological studies, community detection plays a key role in
advancing research in many different fields. Research on this topic originally looked at classifying
nodes into discrete communities (non-overlapping communities) but eventually moved forward
to placing nodes in multiple communities (overlapping communities). Unfortunately, community
detection has always been a time-inefficient process, and datasets are too large to realistically process
them using traditional methods. Because of this, recent methods have turned to parallelism and
graph stream models, where the edge list is accessed one edge at a time. However, all these methods,
while offering a significant decrease in processing time, still have several shortcomings. We propose
a new parallel algorithm called community detection with seed sets (CoDiS), which solves the
overlapping community detection problem in graph streams. Initially, some nodes (seed sets) have
known community structures, and the aim is to expand these communities by processing one edge at
a time. The innovation of our approach is that it splits communities among the parallel computation
workers so that each worker is only updating a subset of all the communities. By doing so, we
decrease the edge processing throughput and decrease the amount of time each worker spends on
each edge. Crucially, we remove the need for every worker to have access to every community.
Experimental results show that we are able to gain a significant improvement in running time with
no loss of accuracy.

Keywords: community detection; overlapping; distributed computation; seed nodes; clustering;
graph streams

1. Introduction

Community detection [1–3] is a crucial technique for many different areas of interest,
including biology, social network analysis, and criminal justice. Any time it is useful to
find groups of individuals from a seemingly arbitrarily connected network, community
detection algorithms are employed. Research on community detection has been ongoing
for several decades, with new methods being explored to increase the accuracy, speed,
and robustness of community detection algorithms. We study the problem of detecting
overlapping communities given a seed set, and a stream of edges. Figure 1 shows an
example of two overlapping communities C1 and C2 sharing the same node 10. For this
problem, we can assume that nodes 5 and 7 form the seed set, and that we are receiving the
edges one at a time.

Unfortunately, as the internet has expanded, and our ability to collect data has im-
proved, the size and complexity of the networks we wish to analyze have become pro-
hibitively large. Social networking sites like Facebook or Twitter have millions of daily
users who ‘friend’ each other or mention each other in tweets and posts several million
times a day, creating massive, complex networks that are great for social network analysis,
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with applications in advertising and marketing. Amazon offers several hundred million
products, and understanding which customers tend to buy similar items is crucial for
effectively marketing those groups. Because of the big data availability, it has become
difficult to process these networks in a realistic time frame; moreover, storing and accessing
them in a timely manner has become a challenge.

Figure 1. An example of two overlapping communities. Node 10 belongs to both communities.

Therefore, much of the recent research on community detection has not focused on
increasing the accuracy of community detection algorithms, but on increasing the speed
and amount of data that can be processed. Along the same lines, community detection
algorithms that take advantage of new multi-threaded central processing units (CPUs)
and distributed computing are increasingly becoming the subjects of numerous research
papers [4–6].

Liakos et al. [7] focused on community detection via seed set expansion (CoEuS),
a novel approach to the overlapping community detection problem, in the sense that it
does not attempt to partition the entire graph into communities, but instead looks at only a
selected number of communities of interest. This works by providing a small set of known
nodes from a community of interest and then attempting to build the rest of the community
from that seed set of nodes. This allows us to look at the graph edge-by-edge instead of
attempting to load the entire graph at once, meaning that much larger networks can be
processed. In addition to this, they expanded their approach by proposing distributed
streaming community detection (DiCeS) [8] using Apache Storm https://storm.apache.
org/, accessed on 27 October 2023, and Redis https://redis.io/, accessed on 27 October
2023, to accelerate the algorithm proposed in [7] by means of distributed computing.

While DiCeS [8] is great for quickly analyzing large networks, it is not without issues.
The authors of [8] distribute the work by having each worker node process edges in parallel
and write those edges to a shared list of communities, which is stored in a Redis cluster so
that all worker nodes have access to all the communities that are considered. Because of
this, there is added overhead to the worker nodes in accessing community data from the
Redis cluster. Concurrently, protective measures increase the overhead associated with
reading and writing data to the cluster.

To resolve these issues, we propose a new parallel method called the community
detection with seed sets (CoDiS) algorithm. While DiCeS splits the edges among all
the worker nodes, which then look at all the communities to determine if the nodes in
that edge belong to any of those communities, our proposed method instead splits the
communities among the worker nodes, so that each worker node only looks at a subset of
all the communities considered. By doing so, although we decrease the edge processing
throughput, we also decrease the amount of time each worker node spends on each
edge. Crucially, we also remove the need for every worker node to have access to every
community in consideration, meaning we can remove Redis from the equation, regaining
the time that was lost for concurrency protection and data distribution.

https://storm.apache.org/
https://storm.apache.org/
https://redis.io/
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Let us consider the toy example in Figure 2. The initial seed set nodes are 0 and 1,
belonging to two different communities. Initially, each community has only one member,
respectively, nodes 0 and 1; they are assigned to different worker nodes. As we process the
new edge (1, 2), we expand the community structure and add node 2 to the community of
node 1 of the first worker node.

Figure 2. Toy example illustrating the initialization of communities (represented as circles) within
workers (depicted as boxes), and the subsequent update after considering the edge (1, 2).

Figure 3 shows a more complicated example of each worker node (a total of three
worker nodes) containing three communities, before and after seeing a new edge (1, 5) and
incorporating that edge into the communities.

Figure 3. Context of how CoDiS distributes the communities to several worker nodes and updates
them when a new edge is given. (Communities are cycles containing nodes and each worker node is
depicted as a box.)

The rest of this paper is structured as follows: Following the introduction, Section 2
lists all terms that are useful to know when reading this paper. Section 3 explores several
current community detection approaches, from well-known and often-cited approaches to
recent papers focusing on parallel community detection approaches. Sections 4 and 5 delve
into the changes we propose and the results of the experiments related to those changes.
Finally, Section 6 concludes the discussion and highlights some improvements that we
would like to consider in future work.

2. Terminology

In this section, we present the basic definitions and notations. A graph is a set of nodes
and edges, G = (V, E), where V is the set of all nodes in the graph and E is the set of all
edges. Graphs are very versatile and can be used to represent any number of complex ideas
in an easy-to-parse data structure, from geographical layouts to complex interactions in
social media networks. A subgraph is a graph made of a subset of the nodes and edges
of another graph. Given a graph G = (V, E) and a subgraph G′ = (V′, E′) of G, then both
∀v ∈ V′, v ∈ V and ∀e ∈ E′, e ∈ E are true. A community is a subset of nodes from a
graph that are densely connected to each other and weakly connected to the rest of the
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graph. Community detection is the process of attempting to group nodes of a graph into
communities; see Figure 4 for an example. Initially, no communities are found, as shown on
the left side of Figure 4. The right side of Figure 4 captures the situation after discovering
the three communities, which are grouped together in ovals with different colors, and are
{0, 1, 3}, {4, 5}, and {2, 6, 7, 8}.

Figure 4. Left: a graph before being split into communities, right: a graph with the discovered
communities highlighted.

Edge betweenness measures the frequency with which an edge is traversed when
determining the shortest path from every vertex in a graph to every other vertex. The edge
betweenness of an edge e is calculated by the ratio of the number of shortest paths that
include the edge e over the total number of shortest paths. A metric of the quality of the
discovered communities is the modularity score when no ground truth is given. The higher
the modularity score, the closer the graph is to being separated perfectly into communities,
and vice versa. The community participation score [7] measures how strongly connected
a node is to the nodes of a community. The community participation of node u in the
community C is denoted by

cp(u, C) =
|{(u, v) ∈ E : v ∈ C}|
|{(u, v) ∈ E}| =

degree(C, v)
degree(v)

(1)

where degree(v) denotes the degree of node v in G, and degree(C, v) is the community
degree of node v by considering only the intra-edges (the edges between community
members) of the community C.

Nodes with higher values of community participation are well connected to the
community while nodes with lower values are less connected to the community. Figure 5
shows a node with a high/low participation score in the given community.

Figure 5. Left: a node with a high participation score for the community, right: a node with a low
participation score for the community.

Distributing communities in worker nodes in our community detection with seed sets
(CoDiS) algorithm can be defined as follows:

• C: is the set of communities to be detected.
• T: is the set of worker nodes available for parallel processing.



Information 2023, 14, 594 5 of 19

• Ci: is the set of communities assigned to the i-th worker node.
• k: is the maximum number of communities in the worker nodes, e.g., max1≤i≤|T| |Ci|.

To distribute the communities in a balanced manner among worker nodes, one can
formulate the number of communities each worker node is assigned to with the follow-
ing relation:

|Ci| =
|C|
|T| + δi (2)

where the |C|/|T| term represents the average number of communities per worker node,
ensuring an approximate load-balancing split. We can consider the δi acting as an ad-
justment term that allows for slight variations for balancing the load. This term may
depend on various factors, such as the computational power of each worker node (case
of heterogeneous worker nodes). For our approach, we assume that all worker nodes are
homogeneous, i.e., have the same computational power and hardware; thus, the term δi is
set to zero for all workers i = 1 . . . |T|. In this case, the maximum number of communities
processed by each worker is at most k = d |C||T| e.

We use the Apache Storm Java framework for distributed processing using streams
maintained by Twitter and the Apache Foundation. Storm abstracts the distribution and
passing of messages between compute nodes. The basic data type of the Storm distribution
is a Tuple, and there are two types of processing nodes: Spouts and Bolts. A Tuple contains
any number of supported data types. Tuples natively support all primitive data types,
as well as Strings and byte arrays. Tuples can also support custom data types if those
data types implement a serializer and register that serializer with Storm. A Topology is
a construct that contains all the information about the particular setup for a given Storm
program. The Topology is what is submitted to an Apache Storm cluster and contains
the code that computation nodes execute, as well as how the messages are distributed
between nodes and which nodes listen to each other. A Topology will run indefinitely
until the user stops it or submits a new Topology to the Storm cluster. One of the two
main components of an Apache Storm Topology is a Spout. A Spout is responsible for
creating a stream of Tuples that are then emitted to the rest of the Topology. The Topology
itself takes care of how those Tuples are distributed. Spouts cannot receive Tuples from
any other processing nodes, only create and emit them. The other main component of an
Apache Storm Topology is a Bolt. Bolts are typically the nodes that conduct the actual
processing of the Topology. Bolts receive the Tuples emitted from Spouts or even other
Bolts, and conduct some kind of processing on them. Bolts can emit their own Tuples for
consumption by other Bolts. Apache Storm’s Local Mode simulates distributed computing
using multi-threading, allowing an Apache Storm cluster to run without the need for
multiple systems. An example of an Apache Storm Topology (in which there is one spout,
three bolts that listen to the output of that spout, and two additional bolts that listen to the
output of the three previous bolts) is shown in Figure 6.

Figure 6. Example of an Apache Storm Topology.
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3. Existing Methods
3.1. Early Methods

Many of the early community detection algorithms were very simple and restrictive,
but many of the concepts are still being used in modern approaches. Before these methods,
simple max-flow/min-cut approaches were the norms [9], but these papers introduced
concepts that revolutionized the way community detection was approached

The Girvan–Newman [1] algorithm is one of the community detection algorithms that
has gained popularity. The paper introduces two major concepts that are still used in many
modern approaches: edge betweenness and the modularity score. Edge betweenness is
used to determine how strongly or weakly an edge is tied to the rest of the graph. Using the
observation that an edge with high edge betweenness likely serves as a connection between
communities, the algorithm calculates the edge betweenness of every edge in the graph and
then removes the edge with the greatest edge betweenness. This process continues until it
is determined that the graph has been properly partitioned into communities, and in the
case of [1], the modularity score of the graph is calculated every time an edge is removed,
and once the modularity score stops increasing, the algorithm finishes.

The Louvain method [10] takes the modularity score from Girvan–Newman and makes
it the focus of the algorithm. The algorithm in [10] begins with every node of the graph
belonging to its own community. Then, for every node and every possible community
that the node could be a part of, the change in the modularity score that would occur
from moving that node to that community is calculated. The change that would bring the
greatest increase in the modularity score is then applied, and this continues until there are
no changes that would increase the modularity score.

3.2. Later Approaches

While the earlier methods of community detection are incredibly important, they were
also slow and restrictive. For example, in both [1,10], nodes could only belong to a single
community, which is unrealistic for real-world applications. The following approaches
attempt to solve one or more of these issues.

CONGA [11] and GONGO [12] are both variants of the Girvan–Newman algorithm,
allowing nodes to participate in more than one community. Instead of calculating which
edge has the greatest edge betweenness, and removing it, these algorithms calculate which
node has the greatest node betweenness and splits that node. The edges of the original node
are distributed to the copy nodes, and when the algorithm concludes, the communities that
a node belongs to correspond to those of its copies.

CoEuS [7] attempts to solve the speed problem by only looking at a part of the graph.
This method works by starting with a seed set of communities, then streams in pairs of
nodes that are connected by an edge. These nodes are placed in communities based on
what communities those nodes are already in; if neither node has been identified previously,
a new community is created consisting solely of those two nodes.

COPRA [13] works by updating each node’s label by looking at all the labels of its
neighbors, then taking the label that is the most prevalent and adding it to its list of labels.

In the SLPA (speaker–listener label propagation) algorithm [14], instead of each node
looking at its neighbors’ labels, nodes choose a random label from their list of labels and
broadcast it to all of their neighbors. Although randomly selected, the choice is weighted,
so labels that have been seen are often more likely to be broadcast than those rarely seen.

Other very recent approaches dealing with the problem of detecting communities are
reviewed in [15–17]. One relevant research topic involves the detection of disseminators.
Reference [18] presents the dissemination of information among communities by creating
backbones among them. The authors propose a new centrality measure called disseminator
centrality. This measure is adept at identifying disseminator bridges, which refer to users
in a social network who belong to multiple communities. These users aim to disseminate
information about their interests from one community to another by supporting each other.
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3.3. Current Parallel Methods

With the advent and proliferation of multi-core CPUs and the increased access to dis-
tributed computing, parallelization has become a new focus in the community detection space
as a way to further increase the speed and data capacity of community detection algorithms.

Many parallel implementations work by taking a non-parallel algorithm and having it
run on subsections of the graph. These subsections are then recombined in various ways to
obtain the full community graph structure. The way these approaches split the graph into
subgraphs, and how the subgraphs are recombined, has a large effect on the outcome.

For example, [19–21] all use a min-cut method to split the graph, but the way in
which they recombine the graphs is different. When splitting the graph, reference [19]
creates copies of nodes that have edges connected to nodes in other subgraphs, and those
nodes are simply combined together when the algorithm is finished. While [20] also has a
combining step at the end, it does not create duplicate nodes and instead has to reconcile all
the subgraphs based on their connections before separating the graph. Finally, algorithm
in [21] does not have a dedicated combination step, like [19] or [20], but instead has a mini
combining step at the end of every iteration of the algorithm. While our approach CoDiS
does not use subgraphs directly, it is the concept of subgraphs that inspired the alternate
method of distribution we employ.

Lastly, DiCeS [8] is a distributed version of [7], using Apache Storm. It involves several
worker processes that can take in streamed nodes and then decide where to put them in
the community graph. The created community graph is accessible to each worker process.
In this approach, each edge is distributed to individual worker nodes or loads balanced to
the available worker nodes. All workers access the shared data of the communities.

Improving this method is the main focus of our new approach. While DiCeS achieves
speedups by parallelizing the edge processing using distributed computing, we are inter-
ested in attempting to speed up the processing time by splitting the search space between
the different compute nodes. Section 4 will go into this topic in more detail.

4. CoDiS method

Here, we describe CoDiS (originally donated as SubDiCeS). Our code, https://github.
com/dude1144/SubDiCeS, accessed on 27 October 2023, is a new method that functions
similarly to DiCeS [8]; it runs the CoEuS [7] algorithm in a distributed manner to achieve
parallelism but modifies it so that each individual worker node only operates on a subset of
the communities of interest. The implementation of this method is conducted in Java using
Apache Storm to manage the distributed processing. Overlapping community detection
methods require a seed set of nodes for each community of interest, and community
detection then expands this set based on a participation score used as the metric.

4.1. Splitting the Communities

The first step of CoDiS is to initialize the communities of interest and distribute them
among the worker nodes. This is done by either explicitly providing a list of seed sets
or by providing ground truth communities to the graph being processed and choosing a
set of random nodes to be used as the seed set. Algorithm 1 shows the pseudocode for
this process.

The process begins by recording the start time and receiving a list of ground truth
communities (or seed sets, if the algorithm is run on a dataset without available ground
truth communities), as well as a list of identifiers to access specific worker nodes. Then,
a copy of the list of worker nodes is created but with the order of those nodes randomized.
The next step is to initialize the communities and distribute them to worker nodes. This is
done by creating a counter i that is initialized to zero and iterating through all the ground
truth communities. For each community, we initialize a CoDiScommunity object. We then
select several random nodes from the ground truth communities to be used as a seed set
and add those to the CoDiSCommunity seed set list. Finally, we assign this community
to the worker node at index i of our shuffled list, then increment i or reset it to 0 if it

https://github.com/dude1144/SubDiCeS
https://github.com/dude1144/SubDiCeS


Information 2023, 14, 594 8 of 19

becomes greater than the length of the shuffled list. Additionally, for each community C,
we create a map commDegrees that will keep track of the community degree of each node
for the specific community in order to use it as the numerator of Equation (1). The time
complexity of Algorithm 1 is O(|T|+ |GT | ∗ SEED_SET_SIZE), where |T| is the number
of worker nodes, |GT | is the number of ground truth communities, and SEED_SET_SIZE
is the number of nodes in each ground truth community.

Algorithm 1: Community initialization and distribution

1 Input(GT , T) such that GT is a list of ground truth communities and T is a set of
worker node identifiers

2 begin
3 CollectionNode.startTime←− Now()
4 shu f f led←− Shuffle(T)
5 i←− 0
6 for g ∈ GT do

/* Seed set of each community */
7 S←− ∅

/* Community */
8 C ←− CoDiSCommunity()
9

10 C.seedSet←− Set(String)
11 C.nodes←− Map(String, Double)

/* Keeps track of the community degrees */
12 C.commDegrees←− Map(String, Double)
13

/* From each community, choose SEED_SET_SIZE random nodes as
seeds */

14 while len(S) < SEED_SET_SIZE do
15 Append(S, g[Rand()])
16 end
17 C.seedSet←− S
18

/* Assign community C to worker node i */
19 if i ≥ len(shuffled) then
20 i←− 0
21 end
22 shu f f led[i ++].AddToExecuteQueue(C)
23 end
24 end

4.2. Edge Ingestion and Distribution

The next step of the process is to start reading edges and distributing them to the
worker nodes, as shown in Algorithm 2. The edges could be read from several sources,
such as crawling the web to find links between pages or accessing a social media API to
find connections between people, but for the purposes of our experiments, we find edges
by reading from a text file.
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Algorithm 2: Edge ingestion and distribution

1 Input(path, T), such that path is the file path to the text file that contains the
community to be read, and T is a set of worker node identifiers

2 begin
3 FILE←− Open(path, “r”)
4 line←− FILE.NextLine()
5 while line 6= EOF do
6 s←− line.Split(“ ”)

/* Edge e is taken from the graph stream */
7 e←− Tuple(s[0], s[1])
8

9 for t ∈ T do
10 t.AddToExecuteQueue(e)
11 end
12 line←− FILE.NextLine()
13 end
14 t.AddToExecuteQueue(“EOF”)
15 end

The process initiates by accepting (as input) a path to the file from which edges are
read, as well as a list of identifiers for all the worker nodes. The file at the path is opened for
reading, and the process begins by reading the file line-by-line. For every line, as long as the
line is not an EOF indicator, the process splits the line into the two node identifiers of the
edge that the line describes, and creates a Tuple object containing the two node identifiers.
The process then adds the edge to the processing queue of all the worker threads, reads
the next line from the file, and repeats the process. Once the EOF indicator is encountered,
the process adds this to the processing queue of the worker nodes and finishes executing.
The time complexity of Algorithm 2 is O(|E|), where |E| is the number of edges of the
graph, unfolding in O(|T|) parallel steps with |T| being the number of worker nodes.

4.3. Edge Processing and Community Pruning

Algorithm 3 is where the bulk of the community detection process is done. This
algorithm is run in parallel by all the worker nodes. Each worker node maintains a queue
of inputs received by the edge distribution node (Algorithm 2), and runs a loop of popping
the next input from the queue and running Algorithm 3 with the input from the queue as
the input to the algorithm.

The first thing Algorithm 3 does is check the data type of the input that is received.
If the input is a String, then we know that the EOF indicator has been reached, and we
can calculate the average F1 score of all the communities and pass that on to the collection
node; see Algorithm 5. Before calculating the F1 score, we prune the community to its
final size using Algorithm 4, which can be conducted either by pruning it to the size of the
ground truth community it is based on or by using the drop tail technique of [7].

If the input is a CoDiScommunity, then that community is appended to the list of
communities that the worker node has under inspection. If the input is a Tuple, then it is
an edge that we need to process.

We begin by obtaining nodeU and nodeV from the Tuple and incrementing the total
degrees for both nodes, as well as the counter that keeps track of how many edges have
been processed in total by this worker node. Next, we find all the communities of this
worker node that either node belongs to and start iterating over all those communities.
If the community contains nodeU, then we update the estimated community degrees of
nodeV using the community participation score of nodeU to incorporate the edge quality
and Equation (1), and then we add nodeV to the list of nodes that are part of this com-
munity. The same is then done for nodeV, updating and adding nodeU to the community,
if applicable. The time complexity of Algorithm 3 is O( f1 + k|E|), where f1 is the time
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complexity of Algorithm 4, |E| is the number of edges, and k is the maximum number of
communities each worker node processes (a total of |T|workers in parallel working in their
assigned communities).

Algorithm 3: Edge processing

1 Input(T) such that T is either a String, a CoDiSCommunity, or a Tuple
2 begin
3 switch Typeof(T) do
4 case String do
5 sumF1←− 0
6 for C ∈ this.communities do
7 C.Prune(GetSizeDetermination(C))
8 CollectorNode.AddToExecuteQueue(CalculateF1Score(C))
9 end

10 CollectorNode.AddToExecuteQueue(this.numEdges)
11 end
12 case CoDiSCommunity do
13 Append(this.communities, T)
14 end
15 case Tuple do
16 this.numEdges++
17 nodeU ←− T[0]
18 nodeV ←− T[1]

/* Update degrees of U and V */
19 this.degrees[nodeU]++
20 this.degrees[nodeV]++
21

22 commsU ←− GetCommunitiesContaining(nodeU)
23 commsV ←− GetCommunitiesContaining(nodeV)

/* Update community degrees of U and V and add them to the
community of their neighbor */

24 for C ∈ (commsU ∪ commsV) do
25 if C.Contains(nodeU) then
26 C.commDegrees[nodeV] += C.commDegrees[nodeU]

this.degrees[nodeU]

27 C.nodes.Put(NodeV, C.commDegrees[nodeV]
this.degrees[nodeV]

)

28 end
29 if C.Contains(nodeV) then
30 C.commDegrees[nodeU] += C.commDegrees[nodeV]

this.degrees[nodeV]

31 C.nodes.Put(NodeU, C.commDegrees[nodeU]
this.degrees[nodeU]

)

32 end
33 if this.numEdges % PRUNE_WINDOW == 0 then
34 C.Prune(MAX_COMMUNITY_SIZE)
35 end
36 end
37 end
38 end
39 end
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Once the processing of the edge is done, we check if the number of processed edges is a
multiple of the chosen pruning window, set to 10,000 edges, as per [8]. If it is a multiple, we
use Algorithm 4 to prune the community to a given size. This starts by obtaining a list of key–
value pairs of the nodes the community contains and sorting that list in descending order by
the value of the community participation score. We then obtain a subset of this list with only
the top MAX_COMMUNITY_SIZE nodes and transform the sub-list back into a map,
replacing the old community node map. Before we call Algorithm 4, each community has
a size that is upper-bounded by α = PRUNE_WINDOW + MAX_COMMUNITY_SIZE.
The most expensive step of Algorithm 4 is sorting α values. By using mergeSort, the
run time is O(α log α) for each community, and since each worker processes k commu-
nities, the total running time is O(kα log α) for each worker. We can use maximum
heaps and spend O(k(α + MAX_COMMUNITY_SIZE log α)) time, assuming α >>
MAX_COMMUNITY_SIZE.

Algorithm 4: Prune (Community Pruning)

1 Input(Size) such that Size is the number of nodes that should remain in the
community after pruning has been completed

2 begin
3 sorted←− GetPairsAsList(this.nodes)
4 sorted←− SortByValueDescending(sorted)
5 sorted←− sorted.Sublist(0,Size)
6

7 this.nodes←− ListToMap(sorted)
8 end

4.4. F1 Score Collection and Termination

Algorithm 5 is the process that receives the output from all the worker nodes, reports
the results, and terminates the program. The process receives (as input) a Tuple from the
worker nodes, containing either a double or an integer.

If the received Tuple is a double, then we know the process has received an F1 score
for a single community from a worker node. We then add this F1 score to the total sum of
F1 scores and increment the community counter.

If the received Tuple is an integer, it indicates that the worker node sending it has
completed calculating and transmitting the average F1 score for all the communities it
is evaluating. The integer sent is the total number of edges the worker node processed.
Further, we increment the finished workers counter, and once this counter matches the
number of worker nodes, we can calculate and log the analysis data. We subtract the start
time from the current time to obtain the total execution time and then divide that by the
number of edges to obtain the average time per edge. Finally, we divide the summed F1
scores by the total number of communities to obtain the average F1 score, and write all
these values to a log for analysis.

The time complexity of Algorithm 5 is O(|T|+ k), where k is the maximum number of
communities that each worker node processes, and |T| is the number of total node workers.
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Algorithm 5: Collection and termination

1 Input(T) such that T is a Tuple that contains either a double or an integer
2 begin
3 switch Typeof(T) do
4 case double do
5 this.communityCounter ++
6 this.totalF1 += T
7 end
8 case integer do
9 this.numFinishedWorkers ++

10 if this.numFinishedWorkers == TOTAL_WORKERS then
11 executionTime←− Now()− this.startTime
12 timePerEdge←− executionTime

T
13 averageF1←− this.totalF1

this.communityCounter

14

15 Log(“Average F1: ”, averageF1)
16 Log(“Total Time: ”, executionTime)
17 Log(“Time per Edge: ”, timePerEdge)
18

19 Exit()
20 end
21 end
22 end
23 end

4.5. Apache Storm

Apache Storm is used to implement the distributed computing components of CoDiS.
Apache Storm takes care of passing the messages between different execution nodes.
In addition to handling communication between execution nodes, the Apache Storm imple-
mentation also contains a Topology, which handles how messages should be distributed
between nodes and which nodes receive messages from other nodes. For example, we do
not explicitly distribute messages as in lines 4 and 19–23 of Algorithm 1. Instead, once
the Topology is set up, we simply call emit(Tuple), and the Topology takes care of evenly
distributing the emitted Tuples to the worker nodes that are listening to the node emitting
the Tuples.

Algorithms 1 and 2 are handled by CoDiSSpout, which extends Spout. Algorithms 3 and 4
are handled by CoDiSBolt, which extends Bolt. Algorithm 5 is handled by CoDiSBolt, which
also extends Bolt.

CoDiSSpout starts the process, and, therefore, there is only one instance of it, which
does not listen to the output of any other nodes. CoDiSBolt implements the worker nodes,
so there are as many instances of CoDiSBolt as the desired execution threads, and all the
CoDiSBolts listen to the output of the single CoDiSSpout instance. Finally, there is only a
single CoDiSCollectionBolt, which listens to the outputs of all the CoDiSBolts.

5. Experimental Results

The experiments for the new method proposed in Section 4 were run on four of the
six datasets, see Table 1, compared to those on which DiCeS [8] was run on. The system
used for experimentation is a Linux box running Ubuntu 22.04.1, with a core i7-12700K
CPU and 64 GB of RAM. All tests were run using 2, 3, and 4 bolts in local mode on the
same system and under the same conditions. They were all run 10 times using Maven and
OpenTap to automate running the tests and collecting the results. The input graph text
file was shuffled before each test and the seed set for each ground truth community was
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chosen randomly. The tests were run using the top 5000 ground truth communities with
greater than 20 participating nodes, just as in [8].

Table 1. The counts of nodes and edges for each dataset used, as well as the average F1 score for
both DiCeS [8] and CoDiS when run on our test machine.

Dataset Nodes Edges DiCeS [8] Avg F1 CoDiS Avg F1

Amazon 334,863 925,872 0.81792 0.800006

DBLP 317,080 1,049,866 0.409246 0.412375

YouTube 1,134,890 2,987,624 0.091300 0.086503

LiveJournal 3,997,962 34,681,189 0.57340 0.56326

The reason only four of the six datasets were used is that both DiCeS [8] and CoDiS
eventually ran out of memory on our test system when running the Orkut and Friendster
datasets. These datasets, as well as the top 5000 ground truth communities, are publicly
available https://snap.stanford.edu/data/#communities, accessed on 27 October 2023. No
changes to the source code were made, the sole exception being the hard-coded file names
and number of edges for the reproducible tests.

5.1. F1 Score Evaluation

The average F1 score results of CoDiS are ±0.02 of the results from running the
provided code for [8] for all datasets as shown in Table 1. On average, the average F1 score
of CoDiS was lower than that of [8], with the greatest discrepancy being the results from the
Amazon dataset, with a difference of 0.017914. This is not a rule, however, as the average
F1 score of the DBLP dataset when run in CoDiS was actually higher than the average F1
score when run on [8].

One observation we made during testing is that there was significantly more variation
in the average F1 score for [8] than for CoDiS. When run with a non-random seed set and
with the same input graph file, there was no observed variation in the average F1 score
for CoDiS on any dataset. This is not true of [8], however, and we continued to observe
variations in the F1 score, even after locking the seed sets. We believe that this is due to
the fact that the pruning step of [8] is conducted in parallel to the worker node execution.
Thus, due to different OS scheduling, it is possible for certain edges to be processed during
or after the pruning step, therefore changing the results run-by-run. This is not an issue
in CoDiS, as it is guaranteed that the same edges will be processed before pruning on
every execution.

5.2. Execution Time Evaluation

The main goal of our approach was not to improve the accuracy of [8] but to improve
the running time. The main metric that we look at to validate this is the average time it
takes to process a single edge. This metric was calculated by measuring the entire runtime
of the program (in microseconds) after community initialization and then dividing that
by the number of edges processed. This gives a good average time without the overhead
required to time each individual edge and average them at the end.

Figure 7 shows the average time per edge for CoDiS and DiCeS [8] at different worker
node counts. Across the board, there was a significant decrease in time when running
CoDiS as opposed to DiCeS [8]. The average decrease in processing time is 3.34 times faster
than DiCeS [8]. At 2 bolts, the speedup is 3.26 times greater, at 3, it is 3.17 times greater,
and at 4, it is 3.58 times greater.

https://snap.stanford.edu/data/#communities
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Figure 7. Comparison between the average time per edge for CoDiS and DiCeS [8] when run on our
test machine with 2, 3, and 4 processing nodes, averaged over 10 runs.

5.3. Space Usage Evaluation

While the goal of our approach is to improve the runtime, there is unfortunately a
negative effect on the space used because of our changes. In addition to keeping track
of the community degree of every node for every community, both CoDiS and DiCeS [8]
need to keep track of the total degrees as well. Because the data are no longer stored in a
centralized location, each individual worker node has to maintain the total degree count
itself. This means that the space required to store the node degrees scales with the number
of worker nodes being deployed.

Figure 8 shows the difference in memory usage between CoDiS and DiCeS [8] when
run on the same dataset and differing numbers of Bolts. These data were collected using
VisualVM to monitor the heap size and actual heap utilization of the JVM as the program
ran. The average memory usage of DiCeS [8] remains relatively constant even when the
number of bolts changes, whereas the memory usage of CoDiS scales almost linearly with
the number of bolts.

However, we believe that these results are not actually indicative of a real-world
application. While this increase in space usage is obvious when running on a single system
in local mode, we believe that this discrepancy in space usage would be significantly
reduced in an actual distributed-computing setup. Because of the nature of a distributed-
computing deployment, the data will not be duplicated on any single machine and are
instead shared among all the machines. In addition, in an actual deployment, the data of
the Redis cluster are shared between all the machines, meaning the data access time would
be even longer than when run on a single machine, as in testing.
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Figure 8. Top : The memory usage of CoDiS at (left to right) 2, 3, and 4 Bolts. Bottom: The memory
usage of DiCeS [8] at (left to right) 2, 3, and 4 Bolts.

5.4. Issues with Non-Shuffled Input Graphs

During our testing, we found that there was a large discrepancy between the results
reported in [8] and the results we saw when we ran on our test system. The shortest time to
process an edge, as reported in [8], is when working with the Amazon dataset, at 210 µs per
edge. DBLP and LiveJournal both took around 300 µs per edge, approximately 1.42 times
longer per edge than when running on the Amazon dataset. YouTube took the longest at
around 365 µs per edge, approximately 1.74 times longer than Amazon.

When running the source code for [8] on our test system, which uses a much faster
CPU, we found that it only took 38 µs on average to process an edge for the Amazon
dataset. If the times followed the same scaling as in [8], we would expect the time per edge
of the DBLP dataset to be 38 ∗ 300

210 = 54.28 µs, which is almost exactly what we saw when
actually running it on our machine.

Unfortunately, this is where the similarities stop, as both the YouTube and LiveJournal
datasets had significantly higher processing times per edge than we expected, with Live-
Journal taking 4 times longer than expected and YouTube taking a whopping 31 times
longer. Figure 9 shows the expected running time per edge of DiCeS [8] on our machine,
extrapolated from the running time of the Amazon dataset, and the results from [8]. This
increase in time per edge was immediately apparent; the processing time did not increase
as the program ran but instead was longer from the very first edge.

In order to confirm that it was not an issue with our test machine, we ran the tests on
two other machines (both running Windows 10): a desktop system with an i7-7700k CPU
and 32 GB of RAM, and a laptop with a Ryzen 9 4900 HS and 16 GB of RAM. While the
time per edge of these systems varied due to the different specifications, we saw a large
jump when being run on the YouTube and LiveJournal datasets.

Thankfully, with the help of Dr. Liakos, one of the authors of [8] and the individual
who maintains the GitHub repository for the paper, we were able to determine the cause
of the problem. Dr. Liakos informed us that not only were the seed sets randomized
between each test but the input graph file was shuffled as well. Figure 10 shows that after
performing this shuffling, the runtime of DiCeS [8] was more in line with what we expected
to see.
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Figure 9. Comparison between the expected DiCeS time per edge [8] and the actual time per edge on
the YouTube dataset with 4 bolts.
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Figure 10. Comparison between DiCeS [8] running times observed after shuffling the input graph
and the expected and observed times from the non-shuffled input graph.
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The reason this happens is that in a dense graph, like YouTube, a single node can
have hundreds of edges. Because of this, any communities with that node in the seed set
will quickly grow very large before pruning can occur, causing the processing for those
communities to become exceptionally long. Additionally, because all the edges are going
to many of the same communities, many worker nodes all attempt to access the same
resources at once, leading to a large bottleneck. We believe that this is why we did not
see the same exponential increase in time with an unshuffled graph in CoDiS; even if a
worker node receives several edges that go to the same community in a row, it can quickly
throw them out if those edges do not belong to any of its communities. Even if they do,
the worker node does not have to wait for other workers to access any resources, and can
immediately process the node.

This scenario can naturally occur. Consider a web crawler that emits edges represent-
ing links between web pages. If this crawler comes across a page with a large number of
links to other pages and emits all those links before crawling to any of them, it would be
the same scenario as reading an unshuffled graph, as we would receive several edges in a
row that all share at least one node in common.

6. Results and Conclusions

In this paper, we propose a novel method called the community detection with seed
sets (CoDiS) algorithm, which solves the overlapping community detection problem in
graph streams. This new algorithm is inspired by a subgraph approach and takes advantage
of the unique way DiCeS [7] approaches community detection to process the communities
themselves in parallel instead of individual edges. By doing this, we hope to gain significant
time savings by removing the need for data distribution among systems and concurrency
protection, while having little to no impact on the accuracy of the communities found.

In addition, we discovered a previously unknown downside in [8]: a significant loss
in processing speed when the input comprises a long run of edges sharing the same node.
This situation is not unlikely to be encountered in a real-world deployment, so the fact
that our implementation is not vulnerable to this event is another improvement over the
original approach.

Section 5 shows that we successfully achieved this goal. Our proposed implementation
had little to no change in the F1 score, with the difference in the average F1 score being
smaller than the largest variation seen in the F1 score across DiCeS runs [8]. Based on
these results, we believe that our implementation is a significant improvement to DiCeS [8],
and can even be improved further.

6.1. Discussions

We parallelize the problem by splitting the communities among the worker nodes,
such that no concurrency issues arise. Every time we consider a new edge to expand
the existing communities, each worker node handles this within its assigned subset of
communities. The speedup that we achieved was an average of 3.37 times greater with 2,
3, and 4 bolts.

In our approach, we assume that all worker nodes are homogeneous and the adjust-
ment term δ is 0 in Equation (2). Having the same worker nodes simplifies our model,
making it easy to simulate. Additionally, it is easy to scale the algorithm by adding or
removing worker nodes as needed. However, in real parallel computing systems, worker
nodes exhibit different computational power and capabilities. These differences can be due
to various factors; taking into account these differences offers advantages and challenges at
the same time.

Detecting overlapping communities in parallel can result in energy savings by opti-
mizing the utilization of computational resources. By distributing the workload across
multiple worker nodes or cloud clusters, we can achieve faster execution and reduce energy
consumption.
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6.2. Future Work

While the work we have conducted to implement our novel method has already
shown significant improvement, there is still more we would like to do in order to further
optimize the method. In the following subsections, we discuss some ideas.

6.2.1. Custom SortedMap

In [8], all data are stored in a Redis cluster. The community nodes specifically are
stored in what Redis calls a SortedSet, which is essentially a String to a Double map that
is sorted on the value of the Double. This allows Redis to quickly remove the last X values
from the SortedSet. As removing Redis was one of the major goals of our implementation,
we were unable to use this dataset, and instead used a Java HashMap. Because of this,
whenever we wanted to prune a community, we needed to obtain the map pairs as a list,
sort that list, obtain only the first X values that we wanted to keep, create a new HashMap
from those pairs, and then replace the current HashMap with the new one. This introduced
additional space complexity to our approach. In the future, we would like to create a
custom data type that can be kept sorted, allowing for easy and quick pruning while not
losing the fast access time of a HashMap.

6.2.2. Parallelize Pruning

One of the advantages of making community data available to all processing nodes
is that it is possible to move the pruning of the communities to its own processing node.
By removing Redis from our implementation, we now have to conduct the pruning sequen-
tially with the edge processing, meaning we have to pause edge processing any time we
want to prune. In the future, we would like to look into ways to possibly move the pruning
process back to being done in parallel to the edge processing. However, this might become
unnecessary if the pruning process could be accelerated using a custom data type.

6.2.3. Heterogeneous Worker Nodes

Considering heterogeneous worker nodes (i.e., with varying computational power) is
something that we did not consider in this paper. In this scenario, different load-balancing
algorithms for assigning communities to worker nodes may be exploited by considering
the computational power of the worker node. In Equation (2), the adjustment term δi may
be different for every i-th worker. As an example, the adjustment term δi can be set based
on the power consumption or computational capability of worker node i.
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