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Abstract: Text comprehension is an essential skill in today’s information-rich world, and self-
explanation practice helps students improve their understanding of complex texts. This study
was centered on leveraging open-source Large Language Models (LLMs), specifically FLAN-T5, to
automatically assess the comprehension strategies employed by readers while understanding Science,
Technology, Engineering, and Mathematics (STEM) texts. The experiments relied on a corpus of
three datasets (N = 11,833) with self-explanations annotated on 4 dimensions: 3 comprehension
strategies (i.e., bridging, elaboration, and paraphrasing) and overall quality. Besides FLAN-T5,
we also considered GPT3.5-turbo to establish a stronger baseline. Our experiments indicated that
the performance improved with fine-tuning, having a larger LLM model, and providing examples
via the prompt. Our best model considered a pretrained FLAN-T5 XXL model and obtained a
weighted F1-score of 0.721, surpassing the 0.699 F1-score previously obtained using smaller models
(i.e., RoBERTa).

Keywords: language models; large language models; self-explanation; self-explanation strategies

1. Introduction

Reading and learning from text are critical skills for learners to acquire new knowledge,
which is essential for educational and career success. To comprehend text, the reader
constructs a mental model of the text while he/she reads. This mental model can be
represented at three levels: (1) surface-level knowledge of the exact words in the text,
(2) the textbase-level semantic representation of ideas, and (3) the situation model, which
combines the textbase with the reader’s prior knowledge. The ability to leverage strategies
that support comprehension is a critical skill that readers need in the absence of the
essential prior knowledge necessary to develop a coherent situation model. Proficient
readers are more likely to spontaneously employ strategies while reading to help them
comprehend difficult texts than students who are less-skilled readers [1]. Fortunately,
students can learn when and how to implement these reading comprehension strategies
through direct instruction and deliberate practice. One such strategy, with considerable
evidence supporting its use by students with limited prior knowledge or lower reading
skills, is self-explanation.

Self-Explanation (SE) is the practice of explaining the meaning of portions of a text
to one’s self while reading. Engaging in self-explanation encourages students to generate
inferences, in which they connect sentences or idea units between text sections or texts.
Similarly, students may generate elaborative self-explanations in which they connect their
prior knowledge to new information they read in the text. Generating bridging and
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elaborative self-explanations supports readers’ inference making, which, in turn, supports
the development of their mental representation of the text.

Developed by McNamara [2], Self-Explanation Reading Training (SERT) teaches read-
ers strategies to enhance text comprehension. The training guides students through each
strategy in increasing order of difficulty, starting with comprehension monitoring. Com-
prehension monitoring aims to help students understand when they need to implement
the remaining strategies to support their comprehension. This work focused on the three
remaining strategies: paraphrasing, bridging inference, and elaboration.

The paraphrasing strategy refers to reformulating a sequence of text in one’s own
words. SERT can help develop readers’ text comprehension skills by prompting them to
access their vocabulary to translate the ideas into more-familiar language. Bridging involves
linking multiple ideas across a text or across multiple texts (e.g., two different articles about
the same topic). Generating bridging inferences requires the reader to find connections
between the ideas and to structure them in a coherent way. Elaboration involves linking
information in the text and the reader’s knowledge base; this helps the reader integrate
new information with existing knowledge. Collectively, these strategies support readers’
construction of more-coherent mental representations of the text, in particular challenging
texts that require substantial prior knowledge to understand.

Considerable evidence indicates that these strategies support readers’ comprehension
of complex texts. However, additional benefits can be realized when the reader receives
feedback about the accuracy or quality of his/her self-explanation [3]. One way readers
can receive feedback is from instructors who review and score self-explanations based
on a rubric [4]. This method is time-consuming and does not provide readers with the
feedback they need in real-time. To alleviate this challenge, students can practice their
reading and self-explaining using an intelligent tutoring system, where they both have
the opportunity to engage in the deliberate practice of reading and self-explaining, but
they also receive essential guiding feedback [5]. Thus, refining and improving software
applications that can detect the presence of these strategies in the readers’ constructed
responses can be helpful for both evaluation and training. Natural Language Processing
(NLP) [6] techniques and Machine Learning can be used to develop such models, given
a large enough dataset containing labeled examples of the presence and absence of these
strategies in readers’ self-explanations. Previous work [7] has shown that such automated
models can be built to reliably assess self-explanation reading strategies. The recent release
of more-sophisticated and readily accessible large language models further supports the
expansion of this prior work.

1.1. Large Language Models

Large Language Models (LLMs) have recently gained notoriety through their associ-
ation with popular chatbot systems such as OpenAI’s ChatGPT [8] or Google’s Bard [9].
These models are trained on massive amounts of heterogeneous text data (including news
articles, web pages, social media posts, and scanned books) and datasets tailored to specific
tasks. They manage to capture statistical patterns of natural language, such as syntax,
semantics, and pragmatics. Their knowledge of these patterns enables the generation of
new complex texts relevant to the input with which they have been prompted. LLMs are
highly adaptable to different NLP tasks and domains and can be fine-tuned on specific
datasets or prompts to perform a wide variety of natural-language-generation tasks, includ-
ing summarizing, translation, text completion, and question answering. They also manifest
“emergent capabilities” [10], skills they were not trained explicitly on, but are easy to solve
based on the memorized statistical patterns.

LLMs are a fairly recent type of neural architecture that has grown in size and per-
formance in the past few years. They are part of a class of deep learning architectures
called Transformers, stemming from the original model introduced by Google in 2017 [11].
Depending on their structure, modern Transformer-based models can be classified into
three categories:
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• Encoder only: models that understand the text and are used in classification/
regression tasks. An example of an encoder-only model is the Bidirectional Encoder
Representations from Transformers model, or BERT [12], followed by its improved
version, Robustly Optimized BERT Pretraining Approach (RoBERTa) [13].

• Decoder only: models that excel at text generation. The Generative Pretrained Trans-
former (GPT) family with various versions (e.g., 3 [14] or 4 [15]) are good examples of
the decoder-only architecture.

• Encoder–decoder: models capable of both understanding and generating text. They
are useful for translation, abstractive summarization, question answering, and many
other tasks. The Text-to-Text Transformer (T5) [16], followed by its improved version,
Fine-tuned Language Net (FLAN-T5) [17], pretrained on a large collection of datasets,
are examples of such architectures.

However, LLMs’ impressive capability to generate various relevant, cohesive, and
coherent texts comes with caveats. These models can sample from the most-statistically
relevant sequences and complete a given prompt flawlessly. Still, they do not offer guar-
antees regarding the correctness of the generated information [18]. Furthermore, they are
still susceptible to a variety of attacks, such as injecting a request with a small sequence of
words that can deviate the flow of the interaction in a different direction from what was
intended initially [19].

1.1.1. FLAN T5

The T5 model is an encoder–decoder Transformer trained on a combination of super-
vised and unsupervised tasks, all having a text-to-text format (i.e., receiving text input and
outputting text). The supervised training is performed on tasks from the General Language
Understanding Evaluation (GLUE) [20] and SuperGLUE [21] benchmarks converted to fit
the text-to-text paradigm. The unsupervised or self-supervised tasks involve reconstruct-
ing the original text when receiving corrupted input (e.g., by randomly removing 15% of
tokens and replacing them with sentinel tokens). The T5 models that have been made
public cover a wide range of sizes, from the 60-million-parameter T5-small model to the
11-billion-parameter T5-11b model.

The FLAN-T5 model [17] represents an enhanced version of T5 fine-tuned on a larger
number of tasks while emphasizing chain-of-thought scenarios. Using the FLAN approach,
the authors trained both T5 and a Pathways Language Model (PaLM) [22] and achieved
state-of-the-art performance on several benchmarks with the 540-billion-parameter FLAN-
PaLM model.

1.1.2. GPT

Generative Pretrained Transformer(GPT) models are a family of decoder Transformer-
based models [23]. They consist only of decoder blocks and are left-to-right autoregressive
models. The first model, GPT-1, consisted of a 117-million-parameter network pretrained
in an unsupervised setting and, then, fine-tuned on individual tasks. The pretraining
procedure was a classical language modeling task in which the model had to predict the
likeliest sequence of words, given a fixed input sequence. After pretraining, the model
could be used for various tasks, including classification, paraphrase identification, or
question answering.

The GPT-2 model was a 1.5-billion-parameter model [24]. It relied on a similar pre-
training approach where the likeliest sequence given the current input and task must
be predicted by the model. At the time of its release, the model obtained state-of-the-
art performance in 7 out of the 8 tested language-modeling tasks, without task-related
fine-tuning.

The GPT-3 model was perceived as a considerable step forward when released in
2020 in terms of performance and size (175-billion parameters). The GPT3.5-turbo model
was released in November 2022, with OpenAI providing scarce information regarding its
training. Its size is estimated to be comparable to that of GPT3.5. The model was trained
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using Reinforcement Learning from Human Feedback (RLHF) [25] and is designed to
perform better in conversational settings and iterative task-solving. It gained popularity as
it represented the backbone of the popular free version of the ChatGPT conversational agent.

Besides GPT3.5-turbo, OpenAI provides several other text-to-text endpoints such as
“text-davinci-003” and GPT4 [15]. The former was tested on a subset of the tasks presented
in this article, but did not perform better than the GPT3.5-turbo endpoint. The latter, GPT4,
is the backbone of the paid ChatGPT Plus service and is expected to provide better replies.
Still, it is also a more-closed system with little detail being provided about its architecture,
the training dataset, and/or the training setup. We opted against evaluating this alternative
as, when the experiments were performed, it was 20–30× more expensive than GPT3.5-
turbo. Although GPT4 obtains better performances and is less prone to hallucinations than
GPT3.5 [15], its increased costs contradicted our aim of creating an open-source model that
could be used at scale, without high costs.

Table 1 displays the size of the models that were taken into consideration for this
study. The FLAN small and base models were useful for fast initial experimentation, but
they are not featured in the Section 3 as their small size does not provide the models
enough expressiveness to perform well on these tasks. The earlier GPT-1 and GPT-2
models were not analyzed in this study as they were similar in size and performance to the
smaller FLAN-T5 models. The GPT4 model was also not included, as the costs for using it
were considerably larger than GPT3.5-turbo, given the wide range of experiments to be
performed and our final aim to introduce an open-source model.

Table 1. FLAN and GPT model sizes.

Name Size

FLAN-T5 small 60 M
FLAN-T5 base 250 M
FLAN-T5 large 780 M
FLAN-T5 XL 3 B

FLAN-T5 XXL 11 B
GPT-1 117 M
GPT-2 1.5 B
GPT-3 175 B

GPT3.5-turbo 150 B–175 B
GPT4 unknown

1.2. Current Study Objective

The overarching objective of this study was to develop an automated model for evalu-
ating the comprehension strategies (paraphrasing, elaboration, and bridging) employed by
readers and the overall quality of the produced self-explanations. These tools can be useful
in enhancing the capabilities of an Intelligent Tutoring System (ITS), designed to improve
students’ reading comprehension by having them practice reading and self-explaining in
an environment in which timely feedback and evaluation are offered.

This study was focused on evaluating the extent to which open-source Large Lan-
guage Models (LLMs) can be leveraged to build such an automated system. The results
were compared to the performance of previous methods, which relied on smaller and less-
resource-intensive machine learning models [7]. We also analyzed how the performance
of these LLM models scaled with the model and prompt size. We provide a side-by-side
comparison between open-source models and the OpenAI API used as the backbone of
the popular ChatGPT. We released our best model on HuggingFace and the correspond-
ing code on GitHub: https://github.com/readerbench/self-explanations, accessed on 13
October 2023.

The paper is structured into four sections following the Introduction. The Section 2
begins with a short description of the corpus on which the experiments were based. It then
offers an overview of prompting for LLMs, describing a template for the prompts to be

https://github.com/readerbench/self-explanations
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used in the experiments. Lastly, it provides an overview of LLM fine-tuning methods. The
Section 3 thoroughly analyzes the models’ performance in both an “out-of-the-box” and
fine-tuned setting. The Section 4 analyzes the performance of the best models, while the
Section 5 reiterates the main findings and their importance.

2. Method
2.1. Corpus

The corpus used in this study consisted of three datasets containing 11,833 annotated
self-explanations [26]. The datasets were collected from high school and undergraduate
students who were asked to read one or two science texts and generate self-explanations
for 9 to 16 target sentences. An entry consists of the target sentence, a self-explanation,
and categorical scores for paraphrase presence, bridging, elaboration, and overall self-
explanation quality. All entries were scored by pairs of expert readers in accordance with a
common rubric [26].

The corpus was split into train/dev/test using a ratio of 54.5%/27.5%/18%. The
categorical scores for the four tasks ranged from 0 to 2 or 3. The problem of predicting these
scores was modeled as a classification task, with each score representing a class. The values
were codified consistently across tasks so that Class 0 always represented low-quality self-
explanations or the absence of a particular strategy. In contrast, higher values represented
self-explanations of higher quality.

Class imbalance was an issue for each of the 4 tasks, as seen in Table 2. In the case
of simple tasks, such as detecting the paraphrasing strategy’s presence, the large majority
of the samples contained high-quality paraphrasing (i.e., Class 2), with few examples for
Classes 0 and 1. In the case of more-difficult tasks, such as assessing elaboration presence or
self-explanation overall quality, the reverse happened. High-quality examples were in short
supply, while low-quality samples (in the case of elaboration presence) or average-quality
examples (in the case of overall SE quality) were more numerous. To reduce this imbalance,
the final 2 classes for the bridging presence and elaboration presence tasks containing
higher-quality examples were merged. After these changes, the elaboration presence task
had 2 classes, paraphrase and bridge presence had 3 classes, whereas the overall quality
task had 4 classes, as seen in Figure 1.

Figure 1. Class distribution per task after merging classes for elaboration and bridging.
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Table 2. Class distribution per task.

Dimension Class 0 Class 1 Class 2 Class 3

Paraphrase presence 1487 1992 8354

Bridge presence 4869 981 4569 1414

Elaboration presence 9382 777 1674

Overall 799 4207 5093 1734

2.2. LLM Prompting

The format of the prompt (i.e., input text for the LLM) can influence the quality of the
provided answer [27]. Therefore, we tried to structure the input similarly to how the input
was structured for the tasks on which the initial FLAN-T5 model was trained, as seen in
the Section B Appendix of the original FLAN T5 paper [17]. That structure usually consists
of a context, a set of examples of the task being solved, and the target task (see Figure 2).
Additionally, we experimented with adding a “System role” entry at the beginning of
the prompt for the requests made to GPT3.5-turbo, as suggested by the OpenAI GPT3.5-
turbo API documentation [28]. This section provides a description of the perspective from
which the model should approach the task (e.g., “You are a high school student tasked to
summarize this text”). The “Context” section provides additional descriptive information
regarding the task to be solved.

Figure 2. Example of prompt for the elaboration task in a multi-shot setting.
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Both the FLAN-T5 models and the GPT3.5-turbo API were queried in 0-shot, 1-shot,
and multi-shot settings to evaluate how examples can assist the model in providing better
answers. In the multi-shot setting, the model was provided one example per class, selected
from the training set. This was feasible because the tasks had a maximum of four classes.

The “Target question” section contains the question that the model must answer. Since
answering the question involves reading the generated self-explanation and the source
sentence, we added them to this section and labeled them as “S1” and “S2”. Preliminary
experiments indicated that the models performed better when using these naming conven-
tions rather than “Generated Sentence” and “Original Sentence” or other combinations.

Lastly, the “Answer options” section lists the possible answers and a short description.
Experiments were also performed with more-detailed descriptions of the classes, but this
only improved performance in the case of the GPT3.5-turbo experiments.

2.3. LLM Fine-Tuning with LoRA

There are multiple methods of adapting pretrained LLMs to help them perform better
on certain tasks. One such option is using the last set of hidden features that the model
produces and training a small deep learning model to predict the expected output based
on the set of hidden features while freezing the updates for the LLM parameters. This is
efficient in terms of resources, but can add latency on inference because the depth of the
model is increased. A second option consists of selective fine-tuning, in which only a subset
of the LLM’s layers are trained while the rest are kept unchanged. This approach can also
be efficient, but it involves manually selecting which layers to train, an operation that is not
necessarily intuitive. The third option consists of fine-tuning the entire model. Out of the
three approaches, this should yield the best results, but it requires the most GPU memory
and training resources.

Apart from the classical methods listed above, Parameter-Efficient Fine-Tuning (PEFT)
methods rely on training only a small set of parameters without manually selecting what
parameters to train. Some techniques, such as P-Tuning [29], focus on training a small
encoder network for the prompt to produce a soft prompt based on the original prompt,
relying on the assumption that better prompting can improve task performance. Prefix
Tuning [30] takes that approach one step further by adding a small set of trainable parame-
ters for each layer, which generates a soft prefix prompt concatenated to the actual prompt.
Other techniques, such as Low-Rank Adaptation (LoRA) (i.e., Low-Rank Adaptation of
Large Language Models, [31]), focus on a subset of parameters for every layer obtained via
low-rank decomposition. Compared with P-Tuning and Prefix Training, LoRA has to train
more parameters, but it is more suitable for adapting the LLM to a task different from the
initial training tasks. The other two approaches are more suitable for adapting the LLM to
a similar task from the ones on which it was pretrained.

LoRA efficiently fine-tunes LLMs by freezing the pretrained model and injecting
trainable rank decomposition matrices into each layer. The authors claim that LoRA
can reduce the number of trainable parameters by 10,000-times and the GPU memory
requirement by 3-times for a 175-billion-parameter GPT-3 training. Furthermore, the
method adds no extra inference latency.

The innovation that LoRA brings is the use of low-rank parametrized update matrices.
In a classical fine-tuning setting for a weight matrix W0 ∈ Rd×k, we would have an update
after backpropagation equivalent with W = W0 + ∆W with ∆W having the same dimen-
sions as the pretrained matrix. LoRA considers the following decomposition: ∆W = BA
with B ∈ Rd×r, A ∈ Rr×k, with rank r � min(d, k). The two low-ranked matrices, A
and B, will be trainable throughout the run while W0 is frozen and initialized so that the
initial update matrix is 0. As such, LoRA was the best alternative when fine-tuning the
FLAN-T5 models.
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3. Results

In this section, we explore the extent to which the performances presented in previous
studies [7] can be surpassed by employing out-of-the-box or fine-tuned LLMs. The input
received by the models consisted of prompts like the ones described in Section 2.2, which
contained the student’s self-explanation and the target sentence. Because of computational
constraints, we skipped the scenarios in which the target sentence was omitted or was
extended by including the previous sentences.

We used the F1-score as the evaluation metric for the results. Because LLMs can gener-
ate incorrectly formatted answers, we considered all badly formatted answers as belonging
to Class 0, which have been coded to contain low-quality examples. The percentage of
correctly formatted answers is also reported in order to understand how well the models
have adapted to the task format.

We analyzed the percentage of correctly formed answers on the overall task to observe
how well the models adapted to the task format. The FLAN-T5 large and GPT3.5-turbo
models conformed to the expected format of answers (see Figure 3). Replies generated
by the FLAN-T5 XL and XXL versions improved (i.e., followed the correct format) when
they were presented with more examples in the prompt. When looking at the output of
the models, we observed that the FLAN-T5 XL and XXL models tended to provide more
verbose replies, not necessarily incorrect, but did not match the expected format.

Figure 3. Percentage of correctly formed answers for the “out-of-the-box” evaluation.

The results were grouped into two sub-sections: the first subsection focuses on the
“out-of-the-box” performance of FLAN-T5 and GPT3.5-turbo, while the second subsection
presents the performance of FLAN-T5 after fine-tuning using the LoRA method.

3.1. Out-of-the-Box Performance

In this section, the “out-of-the-box” performance is assessed without fine-tuning. The
models covered in this section are the FLAN-T5 large, XL, and XXL models, along with
the GPT3.5-turbo API. The same prompt structure was used for all FLAN-T5 models. This
structure was chosen after a series of experiments evaluating how small changes in the
prompt can affect the model’s performance. The final version of the prompt for FLAN-T5
resembled the structure described in Figure 2, with some modifications. It did not include a
context section, whereas the prompt had shortened versions for the options in the Answer
options section, labeled alphabetically instead of numerically (i.e., (A), (B), (C), (D), instead
of (0), (1), (2), (3)). The prompt for the GPT3.5-turbo model had a context section and used
long answer options labeled alphabetically.

The results for this task are presented in Table 3. For every task, the best result is listed
using bold font. In some cases, multiple examples are bolded for a single task because the
differences between the results were marginal.
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Table 3. Out-of-the-box results for FLAN-T5 and GPT3.5-turbo.

Task Model
Weighted F1-Score

0-Shot 1-Shot Multi-Shot

Paraphrase

FLAN-T5 large 75.23% 66.30% 68.73%
FLAN-T5 XL 28.24% 53.93% 75.26%
FLAN-T5 XXL 0.69% 1.53% 1.65%
GPT3.5-turbo 2.19% 14.39% 24.74%

Elaboration

FLAN-T5 large 50.09% 58.78% 56.94%
FLAN-T5 XL 89.90% 89.87% 89.90%
FLAN-T5 XXL 87.79% 78.52% 80.11%
GPT3.5-turbo 44.53% 55.38% 56.13%

Bridging

FLAN-T5 large 45.24% 45.39% 45.04%
FLAN-T5 XL 34.30% 51.61% 44.34%
FLAN-T5 XXL 23.06% 22.76% 22.85%
GPT3.5-turbo 19.26% 32.80% 41.18%

Overall

FLAN-T5 large 27.97% 9.73% 7.09%
FLAN-T5 XL 2.84% 7.24% 6.64%
FLAN-T5 XXL 10.68% 8.81% 12.44%
GPT3.5-turbo 30.18% 28.07% 27.87%

Note. Bold marks the best performance for every task.

The FLAN-based models performed considerably better than the GPT3.5-turbo model
for the three comprehension strategy tasks. Differences of 51% (paraphrase presence), 33%
(elaboration presence), and 10% (bridging presence), in terms of weighted F1-scores, were
observed between the best FLAN-T5 performance and the best GPT3.5-turbo results.

The model size did not have a large influence on the performance in the case of the
FLAN-T5 models. The differences between FLAN-T5 large, XL, and XXL were unclear.
One possible explanation is that, as Figure 3 indicates, the XL and XXL models generated
badly formatted responses because they tended to provide more verbose replies. This effect
could have brought down the performance of these models, compared to the FLAN-T5
large model, which did not exhibit this phenomenon. The best results were obtained with a
FLAN-T5 XL model for the bridging and elaboration presence tasks (see Table 3). The best
performance on the paraphrase presence task was a tie between FLAN-T5 large and XL,
while FLAN-T5 large performed the best for the overall task.

The impact on the performance of providing the model with more examples via the
prompt was unclear for the FLAN-T5 models since no clear pattern can be observed in this
regard. An improvement was seen regarding the percentage of correctly formed replies for
the XL and XXL models, as seen in Figure 3. When exposed to multiple examples in the
prompt, these models had a similar rate of correctly formed responses to GPT3.5-turbo and
FLAN-T5 large. In the case of the GPT3.5-turbo model, the impact of adding examples was
considerably clearer. We can observe that the results for the three comprehension strategy
tasks improved when switching from 0-shot to 1-shot prompting and further on when
switching to the multi-shot setting. However, the reverse happened for the overall quality
task. The GPT3.5-turbo model performed worse as more examples were added.

Further exploration was undertaken for the prompting format used to query the
GPT3.5-turbo API in the multi-shot scenario. The endpoint was queried using more
examples, the context section, and extended descriptions of the classes. Adding more
examples on top of the multi-shot setting did not help. However, adding the context and
the extended descriptions slightly improved the results for some tasks. These prompt
changes resulted in a slight improvement for the overall and bridging classes, considerable
improvement for the paraphrase class, and a high drop in performance for the elaboration
class. The results for the best-performing prompt are listed in Table 4. The results of these
prompts are referenced when presenting the confusion matrices and the qualitative analysis
for the GPT3.5-turbo model.
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Table 4. GPT3.5-turbo performance after exploring prompt variations.

Task Model Weighted F1-Score

Paraphrase GPT3.5 65.54%
Elaboration GPT3.5 6.80%
Bridging GPT3.5 44.07%
Overall GPT3.5 30.67%

3.2. Fine-Tuning

In this section, we analyze the performance of fine-tuning the FLAN-T5 models using
the LoRA method. Experiments were run using the publicly available FLAN-T5 models
on HuggingFace; similarly, the FLAN-T5 small and base versions were excluded in this
subsequent analysis, given their poor performance.

Three FLAN-T5 models were initially trained using a small learning rate of 3× 10−4

for one epoch (i.e., one pass through the entire dataset) on the four tasks in the 0-shot, 1-shot,
and multi-shot settings. The learning rate was chosen after running multiple experiments
and observing the evolution of the training loss and the final performance of the model.
Models trained with larger learning rates converged faster with worse outcomes, while
models trained with smaller learning rates did not always converge in one epoch. All
models were trained using a mini-batch size of 1. The FLAN-T5 XL and XXL models were
constrained to do so by the limited amount of GPU memory. In the case of the smaller
models, experiments with larger mini-batch sizes were faster, but led to poorer results,
probably because the learning rate had to be adapted depending on the batch size [32]. No
other hyper-parameter was tuned besides the learning rate and the mini-batch size. The
same prompt structure as in the “out-of-the-box” scenario was considered.

The performance for the paraphrase, bridging, and overall quality tasks improved
considerably when switching from 0-shot to 1-shot and then to multi-shot settings, as seen
in Table 5. In the case of elaboration presence, the pattern was not as clear, but the best
result was still obtained in a multi-shot setting. One exception was the performance of the
FLAN-T5 XXL model on the overall task, which required fine-tuning the learning rate to
achieve a good performance. The standard learning rate for the fine-tuning experiments
was 3× 10−4, but this model obtained its best performance using 1.5× 10−4; most likely,
the XXL model is more sensitive to the gradient update step size, and a larger learning rate
would cause it to oscillate around a narrow local minimum, without reaching it.

When looking at the impact of model size on performance, larger models tended
to perform better for all the tasks. The best result for every task was obtained using the
FLAN-T5 XXL model, and we can also observe that the FLAN-T5 XL outperformed the
large variant in most scenarios.

Table 5. One-epoch fine-tuned results for FLAN-T5.

Task Model Weighted F1-Score
0-Shot 1-Shot Multi-Shot

Paraphrase
FLAN-T5 large 21.45% 68.46% 82.53%
FLAN-T5 XL 10.63% 37.54% 85.50%
FLAN-T5 XXL 72.79% 74.98% 86.76%

Elaboration
FLAN-T5 large 83.99% 84.12% 74.26%
FLAN-T5 XL 87.66% 81.58% 84.28%
FLAN-T5 XXL 88.64% 88.63% 89.80%

Bridging
FLAN-T5 large 42.68% 45.32% 45.85%
FLAN-T5 XL 24.37% 48.22% 61.26%
FLAN-T5 XXL 53.13% 76.32% 79.06%

Overall
FLAN-T5 large 1.34% 2.15% 36.22%
FLAN-T5 XL 11.53% 25.70% 40.02%
FLAN-T5 XXL 59.68% 64.39% 61.25% 1

Note. Bold marks the best performance for every task. 1 Obtained after extra hyper-parameter tuning.
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As previously mentioned, the models were evaluated in a scenario where badly
formatted answers were labeled as low-quality, Class 0. For this reason, it is also important
to consider the percentage of correctly formed answers. Figure 4 shows that the percentage
of correctly formed answers increased as more examples were added to the prompt. The
results for FLAN-T5 large were dramatically low in the 0-shot and 1-shot settings, but
they considerably improved for multi-shot. The same trend is visible for the FLAN-T5 XL
and XXL models. We can also observe that the larger models tended to better format the
answers correctly.

Figure 4. Percentage of correctly formed answers for fine-tuned models on the overall task.

Lastly, experiments were performed to observe whether model performance improved
if fine-tuning for more epochs (see Table 6). Preliminary experiments indicated that the
test loss would reach a plateau after three epochs of fine-tuning. In order to reduce the
number of experiments, we evaluated the FLAN-T5 large, XL, and XXL models only in the
multi-shot setting.

Table 6. Three-epoch fine-tuned results for FLAN-T5.

Task Model Scenario Weighted F1-Score

Paraphrase
FLAN-T5 large multi-shot 86.70%
FLAN-T5 XL multi-shot 86.76%

FLAN-T5 XXL multi-shot 86.21%

Elaboration
FLAN-T5 large multi-shot 89.33%
FLAN-T5 XL multi-shot 89.88%

FLAN-T5 XXL multi-shot 89.54%

Bridging
FLAN-T5 large multi-shot 63.72%
FLAN-T5 XL multi-shot 79.02%

FLAN-T5 XXL multi-shot 79.02%

Overall
FLAN-T5 large multi-shot 58.49%
FLAN-T5 XL multi-shot 69.85%

FLAN-T5 XXL multi-shot 72.12%
Note. Bold marks the best performance for every task.

In this scenario, FLAN-T5 XL performed better in 2 out of 4 cases, while FLAN-T5
XXL considerably outperformed the other two on the overall task. The FLAN-T5 large
model obtained good results on the paraphrase and elaboration tasks, but had worse results
on the remaining two. For the three comprehension strategy tasks, the results were close
when comparing the XL and XXL models, with the XL model having a slight advantage.
It must be noted that, because the FLAN-T5 XXL model was the best-performing model,
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extra hyper-parameter tuning was performed to maximize its potential. In the end, this
model was trained for all tasks using a smaller learning rate of 1.5× 10−4, as opposed to
the standard 3× 10−4 used for the other models.

The fine-tuned FLAN-T5 XXL model obtained the best performance on the overall
task, surpassing even the results from previous work (see [7]). The best models in that
study were Single-Task (STL) and Multi-Task (MTL) neural network architectures based
on a pretrained RoBERTa model. The LLM-based methods obtained a better result for the
overall, paraphrase, and bridging presence tasks, while the MTL/STL models still held a
narrow edge over them on the elaboration presence task (see Table 7).

Table 7. Best results across the two studies.

Task
Previous Results [7] Current Study

Best Model Scenario Best Model Scenario Improvement

Paraphrase 84.30% STL 86.76% Fine-tuned XXL multi-shot 2.46%
Elaboration 89.90% STL 89.88% Pretrained XL −0.02%
Bridging 78.50% STL 79.02% Fine-tuned XXL multi-shot 0.52%
Overall 69.90% MTL 72.12% Fine-tuned XXL multi-shot 2.12%

4. Discussion

This study evaluated the performance of LLMs on scoring self-explanations using
multiple employed strategies in either out-of-the-box or fine-tuned setups. In the out-
of-the-box scenario, a comparison was made between the performance of the FLAN-T5
models and the GPT3.5-turbo API. The FLAN-T5 models obtained better results on three
comprehension strategy tasks. The model performance did not scale with the model size
and the number of examples listed in the prompts. The GPT3.5-turbo model obtained better
results on the overall quality task and showed a clearer improvement on the other tasks
with the addition of more examples to the prompt.

When analyzing the correctness of the responses generated by the LLMs, it was also
observed that GPT3.5-turbo and FLAN-T5 large were more likely to generate answers in
the correct format. This capability improved for all the models if more examples were
provided in the prompt.

Table 8. Confusion matrices for the “out-of-the-box” models on the overall task.

FLAN-T5 Large 0-Shot Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 28 7 14 12
Actual 1 283 254 30 121
Actual 2 428 130 60 308
Actual 3 182 21 54 210

GPT3.5 Multi-Shot Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 18 10 13 20
Actual 1 274 107 109 198
Actual 2 207 134 222 363
Actual 3 47 27 104 289

When looking at the confusion matrix for the overall task, the two best-performing
out-of-the-box models tended to misclassify multiple examples, not only in adjacent classes,
but in other classes as well (see Table 8). Numerous instances of Class 0 examples were
classified as Class 3 and vice versa. This indicated that the models could not reliably
identify content that had been copied and pasted. There were even more high-quality
examples, namely Class 3, being labeled as low-quality, or Class 0. This could indicate that
the models have not completely understood the task. They might be solving a proxy task,
such as paraphrase assessment, with similar scores in some cases and diverging scores in
others. For instance, a good self-explanation might contain relevant paraphrases; however,
good self-explanations should target information beyond the source text. In addition, the
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predictions can also be influenced by high class imbalance (i.e., Class 0 had almost nine
times fewer examples than Class 2 for self-explanation quality).

In the fine-tuning scenario, only the FLAN-T5 models were targeted. Initially, the
models were fine-tuned for one epoch using the LoRA method. After this fine-tuning,
the performances drastically improved and scaled better with the model size and number
of examples provided. When the models were trained for three epochs, the differences
between the FLAN-T5 XL and XXL models decreased.

Table 9. Confusion matrices for the best fine-tuned FLAN-T5 model on the overall task.

Predicted 0 Predicted 1 Predicted 2 Predicted 3

Actual 0 18 21 18 4
Actual 1 39 512 132 5
Actual 2 1 110 735 80
Actual 3 0 5 179 283

The confusion matrix generated for the best-performing, fine-tuned model on the
overall task showed improved results compared to the out-of-the-box models (see Table 9).
We observed that most predictions coincided with the ground truth for almost all classes,
except the underrepresented Class 0. Furthermore, even when errors occurred, they
appeared near the correct options; only four instances occurred at a distance from three
classes (i.e., Class 0 examples evaluated as Class 3). Furthermore, there was no example
of a high-quality sample (i.e., Class 3) being labeled as a poor-quality self-explanation
(i.e., Class 0).

The FLAN fine-tuned models and the previous MTL approach can also be compared
in regards to the training time, as reported in Table 10. We can observe that the MTL model
required the least training time while using less-performant hardware. For the FLAN
models, the training time listed was for 1 epoch, so the 3-epoch fine-tuned model would
take roughly three times more time to train. Our best-performing three-epoch-trained
FLAN XXL surpassed the previous MTL model performance, but that model required
540 min to train (a 27× increase) and more expensive hardware.

Table 10. Training time per model.

Model No. of Epochs Total Training Time (Minutes) GPU Type

MTL 25 20 Tesla P100
FLAN large 1 23 Tesla P100
FLAN XL 1 100 Tesla A100 40 GB
FLAN XXL 1 180 Tesla A100 40 GB

4.1. Error Analysis

Table 11 lists 10 randomly selected inputs, at least one per class, on which the following
three models were evaluated: the best-performing model (FLAN-T5 XXL multi-shot), the
best-performing out-of-the-box FLAN-T5 model (FLAN-T5 large 0-shot), and GPT3.5-turbo
(prompted in a multi-shot setting). Our evaluation parser considered all listed outputs
valid, despite GPT3.5’s extra verbosity in listing the class description along with the class
name or the lack of parenthesis for FLAN-T5 large on Example 1. The models performed
better when prompted with alphabetical classes as options instead of numerical ones. For
this reason, the classes appear with a different naming convention in this table compared
to previous mentions. However, the correspondence is easy to understand as Class (A)
corresponds to Class 0, (B) to Class 1, (C) to Class 2, and (D) to Class 3.

Examples 2 and 3 showed all models answering correctly when classifying input be-
longing to Classes 2 and 3. There were also cases (Examples 4 and 5) of minor errors, where
the models classified a good example as having high quality. One possible explanation is
that the self-explanations were particularly verbose, and the models had trouble keeping
track of all the information and comparing it with the source text.
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Both out-of-the-box models had an example three classes away from the ground truth
(see Example 6). This is a classic example of copy-pasted content, labeled as low-quality,
because the reader did not make an effort to self-explain the source text. The fine-tuned
FLAN-T5 XXL model detected this and correctly rated the example as poor quality.

The performance obtained by these models on this 10-example subset was consistent
with the previously presented results. The best-performing FLAN-T5 XXL model was
correct in 9 out of 10 situations and was one class away from the correct answer in the
erroneous case. The out-of-the-box models managed to correctly answer in 2 or 3 out of 10
cases, exhibited errors 2 classes or 3 classes away from the ground truth, and had minor
issues correctly formatting the output.

Table 11. Sample outputs.

ID Self-Explanation Source Sentence FLAN-T5 XXL
Multi-Shot

FLAN-T5
Large
0-Shot

GPT3.5-Turbo Ground
Truth

1

This sentence explains that the circular
shape of the red blood cells result in a big
surface area, which lets them be efficient
at gas diffusion.

The disk shape of red blood cells
results in a large surface area,
which enables them to be effi-
cient at gas diffusion

(B) C (C) Good quality (B)

2 Red blood cells gets its color from the
Hemoglobin.

Hemoglobin also contains iron,
which gives blood its red color (B) (B) (B) Fair quality (B)

3

This sentence explains how hemoglobin,
a complex protein in red blood cells,
binds to the oxygen and carbon dioxide
that the red blood cells transport.

Hemoglobin binds to the oxygen
and carbon dioxide that the red
blood cells transport

(C) (C) (C) Good quality (C)

4

This sentence is saying that red blood
cells have essentially two jobs, the sec-
ond of which being the removal of carbon
dioxide that is no longer needed. Oxygen
enters the body, and waste carbon diox-
ide leaves the body with the help of red
blood cells.

They also pick up waste carbon
dioxide for removal (C) (C) (C) Good quality (D)

5

Red blood cells carry oxygen to the cells
and remove waste. The way they are
shaped allows gas diffusion to go well.
Once the red blood cells have the oxygen
and carbon dioxide waste, hemoglobin
binds them.

Hemoglobin binds to the oxygen
and carbon dioxide that the red
blood cells transport

(D) (C) (C) Good quality (D)

6
the shape of the cells causes them to clog
blood vessels, preventing oxygen from
reaching muscles and other tissues

The shape of the cells causes
them to clog blood vessels, pre-
venting oxygen from reaching
muscles and other tissues

(A) (D) (D) High quality (A)

7

When low amounts of oxygen are trans-
ported, a person can feel tired or weak
due to the body not being replenished
completely.The heart, lungs, and muscles
rely on oxygen to function, so if there is a
deficiency of that a person would become
fatigue.

This makes a person feel tired
and weak (D) (C) (B) Fair quality (D)

8 if you have a lot of iron, it will make your
blood red

Hemoglobin also contains iron,
which gives blood its red color (B) (C) (A) Poor (B)

9

This means that because of the red blood
cells shape being like a disk it helps the
body with gas diffusion. Like if the body
has a lot of gas build up in it then the red
blood cells help get rid of the gas.

The disk shape of red blood cells
results in a large surface area,
which enables them to be effi-
cient at gas diffusion

(C) (C) (B) Fair quality (C)

10

As a result, the person feels sluggish and
has less energy. They are lacking the oxy-
gen which presumably messes up their
oxygen:carbon dioxide ratio.

This makes a person feel tired
and weak (C) (A) (B) Fair quality (C)
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4.2. Limitations

The class imbalance was an impediment in some cases, especially for the elaboration
presence task, where Class 0 accounted for roughly 93% of samples. This made it tempting
for the fine-tuned models to disproportionately label new examples as low quality since
it seemed like a sure bet. For that reason, more focus in the analysis was put on the
overall quality task, which was also one of the more balanced tasks in addition to being
more complex.

Especially in regard to the GPT models, our experiments were restricted by the costs
of using the API. Because we sought to explore multiple scenarios (i.e., 0-shot, 1-shot,
multi-shot) for all four tasks and also explore different variations of prompts, doing so for
multiple OpenAI endpoints would have increased our cost, especially because the GPT4
model is roughly 20–30×more expensive than GPT3.5-turbo.

The experiments presented in this study were not evaluated in an iterative setting,
where the request is not modeled as a monolithic prompt, but as a dialogue with multiple
short requests. The initial requests could have provided the context and the examples,
while the last request could have focused solely on the classification task. This would have
been more advantageous for the GPT3.5-turbo model, which is targeted more towards
usage in a conversational setting.

Lastly, a limitation of the currently proposed methods is the fact that they have high
resource requirements. Even for the “out-of-the-box” setting, the FLAN-T5 XXL model
could only be deployed on an NVidia A100 GPU because its 11-billion parameters are
stored in floating point precision. Having such a large model permanently deployed for
a backend system that would serve the requests made by an intelligent tutoring system
would be costly. In that regard, solutions for reducing the network’s footprint could be
used. These include either pruning channels [33] or entire layers [34], quantizing the
weights and activations (i.e., reducing their precision) [35,36], or using a combination of
both [37]. These approaches have also been applied in the case of LLMs, with methods
such as LLM-Pruner [38], which performs a selective removal of nonessential structures in
the network based on gradient information.

5. Conclusions and Future Work

This study, corroborated by the previous work of Nicula et al. [7], indicated that evalu-
ating reading strategies and assessing overall self-explanation quality can be effectively
addressed using deep learning models. This work showed that, with fine-tuning, pre-
trained LLMs surpass the performance of more-specialized medium-sized neural network
architectures. The LLM models require a more expensive hardware setup for fine-tuning
and can have more inference latency than shallower medium-sized models; still, they are
easier to adapt to a new task than a specialized medium-sized model.

The experiments also illustrated how well these models can be fine-tuned on a small
dataset (i.e., thousands of examples). The models performed well despite the slightly het-
erogeneous corpus, which was compiled from three datasets, one containing text generated
by high-school students and two containing text produced by undergraduates. However,
the topic of the target texts was narrow, as only STEM texts were targeted. These types
of texts contain objective information presented concisely, making them a better target
for this type of evaluation. Analyzing the performance of such models on data targeting
other topics, with different characteristics (e.g., texts that have a degree of subjectivity), or
data generated by another category of students (e.g., primary school students) would be
interesting. However, the effort required to collect and label such data in similar amounts
(i.e., thousands of samples) should not be underestimated.

These approaches can be leveraged to develop systems that evaluate readers’ existing
text comprehension abilities or gradually guide them to improve their performance. The
models pretrained as part of this work can be integrated within a more complex system that
can provide a set of Application Programming Interfaces (APIs) queried by an automated
tutoring system, enabling it to provide timely feedback and evaluations to students.
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A promising direction of research would be to leverage the existing datasets and infras-
tructure for fine-tuning LLMs to train text-to-text models that generate a self-explanation of
a specified quality or that target a particular combination of reading strategies. The output
of such models can be used in an educational setting as practice by requiring students to
rate and label computer-generated self-explanations or by providing the students with
examples of how certain strategies can be handled.

In essence, there are any number of possibilities and opportunities to pursue in lever-
aging LLMs and other advanced technologies to prompt students to engage in various
strategies such as self-explanation, which offer strong promise to enhance deep comprehen-
sion, problem-solving, and critical thinking.
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