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Abstract: Optimal allocation of ward beds is crucial given the respiratory nature of COVID-19, which
necessitates urgent hospitalization for certain patients. Several governments have leveraged tech-
nology to mitigate the pandemic’s adverse impacts. Based on clinical and demographic variables
assessed upon admission, this study predicts the length of stay (LOS) for COVID-19 patients in
hospitals. The Kolmogorov–Gabor polynomial (a.k.a., Volterra functional series) was trained using
regularized least squares and validated on a dataset of 1600 COVID-19 patients admitted to Khor-
shid Hospital in the central province of Iran, and the five-fold internal cross-validated results were
presented. The Volterra method provides flexibility, interactions among variables, and robustness.
The most important features of the LOS prediction system were inflammatory markers, bicarbon-
ate (HCO3), and fever—the adj. R2 and Concordance Correlation Coefficients were 0.81 [95% CI:
0.79–0.84] and 0.94 [0.93–0.95], respectively. The estimation bias was not statistically significant
(p-value = 0.777; paired-sample t-test). The system was further analyzed to predict “normal”
LOS ≤ 7 days versus “prolonged” LOS > 7 days groups. It showed excellent balanced diagnos-
tic accuracy and agreement rate. However, temporal and spatial validation must be considered
to generalize the model. This contribution is hoped to pave the way for hospitals and healthcare
providers to manage their resources better.

Keywords: COVID-19; Kolmogorov–Gabor polynomials; length of stay; hospital capacity;
regularized least squares; validation studies

1. Introduction

The fast spread of the SARS-CoV-2 coronavirus has placed immense strain on health-
care systems across the globe. As infected individuals surged, the demand for hospital
admissions grew accordingly [1]. Past outbreaks have demonstrated that limited bed
capacity and hospital resources significantly contribute to higher infectious disease mortal-
ity rates [2]. Hence, guidelines for prioritizing patients and determining who should be
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admitted for essential care are instrumental in addressing resource limitations. Neglecting
this could jeopardize the lives of COVID-19 patients [3].

Nine to eleven percent of COVID-19 hospitalizations required enhanced life-support
interventions [4]. However, the ICU faced challenges accommodating these needs due
to limited beds and shortages in monitoring equipment, life-sustaining machinery, and
skilled staff crucial for top-tier care [5]. In a study encompassing 183 nations in 2021, Sen-
Crowe et al. [2] reported that high-income areas registered the highest average ICU beds at
12.79 and 402.32 hospital beds for every 100,000 individuals. On the other hand, regions
with upper-middle income showed dominance in average acute-care beds, numbering
424.75 per 100,000 inhabitants. This is not the case for low- and middle-income countries,
where the number of ICU beds is often insufficient, and the equipment is often old and
poorly serviced. This number was five beds per one million people in Africa [6].

Challenges in managing hospital capacity throughout this pandemic spanned various
phases, including testing, treatment, and preparation for future patients. As a result, there
is a pressing need to accurately predict and prioritize patients based on the likelihood of
their condition escalating in severity. It is part of the pandemic preparedness action plan.

In predicting hospital length of stay (LOS), the overarching challenges introduced
by COVID-19 cannot be overlooked. The pandemic has significantly strained hospital
capacities, potentially altering standard care pathways and discharge protocols. Further-
more, heightened fatigue [7], burnout [8], and stress among healthcare professionals [9],
a byproduct of the ongoing crisis, may also have indirect implications for the duration
of patient stays. These combined factors elucidate the multifaceted dynamics influencing
hospital operations during these unprecedented times.

Numerous studies have explored predicting hospital resource needs for COVID-19
patients. Many of these investigations have leveraged machine learning (ML). ML has
established itself as an invaluable tool in the medical realm, adept at sifting through
and synthesizing vast amounts of data to discern intricate patterns. Most health-related
challenges nowadays rely heavily on ML to disentangle the complexities inherent in large-
scale data, facilitating informed healthcare decisions.

During outbreaks like COVID-19, forecasting the imminent demand for medical
resources such as beds and nasal oxygen support becomes crucial. In this context, ML
methodologies have proven invaluable [10,11]. For instance, researchers from London
designed an ML algorithm that outperformed clinical experts in predicting COVID-19
patient mortality [12]. Another ML study successfully predicted which COVID-19 patients
would transition into a severe respiratory phase with a 70–80% accuracy rate [13].

Furthermore, an AI-based tool named “ambient warning and response evaluation”
has been employed to refine ICU clinical settings. This tool significantly enhanced timely
and accurate decision-making, leading to a 37% reduction in LOS [14].

LOS estimation remains crucial for efficient healthcare management, offering insights
into patient health trajectories, resource allocation, and the quality-of-care delivery. The
state-of-the-art research listed encompasses a myriad of methodologies and priorities,
thereby revealing both the advancements and the persisting gaps in LOS prediction.

Nemati et al. (2020) [15] utilized a global dataset and focused on a limited set of
five variables, primarily age and sex, to estimate LOS. Their approach, which involved
stagewise gradient boosting, did not venture into comprehensive features but mainly
centered around symptoms onset date and symptoms. Given the minimalistic input feature
set, this focus might limit its applicability in varied clinical settings.

Working in a tertiary care hospital in China, Hong et al. (2020) [16] used logistic
regression with a set of 37 variables, including lymphocyte and neutrophil count, heart
rate, and procalcitonin levels, D-dimer, and partial thrombin time. Their dataset was also
relatively small, including 75 patients considering the number of predictors, and reached
an AUC of 0.85 to classify prolonged (>14 days) versus normal (≤14 days) hospital LOS.
Their work lacks internal and external validation, indicating potential overfitting risks.
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Ebinger et al. (2021) [17] embarked on an extensive exploration of 966 patients with
353 variables of electronic health records (EHRs) to classify patients based on extended
stays (i.e., LOS > 8 vs. LOS ≤ 8 days) in the Cedars-Sinai Medical Center. Forty-two
machine learning models were used as ensemble models of 12 base classifiers (including
Elastic-net and random forest). Such models were trained using the first 1, 2, and 3 days of
hospital admission. Advanced Average (AVG) Blender for the day 3 model outperformed
the others. Age, Interleukin 6, blood urea nitrogen level, and oxygen flow rate were among
the selected features. The best model had an area under the ROC curve (AUC) of 0.82 and
a precision of 67%.

Usher et al. (2021) [18] analyzed data from 36 hospitals across Minnesota, Wisconsin,
and the Dakotas. Using 20 variables, which included diverse features such as age, critical
illness, mechanical ventilator (MV) application, and oxygen requirement, their approach
adopted the random forest method, considering it as the best model. The classification
output was the LOS ≤ 5 days (reference), LOS between 5 and 10 days, LOS between 10 and
15 days, and LOS > 15 days. With five-fold cross-validation, they achieved an AUC of 0.89,
highlighting the potential of integrating diverse input features for LOS category prediction.

Mahboub et al. (2021) [19] at Rashid Hospital in Dubai took a distinct route by
incorporating treatments as input features and variables such as urea, platelets, and D-
dimer. Utilizing decision trees on a dataset of 2017 patients, they achieved a coefficient
of determination (R2) of 0.5, suggesting the relevance of treatment variables in predicting
LOS.

Liuzzi et al. (2022) [20] from the Fondazione Don Carlo Gnocchi Living COVID-
19 Registry in Italy incorporated a comprehensive set of 829 variables, with a focus on
55 primary variables spanning across admission clinical scales, symptoms, and therapies.
Their method, employing sequential convolutional neural networks, was validated with
repeated five-fold cross-validation, resulting in a median absolute deviation of 2.7 days.

Orooji et al. (2022) [21] in Iran, with data from 1225 patients, utilized 53 variables
and emphasized 20 key features such as age, creatinine, and lymphocyte/neutrophil
count. They applied statistical feature selection combined with multi-layer perceptron and
12 training algorithms, reaching a root-mean-square error (RMSE) of 1.6213 days.

In 2022, Alabbad et al. [22] from King Fahad University Hospital in Saudi Arabia
classified ICU LOS into nine categories using 43 variables. The synthetic minority over-
sampling technique (SMOTE) was used to balance the class distribution. Their best model
employed random forest, and they also explored gradient boosting and extreme gradient
boosting. With three-fold cross-validation, their model boasted a positive predictive value
(PPV) of 94%, indicating high precision in prediction.

Alam et al. (2023) [23] from Prince Sultan Hospital in Riyadh incorporated 89 variables,
including laboratory data, X-ray results, clinical data, and treatments, to classify LOS into
seven categories. Their model utilized the Tab Transformer and achieved impressive results,
with an F1 score of 93% for discharged patients. The SMOTE-N oversampling technique
was also noted to balance the class distribution.

Zhang et al. (2023) [24] analyzed 83 variables, including immunotherapy and heparin,
to predict LOS for 384 patients at Zhengzhou University Hospital. Using the least absolute
shrinkage and selection operator (LASSO) and linear regression, they explained 30% of
LOS variability (R2 = 0.30). Missing data were managed with imputations, and results were
verified via bootstrap validation.

Overall, while significant strides have been made in predicting LOS through diverse
methodologies, ranging from classical regression models to neural networks, gaps in vali-
dation and comprehensive feature inclusion, conditioning on future events (e.g., therapies)
resulting in selection bias, incorporating time-dependent predictors (e.g., treatments) as
time-fixed, leading to immortal-time bias [25], and balancing the dataset, resulting in biased
performance indices [26] remained a consistent challenge. Moreover, sample size insuffi-
ciency based on the number of input features [27] was the other problem of some methods
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proposed in the literature. Further research was required to enhance model generalizability
across varied clinical settings.

Our research aimed to employ multivariable analysis and the Kolmogorov–Gabor
polynomial to craft a predictive model. This model aimed to precisely forecast the LOS of
COVID-19 patients in a nationally representative sample of the pediatric population in the
Middle East and North Africa (MENA) based on their demographic and clinical data upon
hospital admission.

Our primary model was designed to predict the continuous LOS. We evaluated and
presented performance metrics for this continuous prediction. Additionally, we derived
a binary representation of LOS from the predicted and actual data, categorizing it as
either prolonged (LOS > 7 days) or normal (LOS ≤ 7 days). This binary classification’s
performance was also examined. We adopted this approach to accommodate the existing
literature’s categorical and continuous LOS representations. Our primary focus remained
the continuous prediction model, which can seamlessly be converted to a binary prediction
through straightforward post-processing.

2. Materials and Methods
2.1. Data Source

In this retrospective study, we examined the clinical records of N = 1600 confirmed
COVID-19 cases with complete information from Isfahan, situated in the center of Iran,
from 6 March to 7 May 2020. These patients were admitted to Khorshid Hospital, which
caters to the vast metropolitan area of Isfahan, home to over 15 million residents. Given
that this hospital functioned as the primary referral center for critical COVID-19 cases
during this period, our study exclusively focused on the patients admitted to the hospital.
Patients with a positive RT-PCR test confirming SARS-CoV-2 infection or confirmed chest
computed tomography (CT) results were enrolled in this study.

All participants’ LOS was calculated from their initial hospital ward or ICU admission
until discharge. It is noteworthy to mention that this LOS represents the first recorded
admission. Comprehensive information regarding the study design and the methods used
to register variables can be found in our Khorshid COVID Cohort (KCC) study [28]. The
data gathered included demographic details such as age and sex, pertinent dates including
COVID-19 diagnosis and hospital or ICU admission, and the patient’s most recent known
clinical status.

2.2. Data Description and Pre-Processing

This study extracted and used patients’ records, including non-clinical, clinical, and
symptom data. Non-clinical data included sex, age, occupation, education, body mass
index, family size, number of family members infected, house area, travel history, duration
of symptoms before admission, and history of influenza vaccination. Clinical patient data
included principal diagnosis, admission unit, medical history, and comorbidities. Labo-
ratory data included the results of all blood tests performed at patient admission. The
latest available laboratory tests included were CBC results, sodium (Na+), potassium (K+),
urea, creatinine, alkaline phosphatase (ALP), aspartate transaminase (AST), alanine amino-
transferase (ALT), bilirubin, international normalized ratio (INR), lactate dehydrogenase
(LDH), C-reactive protein (CRP), ferritin, hemoglobin A1c (HbA1c), D-dimer, erythrocyte
sedimentation rate (ESR), and vitamin D. To assess patient health status and identify the
required level of care, parameters such as blood pressure, heart rate, and respiratory rate
were recorded. Comorbidity categories were evaluated by the Charlson comorbidity index
(CCI), which is one of the most commonly used methods to evaluate comorbid factors
and predict mortality [29]. It was calculated based on age category, history of myocardial
infarction (MI), congestive heart failure (CHF), peripheral vascular disease, history of
a cerebrovascular accident or transient ischemic attacks, dementia, chronic obstructive
pulmonary disease (COPD), connective tissue disease, peptic ulcer disease, liver disease,
diabetes mellitus, hemiplegia, moderate to severe chronic kidney disease (CKD), presence
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of solid tumor, leukemia, lymphoma, and AIDS, ranging from 0 to 37. These medical
conditions were classified by the International Classification of Diseases, Tenth Revision,
Clinical Modification (ICD-10-CM) codes that are available in Appendix I Table SI-1 in [30].
The CCI was categorized into five groups: CCI score 0, CCI score 1–2, CCI score 3–4, CCI
score 5–6, and CCI score ≥7 [31].

In addition to fever (body degree “up to 39.4 ◦C”), other symptoms, including fatigue,
cough, sore throat, headache, nasal congestion, shortness of breath, severe chest pain,
severe muscle pain, vomiting, dry cough, nausea, diarrhea, abdominal pain, muscle and
joint pain, general weakness, smell-taste disorder, and dyspnea were identified by the
medical interview [32]. Primary composite endpoints (PCEP) were defined as death, the
use of mechanical ventilation, or admission to intensive care [33].

2.3. Statistical Data Analysis

Descriptive statistics, including means, frequencies, and proportions, are summarized
for the collected data. The disease severity level stratifies summaries. Chi-squared and
Fisher exact tests were used whenever appropriate to examine differences among categori-
cal predictors. The endpoint of this study was LOS, which was calculated according to the
number of days of hospitalization. The paired-sample t-test was used to identify if the LOS
bias was statistically significant [34]. The Bland–Altman plot, (also known as the Tukey
mean-difference plot) [35] was provided to analyze the LOS error. Patients were divided
into two groups for descriptive analysis, according to the quartile LOS value: ≤7 days as
normal and > 7 days as prolonged LOS [36]. Such a cutoff was used in terms of healthcare
utilization. We considered p < 0.05 as statistically significant. Predictive modeling was
performed offline using MATLAB version 9.6 R2019a (Natick, MA, USA: The MathWorks
Inc.), while statistical analysis was performed using IBM SPSS Statistics for Windows,
Version 29.0 (Armonk, NY, USA: IBM Corp).

2.4. Predictive Modeling

Volterra functional series, also known as Kolmogorov–Gabor polynomials [37], were
used in our study for prediction. The level of interaction was limited to two to reduce the
computational complexity and overfitting. The proposed model is provided in Equation (1).

y =a0 +
m

∑
i=1

aixi +
m

∑
i=1

m

∑
j=1

aijxixj (1)

where y is the output of the model (LOS), xi is the ith input feature (i = 1, . . ., m), m is
the number of features, and the model parameters are a0 (the offset) and aij (two-way
interaction coefficients; i, j = 1, . . ., m). Prior to estimation, the output variable was
detrended by subtracting its average. After the model was constructed, this offset was
subsequently added back. Since some input features were categorical, one-hot and ordinal
encoding were used for nominal and ordinal features, respectively [38], allowing capturing
the system’s response for each of multiple generated binary features. Prior to estimating
the coefficients, highly correlated (i.e., with an absolute correlation coefficient higher than
or equal to 0.8) features and two-way interactions were identified, and some of those were
selected to avoid collinearity and multicollinearity [39]. Note that multicollinearity was
further reduced by dropping one of the one-hot encoded columns, also known as “dropping
one level”. Since Equation (1) contains all two combinations of the input coded features,
we used regularized least squares (RLS) [40], with the Euclidean norm penalization, also
known as the ridge regression, to estimate the coefficients in the under-determined system:

ARLS =
(

XT × X + λI
)−1

× XT × Y (2)

where ARLS are the estimated coefficients in Equation (1), Y is the target LOS vector, X is
the data matrix for the selected input features of the training set, and T is the transpose
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operator. The regularization parameter (λ) was estimated during the cross-validation on the
training set [40]. The ridge regression can help reduce the model’s variance and improve
its generalization to unseen data and more stable estimates, mitigate the risk of overfitting,
manage model complexity, and provide some feature stability [41].

2.5. Model Validation

Five-fold cross-validation was used in our study, and the cross-validated results were
provided. The goodness-of-fit of the LOS estimation algorithm was assessed using root-
mean-squared-error (RMSE), mean and median absolute error, as well as the coefficient of
determination (R2) [42], adjusted R2 (adj. R2), and the concordance correlation coefficient
(ρc) [43]. For the LoSi and yi pairs (i = 1, . . ., N), such indices were calculated as follows:

R2 = 1 − ∑N
i=1(LoSi − yi)

2

∑N
i=1(LoSi − LoSµ)

2 (3)

where,

adj. R2 = 1 −
(

N − 1
N − p − 1

)
×
(

1 − R2
)

(4)

where p is the number of selected input features of the model.

ρc =
2 × CoV(LoS, y)

σ2
LoS + σ2

y + (y − LoSµ)
2 (5)

where CoV is the covariance, σ2
LoS =

(
1
N

)
× ∑N

i=1(LoSi − LoSu)
2 is the variance of the LOS,

LOSu is the mean of LOS, σ2
y is the variance of the predicted LOS, and y is the mean of the

predicted LOS.
We further analyzed the binary outcome of the prediction system for the normal

(LOS ≤ 7 days) and prolonged LOS (LOS > 7 days) [44]. The performance indices were
calculated based on the cross-validated confusion matrix:

• TP (True Positives) = The number of accurately identified prolonged LOS
• TN (True Negatives) = The number of accurately identified normal LOS
• FP (True Positives) = The number of inaccurately identified prolonged LOS
• FN (True Positives) = The number of inaccurately identified normal LOS

The following performance indices were then calculated:

Se =
TP

TP + FN
(6)

Sp =
TN

TN + FP
(7)

PPV =
TP

TP + FP
(8)

DOR =
TP × TN
FP × FN

(9)

AUC =
Se + Sp

2
(10)

F1 =
2 × TP

2 × TP + FN + FP
(11)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(12)
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K(C) =
2 × (TP × TN − FP × FN)

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(13)

where Se is the sensitivity, Sp is the specificity, PPV is the positive predictive value, DOR
is the diagnostic odds ratio, AUC is the balance diagnostic accuracy (area under the ROC
curve), F1 is the F1 score, MCC is the Matthews’s correlation coefficient [45,46], and K(C) is
the Cohen’s Kappa agreement rate.

Also, the unbiased PPV was calculated based on the sensitivity and specificity of
the developed dichotomous LOS model using different prevalence (P) measures of the
prolonged LOS in the hospital. PPV is the probability that a patient has prolonged LOS
when the dichotomous LOS model results are positive. The related formula was presented
in Equation (14). It was estimated using the Bayes’ theorem [26]:

unbiased PPV =
Se × P

Se × P + (1 − Sp)× (1 − P)
(14)

Following the Transparent reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) guideline [47], a CI of 95% of the performance indices
was reported.

2.6. Ethical Considerations

The study protocol was reviewed and approved by the Isfahan University of Medical
Sciences Research Ethical Committee (IUMSREC), with the following approvals: Modeling
of incidence and outcomes of COVID-19: IR.MUI.RESEARCH.REC.1399.479 and Longi-
tudinal epidemiologic investigation of patients’ characteristics with coronavirus infection
referring to Isfahan Khorshid Hospital: IR.MUI.MED.REC.1399.029, conforming to the
Declaration of Helsinki. Patient informed consent was obtained before admission to the
current study. All data were kept confidential and had no personal identifiers. No minors
participated in our study.

3. Results

Descriptive statistics were used to summarize the baseline characteristics of the study
population. In our setting, 1600 COVID-19 patients were included in the study. Patients
were categorized according to their LOS (≤7 days (n = 1165) as “normal”, >7 days (n = 435)
as “prolonged”) in univariate comparison analysis. The median length of stay during the
study period was 7.2 (IQR 4−9) days. Tables 1 and 2 summarize the descriptive statistics
and the characteristics and symptoms of the patients considered in the study according to
the length of stay categories.

For an example, an 86-year-old male COVID-19 patient with fever, cough, myalgia,
sore throat, dizziness, diarrhea, stomachache and weight loss symptoms, but without chest
pain, headache, loss of smell, vomiting, nausea, and short breath with CCI of 4, maximum
body temperature of 36◦, heart rate of 84 (beats per minute), respiratory rate of 16 (breaths
per minute), systolic blood pressure of 105 (mmHg), diastolic blood pressure of 66 (mmHg),
%O2 saturation minimum of 90, neutrophils of 715 (×109/L), lymphocytes of 264 (×109/L),
hemoglobin of 12.10 (g/dL), platelet of 126.00 (×109/L), ferritin of 255.50 (ng/mL), CRP of
14.00 (mg/L), ESR of 26.00 (mm/h), LDH of 487.00 (U/L), D-dimer of 98.30 (mg/L), AST
of 39.00 (IU/L), HCO3 of 31.00 (mEq/L), ALT of 16.00 (IU/L), creatinine of 0.73 (mg/dL),
phosphorus of 2.56 (mg/dL), magnesium of 1.90 (mg/dL), sodium of 135.00 (mEq/L),
potassium of 4.00 (mEq/L), BUN of 24.80 (mg/dL), and total bilirubin of 0.96 (mg/dL) had
an LOS of 5 days in Khorshid Hospital.
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Table 1. Characteristics of hospitalized patients with COVID-19 in the Khorshid Cohort Study.

Parameters Total
(n = 1600)

Length of Stay (LOS)

p-Value b
≤7 Days

“Normal” (n = 1165)

>7 Days
“Prolonged”

(n = 435)

LOS, days a 6.01 (4.85) 3.76 (1.94) 12.11 (5.09) <0.001

Age (>65 years) 562 (56.10%) 507 (43.50%) 55 (12.60%) <0.001

Gender (% Female) 670 (48.80%) 464 (39.80%) 206 (47.30%) 0.001

Charlson Comorbidity
Index (CCI) a 2.67 (2.13) 2.49 (2.11) 3.13 (2.13) <0.001

Temperature maximum (≥38 degrees Celsius) 412 (25.75%) 322 (23.64%) 90 (20.68%) 0.745

Heart rate, beats per minute (<60 or >100) 478 (53.98%) 388 (33.3%) 90 (20.68%) 0.028

Respiratory rate, breaths per minute a 22.41 (5.67) 22.02 (5.27) 23.49 (6.56) 0.006

Systolic blood pressure (≥120 mmHg) 574 (35.80%) 247 (21.01%) 277 (63.70%) <0.001

Diastolic blood pressure (≥90 mmHg) 218 (13.60%) 113 (9.60%) 105 (24.10%) 0.046

% O2 saturation minimum (<90) 754 (47.10%) 606 (52.01%) 148 (34.02%) 0.001

Neutrophils (<4 × 109/L) 956 (59.75%) 620 (53.22%) 336 (77.20%) 0.028

Lymphocytes (<1 × 109/L) 900 (96.40%) 621 (53.30%) 279 (64.10%) 0.028

Hemoglobin (<12 g/dL) 356 (22.30%) 293 (20.50%) 63 (14.40%) 0.085

Platelets (<150 × 109/L) 678 (59.75%) 480 (41.20%) 198 (45.51%) 0.142

Ferritin (>500 ng/mL) 94 (5.80%) 72 (6.01%) 22 (5.05%) 0.298

CRP (>30 mg/L) 685 (42.80%) 542 (46.52%) 143 (32.87%) 0.017

ESR (>60 mm/h) 420 (26.30%) 245 (21.03%) 175 (40.20%) 0.027

LDH (>222 U/L) 672 (42.00%) 416 (35.70%) 256 (58.80%) 0.046

D-dimer (>0.5 mg/L) 381 (23.80%) 95 (8.20%) 286 (65.70%) 0.036

AST (>35 IU/L) 1156 (72.30%) 749 (64.30%) 407 (93.50%) 0.330

HCO3 (mEq/L) 23.65 (3.67) 17.25 (3.76) 20.45 (2.78) 0.0123

ALT (>45 IU/L) 401 (25.10%) 305 (26.18%) 96 (22.06%) 0.204

Creatinine (>1 mg/dL) 822 (51.40%) 591 (45.40%) 231 (53.10%) <0.001

Phosphorus (mg/dL) a 3.06 (0.85) 2.97 (0.85) 3.24 (0.81) <0.001

Magnesium (mg/dL) a 1.96 (0.51) 1.95 (0.27) 1.99 (0.74) 0.335

Sodium (mEq/L) a 136.30 (4.13) 136.42 (3.94) 136.09 (4.46) 0.054

Potassium (mEq/L) a 4.02 (0.56) 3.99 (0.54) 4.08 (0.60) 0.055

BUN (mg/dL) a 19.79 (13.47) 18.67 (12.37) 21.92 (15.13) <0.001

Total bilirubin (mg/dL) a 1.03 (2.17) 1.06 (2.61) 0.98 (0.61) 0.361
a The percentage of the high-risk group (i.e., exposure) was provided in parentheses in total, “normal” or
“prolonged” LOS subgroups when the high-risk cutoff was mentioned for parameters, and the standard deviation
(SD) was provided (with “a” superscript) otherwise for the variables with an interval measurement scale. Such
cutoffs were taken from the literature, and their citations were provided in the manuscript. For the predictor
gender, the percentage of female subjects was provided in parentheses as the reference group. Statistical tests
were selected based on the data’s nature and the variables’ distribution. b An independent-sample t-test was used
for interval variables if the data were normally distributed; otherwise, the Mann–Whitney U test was employed.
The Chi-square test was utilized for binary variables to compare proportions between the two independent
groups. Note that the expected frequencies in any of the cells of the contingency table were more than five. ESR:
erythrocyte sedimentation rate, LDH: lactate dehydrogenase, AST: aspartate transferase, HCO3: bicarbonate, ALT:
alanine transaminase, BUN: blood urea nitrogen.

Figure 1 shows the frequency distribution of LOS, which was right-skewed. The
median age of patients was 59 (IQR 47–79) years (range 5–91), and 58% were male. Comor-
bidities were present in more than half of the patients, with hypertension being the most
common comorbidity, followed by diabetes. The Charlson comorbidity index is presented
in Table 1 for patients admitted for ≤7 and >7 days in hospital. The comorbidities score was
significantly higher in patients with longer LOS (p-value < 0.05, Table 1). The cutoffs used
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for high-risk exposures were provided by the following: age [48], body temperature [49],
heart rate [50,51], blood pressure [52], oxygen saturation [53], neutrophils, lymphocytes,
hemoglobin, platelets, D-dimer [54], ferritin [55], CRP [56], ESR [57], LDH [58], AST [59],
ALT [60], and creatinine [61].

Table 2. Symptoms distribution between patients with normal and prolonged LOS.

Symptoms Total

Length of Stay

p-Value a≤7 Days
“Normal”
(n = 1165)

>7 Days
“Prolonged”

(n = 435)

Fever 1118 (69.9%) 721 (61.9%) 397 (91.3%) < 0.001

Cough 1125 (70.3%) 990 (85.0%) 135 (31.0%) < 0.001

Myalgia 838 (52.4%) 562 (48.2%) 276 (63.4%) < 0.001

Throat pain 255 (15.9%) 168 (14.4%) 87 (20.0%) 0.058

Weight Loss 259 (16.2%) 164 (14.1%) 95 (21.8%) 0.018

Chest pain 394 (24.6%) 279 (23.9%) 115 (26.4%) 0.365

Dizziness 97 (6.1%) 64 (5.5%) 33 (7.6%) 0.540

Headache 515 (32.2%) 372 (31.9%) 143 (32.9%) 0.112

Loss of smell and taste 186 (11.6%) 134 (11.5%) 52 (12.0%) 0.260

Diarrhea 377 (23.6%) 247 (21.2%) 130 (29.9%) 0.113

Vomiting 352 (22.0%) 233 (20.0%) 119 (27.4%) 0.478

Nausea 543 (33.9%) 373 (32.0%) 170 (39.1%) 0.518

Shortness of breath 995 (62.2%) 646 (55.5%) 349 (80.2%) 0.032

Stomachache 243 (15.2%) 166 (14.2%) 77 (17.7%) 0.393
a The Chi-square test was utilized for binary variables to compare proportions between the two independent
groups. Note that the expected frequencies in any of the cells of the contingency table were more than five.
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Figure 2 shows the rate of different PCEP events among patients for both short and
prolonged LOS. ICU admission is the most prevalent (55%) status among patients with
prolonged LOS. There was a significant association between LOS and the PCEP binary
variable (p-value < 0.001).

Information 2023, 14, x FOR PEER REVIEW 10 of 26 
 

 

 
Figure 1. The length of stay (LOS) distribution. 

Figure 2 shows the rate of different PCEP events among patients for both short and 
prolonged LOS. ICU admission is the most prevalent (55%) status among patients with 
prolonged LOS. There was a significant association between LOS and the PCEP binary 
variable (p-value < 0.001). 

 
Figure 2. The distribution of different patient status PCEPs based on length of stay categories. 

Fever (p-value < 0.001), cough (p-value < 0.001), myalgia (p-value < 0.001), weight loss 
(p-value 0.018), and shortness of breath (p-value 0.032) were significantly different in the 
LOS groups (Table 2). The cross-validated results of the proposed algorithm for the esti-
mation of LOS as well as its “normal” and “prolonged” categories is provided in Table 3. 
The most important features of the LOS prediction system were inflammatory markers, 
HCO3, and fever. 

  

Figure 2. The distribution of different patient status PCEPs based on length of stay categories.

Fever (p-value < 0.001), cough (p-value < 0.001), myalgia (p-value < 0.001), weight
loss (p-value 0.018), and shortness of breath (p-value 0.032) were significantly different in
the LOS groups (Table 2). The cross-validated results of the proposed algorithm for the
estimation of LOS as well as its “normal” and “prolonged” categories is provided in Table 3.
The most important features of the LOS prediction system were inflammatory markers,
HCO3, and fever.

Table 3. The cross-validated results of the proposed prediction algorithm in percent.

Indices RMSE MAE1 MAE2 R2 adj. R2 ρc Se Sp PPV DOR AUC F1 MCC K(C)

Value 1.58 1.22 0.98 89 81 94 92 91 79 112 91 80 79 79

95% CI-Lower 1.51 1.16 0.92 88 79 93 89 89 75 71 89 76 77 75

95% CI-Upper 1.64 1.28 1.05 91 84 95 95 93 83 179 94 85 81 83

MAE1: mean absolute deviation; MAE2: median absolute deviation.

The Bland–Altman plot of residual analysis is provided in Figure 3. Although the
bias was not statistically significant (p-value = 0.777; paired-sample t-test), the residual
error was higher in higher target LOS than lower LOS values. The residual error was
further analyzed in “normal” and “prolonged” LOS groups. The estimation error values
of 3.9% and 3.2% subjects surpassed the lower or higher 1.96 limits in the “normal” and
“prolonged” LOS groups, respectively.
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in pink.

The ROC curve was then provided for the predicted LOS versus the binary ground
truth (Figure 4). The best cutoff was calculated using the Youden index (J = Se + Sp − 1),
estimated as >6.95, almost identical to our a-priori threshold.
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We further predicted the importance of significant factors in the Kolmogorov–Gabor
polynomials. The main predictors were only analyzed based on their normalized coeffi-
cients in the model. The seven most important factors are provided in Figure 5.
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The unbiased PPV plot is provided in Figure 6 based on the prevalence of the pro-
longed LOS and Equation (14). The required parameters of Bayes’ theorem were assessed
from Table 3.
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LOS in the hospital.

4. Discussion
4.1. Implications

Medical researchers have recently been striving to enhance the quality and efficiency
of healthcare systems and services. A significant aspect of this endeavor pertains to the LOS
in the context of future outbreaks. Given the emergence of various variants of the virus
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responsible for COVID-19, accurately assessing or predicting LOS is becoming increasingly
vital. An extended LOS not only impacts hospital capacity [62] but also escalates costs
associated with outbreak management [63]. Hence, nations must plan for even the worst-
case scenarios. This research delved into the risk factors of hospital admissions that
influence the LOS among COVID-19 patients in Isfahan, Iran. We utilized a novel nonlinear
artificial intelligence method for continuous data, focusing on comprehensive predictors.
Our findings indicate that patients with prolonged hospital stays typically exhibited higher
inflammatory markers, increased HCO3, and more prevalent fever. These insights can
guide clinicians in pinpointing specific risk factors linked to extended LOS. Moreover, our
results serve as a benchmark for various models that could be applied in similar analyses,
allowing healthcare professionals to narrow down critical variables for predicting LOS
from the multitude recorded in hospital systems.

In our research, the median LOS was 7.2 days, with an interquartile range (IQR) of
4–9 days. It aligns closely with findings from a Chinese study [64], wherein the me-
dian hospital LOS fluctuated between 4 to 53 days over 45 domestic studies and 4 to
21 days across eight international studies. In contrast, a comprehensive report, draw-
ing from data across 25 countries, recorded a median LOS of just 4 days and an IQR of
1–9 days [65]—substantially shorter than our recorded observations. Notably, our results
surpassed the median LOS of 6 days documented in Saudi Arabia [66]. However, it fell
short of the 16.4 days indicated in Indiana [67], aligning with the 8.5 days reported in the
Mediterranean. These regional variances in LOS can be ascribed to many factors, including
the infrastructure of healthcare facilities, the severity of treated cases, diverse admission and
discharge protocols, and varying treatment approaches. Additionally, sociodemographic
variables, especially age, are pivotal in influencing the observed international disparities in
hospital stays.

4.2. Risk Factors

The consistency in hospital bed occupancy duration across various demographic
groups in our research contrasts starkly with findings from a significant US study by
Nguyen et al. [68]. Their research indicated that males typically had a more extended LOS
than females. Due to the limited sample size in our cohort, we could not investigate the
influence of gender on the likelihood of ICU admission. Furthermore, while our findings
showed a consistent LOS regardless of demographic distinctions, European studies suggest
a pronounced variability in hospital stays based on both gender and age [69]. In our data,
the correlation between age and LOS was relatively weak (r = 0.134; p-value < 0.001).

In our research, the predominant symptoms upon admission, such as cough, fever, and
shortness of breath, align with many earlier studies [70,71]. A systematic review and meta-
analysis spanning 54 studies identified the most frequent symptoms in COVID-19 patients
as follows: fever at 81.2% (95% CI: 77.9–84.4), cough at 58.5% (95% CI: 54.2–62.8), fatigue at
38.5% (95% CI: 30.6–45.3), dyspnea at 26.1% (95% CI: 20.4–31.8), and sputum production
at 25.8% (95% CI: 21.1–30.4) [72]. Our findings concur with these percentages concerning
fever and cough. However, the prevalence of shortness of breath in our study diverged.

Disturbances in total white blood cells, particularly lymphocytes, are often seen as the
immune system’s response to inflammation. There is growing evidence that lymphopenia,
characterized by a reduced lymphocyte count, significantly influences the trajectory of
COVID-19, right from its onset to the eventual development of viral sepsis. This decrease
in lymphocytes has been identified as a symptom of acute COVID-19, potentially resulting
from direct damage inflicted by the virus [73]. Our findings regarding lymphopenia echo
those of previous studies. Earlier research has outlined prognostic models that gauge the
severity of SARS-CoV-2 infection by monitoring the lymphocyte-to-leukocyte ratio [74,75].

Recent studies have illustrated that lymphocyte counts below 5% were predominantly
observed in patients exhibiting severe symptoms upon follow-up. There also appears to
be a trend wherein lymphopenia is more pronounced and persistent among the gravely
affected patients [76,77]. These studies also highlighted that patients with extended hospital
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stays typically had increased circulating lymphocytes, whereas their neutrophil counts
were marginally diminished. This surge in lymphocytes might be attributed to rejuvenated
production, given their rise both as a percentage of total blood cells and in absolute terms.
Notably, the lymphocyte count was elevated across all patient severity subgroups [78],
suggesting its potential role in extended LOS or heightened mortality risk [79].

Our study underscores the substantial influence of D-dimer on the length of hospital
stay, aligning with the conclusions of other meta-analyses. These analyses indicate that
D-dimer correlates with factors such as comorbidities, demographics, specific laboratory
tests, radiological findings, the duration of hospitalization, complications, and ultimate
outcomes. Such findings propose that D-dimer is a distinct biomarker, interfacing with other
inflammatory cytokine markers indicative of organ or tissue damage. Furthermore, the
interaction of acute-phase proteins with D-dimer implies that infection-driven inflammation
(comprising cytokines and chemokines) instigates a state of hyper-fibrinolysis, a notion
reinforced by D-dimer’s disconnect from the comprehensive coagulation panel [80,81].

Our study showed that patients with prolonged LOS among COVID-19 cases exhibited
a significantly higher ESR. Many studies have assessed acute-phase responses to COVID-19
since the pandemic’s onset, and these frequently included ESR data [82,83]. A meta-
analysis [84] further highlighted that elevated ESR levels were particularly pronounced
in severe and fatal cases of COVID-19. Another comprehensive meta-analysis by Zhang
et al. [85], which analyzed 28 studies encompassing 4663 cases, discovered that 61.2%
of cases with increased ESR had a longer length of stay and were at a heightened risk
for severe disease. Notably, variations in sedimentation rates between the groups were
not explored.

There is a noticeable gap in the literature regarding using HCO3 values as predictors
for LOS. It might be attributed to the understanding that abnormal HCO3 levels already
indicate extended hospitalization [86]. It is plausible that these levels act more as process
variables than predictors, a sentiment echoed by our findings. The serum HCO3 level
indicates the acid–base balance within the human body and is commonly assessed in
routine biochemical tests, particularly as renal diseases advance [87]. Certain clinical
studies have posited a potential role for serum HCO3 levels in forecasting mortality from
ailments beyond progressive renal disease. For instance, diminished HCO3 levels have been
linked to mortality from malignancies, while elevated HCO3 levels have been associated
with cardiovascular disease complications and related mortalities [88].

Low HCO3 serum levels upon ICU admission significantly predict both short-term
and long-term mortality. Additionally, a reduced serum HCO3 serves as an indicator of
acidosis. Past research confirms that acidosis can diminish systemic vascular resistance,
exacerbating conditions like circulatory shock, impaired myocardial contraction, and tissue
malperfusion. This cascade of complications can ultimately precipitate end-organ failure,
including acute kidney injury, which might primarily contribute to the grim prognosis
observed in critically ill patients.

4.3. The Properties of Kolmogorov–Gabor Polynomials

Among the diverse techniques employed for continuous prediction, we utilized
Kolmogorov–Gabor polynomials. These are more popularly recognized as the Volterra
series. They serve as instrumental methodologies in identifying and modeling nonlinear
systems. They can adeptly capture a broad spectrum of nonlinear behaviors by executing a
series expansion based on system input. Within the context of a hospital setting, when com-
pared with other prediction algorithms, the Volterra series boasts several advantages [89]:

Flexibility: The Volterra series can depict many nonlinear systems, endorsing its
versatility across diverse modeling landscapes.

Interpretability: A standout feature of the Volterra series is its capacity to demystify
the system’s structure. It delineates the input–output relationship across linear, quadratic,
and cubic terms. It facilitates a deeper comprehension of the system’s nonlinearity and
subsequent impact.
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Theoretical Foundations: The mathematical underpinnings of Kolmogorov–Gabor
polynomials are well-established and rigorously studied, ensuring a robust theoretical base
for their application.

However, it is essential to note that while these advantages are compelling, particular
challenges and potential drawbacks also emerge [37]:

Computational Complexity: The expansion order’s escalation leads to an exponential
growth in computational demands. It can hinder the feasibility of deploying high-order
models, particularly when grappling with multitudinous inputs.

Overfitting: As with many adaptive models, there is an inherent overfitting risk when
complexity overshadows the data’s intricacy. Such scenarios necessitate a meticulous model
selection process to safeguard against over-optimization and ensure genuine applicability
to new datasets.

In our research, we have employed regularization techniques. Additionally, by cap-
ping the interaction level at two, we have strategically mitigated computational demands
and curtailed the risk of overfitting.

4.4. Performance Indices

Guarding against testing hypotheses suggested by the data (Type III errors) was
guaranteed by cross-validation. The LOS prediction method showed strong agreement
with the measured LOS (ρc = 0.94), and strong goodness-of-fit (R2 = 0.8), and did not show
a significant bias (p-value = 0.777; paired-sample t-test). However, the Bland–Altman error
regression showed higher errors for lower LOS values.

The binary classification algorithm, on the other hand, showed a statistical power
of 92%, a Type I error of 0.09, and a precision of 79%. It also had an excellent balanced
diagnosis accuracy (AUC = 0.91), a high correlation between predicted and observed class
labels (MCC = 0.79), and an excellent class labeling agreement rate (K(C) = 0.79). However,
it is not entirely clinically reliable, as Type I errors must be less than 0.05, and the precision
must be higher than or equal to 95% [34].

4.5. Comparison with the State-of-the-Art

We searched “Embase” for journal papers with the key words “(‘length of stay’/exp
OR ‘length of stay’) AND (‘hospital’/exp OR ‘hospital’) AND (‘prediction’/exp OR ‘pre-
diction’) AND (‘machine learning’/exp OR ‘machine learning’) AND (‘COVID’/exp OR
‘COVID’OR ‘coronavirus’/exp OR ‘coronavirus’)” without publication date condition.
Among 64 screened, 45 records were excluded after analyzing their abstracts since they did
not predict LOS. Nineteen records were thus assessed for eligibility. Journal papers with at
least one prediction performance index and a sound ML methodology were included in
Table 4 (10 methods as the state-of-the-art, besides the proposed algorithm “this study”).

Among the studies in Table 4, only Hong et al., 2020 [16] and our study followed the
TRIPOD guideline [47] to report the 95% CI of the performance indices. In addition to
transparency in reporting, it quantifies precision, uncertainty, reproducibility, and gener-
alization. Only Alam et al. [23], Mahboub et al. [19], Liuzzi et al. [20], Usher et al. [18]
and our study did not use missing imputations. The others used missing imputations.
However, no analysis was performed to identify the reasons for missing data, i.e., missing
completely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR), which is critical in missing data analysis [90]. In our study, we not only did not
include ICU admission, mechanical ventilation, or treatments as the inputs, but we also
only used baseline information at hospital admission, which was not the case for Ebinger
et al. [17], Usher et al. [18], Liuzzi et al. [20], Mahboub et al. [19], and Alam et al. [23].
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Table 4. The state-of-the-art to predict hospital LOS in COVID-19 patients.

Reference Center/Region Sample
Size Inputs Important Features Outputs Models Validation Indices (the Best

Method)
Important

Characteristics

Ebinger et al.,
2021 [17]

Cedars-Sinai
Medical Center
(Los Angeles),

USA

966 353
variables

Age, respiratory rate, oxygen
flow rate

LOS > 8 days vs.
LOS ≤ 8 days 42 models 20% Hold-out

Se = 93%
Sp = 63%
F1 = 78%

PPV = 67%
AUC = 0.82

Missing imputation;
cumulative day three

information was used.

Hong et al.,
2020 [16]

A tertiary care
hospital in

Zhejiang province,
China

75 37
variables

Lymphocyte count, heart
rate, cough, Epidermis,

procalcitonin;

LOS > 14 days
vs. LOS
≤ 14 days

Stepwise
multivariable

regression

No internal or
external validation

AUC = 0.85 [CI 95:
0.75–0.94] Missing imputation;

Orooji et al.,
2022 [21]

Ayatollah
Taleghani

Hospital, Abadan,
Iran

1225 53
variables

20 variables:
Age, creatinine, WBC,

lymphocyte/neutrophil
count, BUN, ASP, ALT, LDH,

activated PTT, coughing,
hypertension, CVD, diabetes,

dyspnea, oxygen therapy,
pneumonia, GI

complications, ESR, and
CRP.

LOS

Statistical feature
selection

(correlation
coefficient)+ MLP+

12 training
algorithms

10% Hold-out RMSE = 1.6213 (days)

Patients who died
within three days of

admission were
excluded (n = 128);

selection bias.
Missing data
imputation.

Zhang et al.,
2023 [24]

Zhengzhou
University

Hospital (Henan),
China

384 83
variables

Immunotherapy, heparin,
familial cluster, rhinorrhea
(runny nose), and APTT

LOS LASSO+ linear
regression

Bootstrap
validation
(N = 2000)

R2 = 0.30
Missing data
imputation

(10 imputations);

Alabbad et al.,
2022 [22]

King Fahad
University

hospital, Saudi
Arabia

895 43
variables

Age, C-reactive protein
(CRP), nasal oxygen support

days
9-class ICU LOS

Random forest
(RF) (the best

classifier),
gradient boosting

(GB), extreme
gradient boosting

(XGBoost), and
ensemble models

3-fold
cross-validation

PPV = 94%
Se = 94%
F1 = 94%

Missing data
imputation;

SMOTE was used to
balance nine classes to
have 144 records each,

biased performance
indices.

The original samples
ranged from 12 to 144

for the classes; no
admission date was

provided.
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Table 4. Cont.

Reference Center/Region Sample
Size Inputs Important Features Outputs Models Validation Indices (the Best

Method)
Important

Characteristics

Nemati et al.,
2020 [15] Global dataset 1182 Five

variables Age, sex LOS

Stagewise GB (the
best method),

IPCRidge, CoxPH,
Coxnet,

Componentwise
GB, Fast SVM,

Fast Kernel SVM

No internal or
external validation C-index = 0.71

No comprehensive
features except

symptoms onset date,
symptoms, and

chronic disease binary
variable

Usher et al.,
2021 [18]

36 hospitals
(Minnesota,

Wisconsin, and the
Dakotas)

2665 20
variables

Various variables, including
age, critical illness, oxygen
requirement, weight loss,

and nursing home admission

LOS at >5, >10
and >15 days

GLM, RF (the best
model)

5-fold
cross-validation AUC = 0.89

ICU admission,
mechanical ventilation,
and mortality risk are

among the input
features; selection and

immortal-time bias.

Liuzzi et al.,
2022 [20]

28 centers
(Fondazione Don

Carlo Gnocchi
(FDG) Living

COVID-19
Registry), Italy

222 829

55 variables: anagraphical
data, admission clinical

scales, admission signs and
symptoms, admission

supports, COVID-19 therapy,
therapy prior to COVID-19,

hematochemics

LOS
Sequential

convolutional
neural network

Repeated (N = 10)
5-fold

cross-validation

MAE2 = 2.7 days
(IQR = 3.0 days)

17 COVID-19
therapies were

included in the input
data; selection and
immortal-time bias.

Mahboub et al.,
2021 [19]

Rashid Hospital
(Dubai), UAE 2017 22

variables

Urea, PLT, D-dimer, K+,
anti-inflammatory medicine,

antiviral medicine,
mechanical ventilation,

hemoglobin, azithromycin
medicine, vitamin C
medicine, painkiller

medicine

LOS Decision Tree 25% Hold-out R2 = 0.5

In addition to
mechanical ventilation,
treatments were used

as input features;
selection and

immortal-time bias.

Alam et al.,
2023 [23]

Prince Sultan
Hospital (Riyadh),

Saudi Arabia
308 89

variables

Laboratory, X-ray, clinical
data, and treatments,

including LDH and D-dimer
levels, lymphocyte count,
and comorbidities such as
hypertension and diabetes

Seven-class LOS Tab Transformer 30% stratified
hold-out

Pr = 83%, Se = 93%,
F1 = 93%

(discharged)
Pr = 75%, Se = 98%,

F1 = 84%
(dead)

SMOTE-N
oversampling

technique was used to
balance the classes and

biased performance
indices.

Treatments, including
anticoagulants,

antibiotics, antivirals,
an

immunomodulators,
were used as the

inputs; selection and
immortal-time bias.
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Table 4. Cont.

Reference Center/Region Sample
Size Inputs Important Features Outputs Models Validation Indices (the Best

Method)
Important

Characteristics

Usher et al.,
2021 [18]

36 hospitals
(Minnesota,

Wisconsin, and the
Dakotas)

2665 20
variables

Various variables, including
age, critical illness, oxygen
requirement, weight loss,

and nursing home admission

LOS at >5, >10
and >15 days

GLM, RF (the best
model)

5-fold
cross-validation AUC = 0.89

ICU admission,
mechanical ventilation,
and mortality risk are

among the input
features; selection and

immortal-time bias.

This study Khorshid Hospital
(Isfahan), Iran 1600 42

Inflammatory markers (ESR,
D-dimer, lymphocyte

counts), HCO3, and fever

LOS and also
LOS≤ 7 days vs.

LOS > 7 days

The Kolmogorov–
Gabor polynomial
plus regularized

least squares

Three-fold
cross-validation

LOS:
R2 = 0.89 [0.88–0.91],
ρc = 0.94 [0.93–0.95],

RMSE = 1.58
[1.64–1.51] days

MAE1 = 1.22
[1.28–1.16] days,

MAE2 = 0.98
[0.92–1.05] days
LOS categories:

Se = 92% [89–95],
Sp = 91% [89–93],

PPV = 79% [75–83],
AUC = 0.87 [84–89],

F1 = 80% [76–85]

No class balancing
was used.

ICU admission,
mechanical ventilation,
and treatments were
not used as the input

features.

MAE1: mean absolute deviation; MAE2: median absolute deviation.
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Similarly to Alabbad et al. [22], Usher et al. [18], and Liuzzi et al. [20], we used cross-
validation. Zhang et al. [24] used bootstrapped validation, though the 0.632+ bootstrap
method is preferred in the literature [91]. Hold-out validation used by Ebinger et al. [17],
Orooji et al. [21], Mahboub et al. [19], and Alam et al. [23] might introduce Type III error,
and the repeated hold-out validation method is preferred. Also, Hong et al. [16] and
Nemati et al. [15] did not use validation. Among the studies included in Table 4, only
Nemati et al. [15], Usher et al. [18], and Liuzzi et al. [20] were multi-center. Orooji et al. [21]
excluded subjects who died within 3 days of hospital admission, resulting in sampling
bias. Our study is ranked in the top third based on the sample size. Moreover, Alabbad
et al. [22] and Alam et al. [23] balanced the unbalanced training and test datasets, resulting
in biased evaluation metrics, potential misleading improvement, and overfitting to the
minority class. However, they had a better goodness-of-fit R2 = 0.80 compared to other
studies. Our study is the only one that reported the Bland–Altman plot critical to analyzing
the residual error [35].

Like most studies in Table 4 [15–20], our study only focused on the first COVID-19
wave. However, Orooji et al. [21] considered the first, second, and third waves. Alam
et al. [23] analyzed the first and second waves, and Zhang et al. [24] considered the Omicron
variant. Thus, a direct comparison of the results of the proposed method and the other
three methods [21,23,24] is not entirely rigorous.

4.6. Dichotomous LOS Definition

When the median LOS in our dataset was 7 days, then using a 7-day cutoff to di-
chotomize hospital LOS was statistically motivated: (1) Using the median as a cutoff point
ensures that approximately half of the patients are categorized as “short stay” and the
other half as “long stay”; (2) the median represents the robust central tendency of the data;
patients with “prolonged” LOS are staying longer than the majority of patients, suggesting
they might have different clinical characteristics, needs, or outcomes; (3) the median is
robust to outliers and is not affected by very short or very long LOS values; and (4) the
binary outcome can be directly tied to the dataset’s inherent structure, making the results
more interpretable in the context of the data. However, it might make direct comparisons
between the binary LOS model and other datasets or studies more challenging unless they
also use a median LOS of 7 days.

4.7. Limitations and Future Research

Our study has several limitations. Firstly, given its single-center design with 1600
COVID-19 patients at a major academic hospital following specific institutional treatment
protocols, the findings might not directly apply to other hospitals throughout Asian coun-
tries. More samples are required to improve the statistical power of the proposed method.
Secondly, while we tried to control for disease severity in our analysis, we could not ac-
count for more subjective factors, including the nuances of treatment that might influence
endpoint decisions. To comprehensively evaluate the potential impact of treatment on
LOS, a prospective randomized trial is imperative. Thirdly, the Bland–Altman analysis
of residual error highlighted a non-uniform error across measured LOS. Integrating the
Bland–Altman parameters into the cost function will be a focal point of our future endeav-
ors. While our initial findings demonstrate promising results, expanding the validation
scope will provide a more holistic understanding of the model’s capabilities. Addressing
these gaps in temporal and spatial validation will be instrumental in fostering confidence
in our approach and ensuring its relevance across broader contexts, which is the focus of
our future activity. Moreover, using multimodal image-processing prediction methods
could, in principle, improve the reliability of the proposed algorithm [92,93], which is a
focus of our future studies.

While the current model has been calibrated based on the original SARS-CoV-2 strain,
the underlying framework holds potential for adaptation to newer strains. We can ensure its
sustained relevance and accuracy in predicting LOS by continually updating and retraining
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the model with data from emerging variants. Integrating this dynamic model within the
hospital health information system will facilitate real-time adaptability, making it a versatile
tool for clinicians across different pandemic phases.

5. Conclusions

In this research, the utilization of machine learning models, notably the Volterra
functional series, demonstrated a promising approach to predicting the length of stay (LOS)
of COVID-19 patients. Validated on a significant dataset from Khorshid Hospital in Iran,
the model showed strong performance metrics, including an R2 of 0.8 and a concordance
correlation coefficient of 0.94, indicating a good fit and a high agreement with the measured
LOS. As noted in multiple studies, key features that played a vital role in LOS prediction
were inflammatory markers, bicarbonate, and fever, aligning with the commonly observed
symptoms in COVID-19 patients. The binary classification algorithm further provided
insights into differentiating between “normal” and “prolonged” LOS groups. While the
results present a substantial basis, there is room for improvement in the clinical reliability of
the binary classification algorithm, especially concerning its Type I error and precision rate.

However, some limitations and considerations remain in the study. The Bland–Altman
error regression indicated a higher error rate for patients with a lower LOS, suggesting
potential areas for refinement in the model for this patient subgroup. Moreover, while
our findings regarding the most prevalent symptoms upon admission were consistent
with several other studies, there were notable discrepancies in the observed prevalence
of shortness of breath. As healthcare providers and hospitals globally grapple with the
challenges posed by the COVID-19 pandemic, findings from this research could pave the
way for better resource management. Nonetheless, further temporal and spatial validation
is imperative before generalized application. Future research endeavors could delve
deeper into optimizing the model’s clinical reliability and expanding the model’s scope to
other pertinent clinical outcomes. Further studies and medical regulations are essential to
establish a dependable clinical prediction model suitable for smart hospitals.
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