
Citation: Groccia, M.C.; Guido, R.;

Conforti, D.; Pelaia, C.; Armentaro,

G.; Toscani, A.F.; Miceli, S.; Succurro,

E.; Hribal, M.L.; Sciacqua, A.

Cost-Sensitive Models to Predict Risk

of Cardiovascular Events in Patients

with Chronic Heart Failure.

Information 2023, 14, 542. https://

doi.org/10.3390/info14100542

Academic Editors: Marco Leo

and Sara Colantonio

Received: 19 August 2023

Revised: 30 September 2023

Accepted: 1 October 2023

Published: 3 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

Cost-Sensitive Models to Predict Risk of Cardiovascular Events
in Patients with Chronic Heart Failure
Maria Carmela Groccia 1,†, Rosita Guido 1,†, Domenico Conforti 1,†, Corrado Pelaia 2 , Giuseppe Armentaro 2,
Alfredo Francesco Toscani 2, Sofia Miceli 2, Elena Succurro 2, Marta Letizia Hribal 2 and Angela Sciacqua 2,*,†

1 Department of Mechanical, Energy and Management Engineering , University of Calabria, Ponte Pietro Bucci
41C, 87036 Arcavacata di Rende, Italy; mariacarmela.groccia@unical.it (M.C.G.); rosita.guido@unical.it (R.G.);
domenico.conforti@unical.it (D.C.)

2 Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
pelaia.corrado@gmail.com (C.P.); giuseppe.armentaro91@gmail.com (G.A.); a.toscani91@gmail.com (A.F.T.);
sofy.miceli@libero.it (S.M.); succurro@unicz.it (E.S.); hribal@unicz.it (M.L.H.)

* Correspondence: sciacqua@unicz.it
† These authors contributed equally to this work.

Abstract: Chronic heart failure (CHF) is a clinical syndrome characterised by symptoms and signs
due to structural and/or functional abnormalities of the heart. CHF confers risk for cardiovascular
deterioration events which cause recurrent hospitalisations and high mortality rates. The early
prediction of these events is very important to limit serious consequences, improve the quality of care,
and reduce its burden. CHF is a progressive condition in which patients may remain asymptomatic
before the onset of symptoms, as observed in heart failure with a preserved ejection fraction. The early
detection of underlying causes is critical for treatment optimisation and prognosis improvement. To
develop models to predict cardiovascular deterioration events in patients with chronic heart failure, a
real dataset was constructed and a knowledge discovery task was implemented in this study. The
dataset is imbalanced, as it is common in real-world applications. It thus posed a challenge because
imbalanced datasets tend to be overwhelmed by the abundance of majority-class instances during the
learning process. To address the issue, a pipeline was developed specifically to handle imbalanced
data. Different predictive models were developed and compared. To enhance sensitivity and other
performance metrics, we employed multiple approaches, including data resampling, cost-sensitive
methods, and a hybrid method that combines both techniques. These methods were utilised to assess
the predictive capabilities of the models and their effectiveness in handling imbalanced data. By
using these metrics, we aimed to identify the most effective strategies for achieving improved model
performance in real scenarios with imbalanced datasets. The best model for predicting cardiovascular
events achieved mean a sensitivity 65%, a mean specificity 55%, and a mean area under the curve of
0.71. The results show that cost-sensitive models combined with over/under sampling approaches
are effective for the meaningful prediction of cardiovascular events in CHF patients.

Keywords: machine learning; imbalanced data; cost-sensitive approaches; hyper-parameter optimisation;
data resampling methods; predictive models; support vector machine; chronic heart failure

1. Introduction

In the world, more than 64 million people suffer from heart failure (HF) [1]. The term
chronic heart failure (CHF) refers to a clinical syndrome characterised by symptoms and
signs due to structural and/or functional abnormalities of the heart, resulting in a reduction
in cardiac output and/or an increase in intracardiac pressure at rest or under stress. CHF
is defined as a condition characterised by asthenia and dyspnoea, as well as signs of
pulmonary and/or systemic venous congestion. Although these symptoms manifest over a
medium-long period, patients seem to be asymptomatic during that time, while the causes
that lead to HF often exist for a long time before symptoms appear. The early identification
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of the organic causes that drive HF is very important to ameliorate the prognosis, but
also to allow the precocious detection of decompensation, in case of an already developed
disease [2,3]. CHF can be classified according to different criteria. The updated European
Society of Cardiology Guidelines recommend considering the classification based on the
measurement of the left ventricle ejection fraction (LVEF). In addition, the New York Heart
Association (NYHA) classification is used to define the gravity of symptoms. The higher
the NYHA class, the worse the clinical condition, and the poorer the overall outcome.
However, it is possible that patients with mild symptoms may have an increased risk of
mortality and/or hospitalisation [4,5].

According to the guidelines of the European Society of Cardiology, we recognise three
phenotypes of HF, one with reduced ejection fraction (HFrEF) with an LVEF ≤ 40%; one HF
with mildly reduced ejection fraction (HFmrEF) with an LVEF between 41 and 49%; and one
HF with preserved ejection fraction (HFpEF) with LVEF ≥ 50%. This characterisation is not
only echocardiographic but also aetiological and clinical. In fact, HFrEF is predominantly
due to ischaemic heart disease, affects mostly young male patients and responds well to
pharmacological treatment with inhibitors of the renin–angiotensin–aldosterone system,
beta-blockers and glyflozines. In contrast, the HFmrEF and HFpEF forms are prevalent in
the elderly and in women, and in this phenotype, an important influence on the aetiology
and symptomatology is determined by comorbidities, especially chronic kidney disease,
anaemia, arterial hypertension, atrial fibrillation and chronic obstructive pulmonary disease.
In these two phenotypes, the correct treatment of comorbidities and treatment with diuretics
and glyflozines is crucial [6]. In addition to the NYHA functional class, the INTERMACS
(Interagency Registry for Mechanically Assisted Circulatory Support) classification plays
an important role when it comes to terminal forms of HF, which is used to assess patients
who could benefit from mechanical supportive circulation [7].

HF is widespread in Europe. Indeed, about 15 million people suffer from this disease,
whose estimated incidence is 2–3% per year in a population older than 40 years of age.
Current epidemiological projections forecast that such numbers will further increase in
parallel with the progressive increment in life expectancy [8]. In particular, there is a CHF
prevalence of 6.4% in subjects older than 65 years. These considerations highlight the
importance of a better and earlier disease identification, hopefully coupled with greater
public awareness of the relevance of CHF detection, associated with a more rational use
of health resources [9]. Therefore, it is noteworthy to consider the problem of recurrent
hospitalisations for CHF patients. An Italian study showed that the one-year hospitalisation
rate of CHF patients was about 22%. The outcome after one year demonstrated, in the
same study, that the mortality rate was greater in NYHA III–IV patients than in NYHA I–II
patients (14.5% and 4%, respectively) [10]. Epidemiological data based on hospital discharge
showed that CHF was the second cause of hospitalisation, with an incidence rate of 4-5
cases for every one-thousand inhabitants. Moreover, one patient out of four had a hospital
readmission after one month. Fifty percent of patients were re-hospitalised during the six
months following the first hospital admission, and their prognosis worsened. According
to these reports, health costs were around 2% of the total healthcare expenditures, and
hospitalisation could account for 60–70% of the global CHF cure burden [11–13]. Obviously,
frailty and comorbidities may have a negative impact on health costs and prognosis [14].

The importance of early diagnosis is well recognised. Predictive models based on
common clinical variables are potentially useful for the early detection of decompensation
risk. In this regard, several studies have been published, based on the evaluation of tele-
monitored patients undergoing investigation related to common clinical parameters, such
as weight, systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR),
and arterial oxygen saturation [15,16]. A relevant advantage of these systems relies on
the implementation of easy home checking, affordable by patients themselves or their
caregivers. This approach can be associated with a better compliance of most patients, who
prefer non-invasive procedures which do not require going to hospital.
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Machine learning (ML) is an interesting area of research within heart failure. ML tech-
niques have been applied to many aspects of heart failure such as diagnosis, classification,
and prediction [17]. Some limitations of ML in this field were discussed in [18]. Knowledge
discovery techniques can be properly taken into account due to their effective impact in the
cardiovascular domain for prediction tasks [19,20]. ML and KD techniques can significantly
contribute to disease identification and make a real-time effective clinical decision. Many
ML methodologies have already been investigated in predicting the presence of adverse
events in CHF patients, such as destabilisation, re-hospitalisation, and mortality [21,22].

It is important to point out that in many applications of ML, such as medical diagnosis,
datasets are often imbalanced. Typically, the number of patients is far less than that of healthy
individuals. In order to solve this problem, several methods are proposed in the literature. In
order to generate a balanced dataset, over-sampling methods add more data to the smaller
class, making it the same size as the larger class [23,24]; under-sampling methods sample the
larger class in order to have the same size as the smaller class [25]. Cost-sensitive learning
approaches take the costs of misclassification errors into account [26–30]. They assign a
higher misclassification cost for objects belonging to the minority class with respect to the
misclassification cost for objects belonging to the majority class. For instance, the approach
presented in [28] employs support vector machines (SVMs) as a classification method
and assigns penalty coefficients to both positive and negative instances. Combinations of
sampling techniques with cost-sensitive learning methods were shown to be effective in
addressing the class imbalance problem [31].

In this paper, we designed a knowledge discovery (KD) task and implemented it
with a two-fold purpose. Firstly, the predictive capability of clinical variable (CV) events
are investigated analysing real collected data spanning five years from the ambulatory
of the Geriatrics Division at the “Mater Domini” University Hospital in Catanzaro, Italy.
Secondly, different ML models for predicting cardiovascular deterioration events in CHF
patients were developed. The analysis focused on clinical decompensation events and
major CV events were selected. The KDD analysis was defined as a predictive task stated as
a supervised binary classification problem [32]. The real data were analysed and a dataset
was constructed from it. The dataset exhibited an imbalanced distribution due to the
under-representation of event cases. Dealing with this imbalanced data was one of the
most challenging aspects of applied ML. To address the issue, a pipeline was specifically
developed to handle imbalanced data. Subsequently, various ML models were trained, and
their hyper-parameters were optimised using a grid search approach. The performance
of these learned models was then evaluated using appropriate metrics. To further tackle
the class imbalance problem, three distinct approaches were implemented and tested:
cost-sensitive learning methods, data resampling methods, and a combination of cost-
sensitive learning methods with data resampling methods. The results demonstrated that
combining sampling methods with cost-sensitive learning models yielded promising values
for sensitivity and balanced accuracy. Moreover, several computational experiments were
carried out to optimise the hyper-parameters of the ML models to improve the performance
on the real-world and imbalanced dataset. The ML approach adopted in this study can be
broken down into four main steps: (1) Data preprocessing—this step involved operations
such as data cleaning, handling missing data, data transformation, and reducing data
imbalance; (2) Features selection—this step aimed to reduce overfitting, training times, and
improve accuracy by selecting the most relevant subset of variables to build the predictive
model; (3) Model building—in this stage, parameter and hyper parameter values for the
ML model are chosen to optimise its performance; (4) Cross-validation approach—the
dataset was divided into two separate groups—a training set and a test set—for validating
the ML model. The model is trained on the training set and then tested on the test set. By
following these steps, the study successfully developed predictive models for identifying
cardiovascular deterioration events in CHF patients based on the real-world data collected
from the Geriatrics Division at the “Mater Domini” University Hospital.
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Figure 1 illustrates the knowledge discovery process that we designed and imple-
mented. It is detailed in the following sections.

Figure 1. Our knowledge discovery process.

The remainder of this paper is structured as follows. Section 2 offers a comprehensive
description of our data and outlines the data processing method employed. Section 3
presents an overview of the ML models selected for this research paper (i.e., support vector
machine, artificial neural network, naïve Bayes, decision tree, and random forest), the
three methods that we adopt to balance the class distribution of the unbalanced dataset,
and the parameter tuning approach for the ML models. Moving on, Section 4 presents
the experimental results and discusses the model performance metrics. Lastly, Section 5
provides the concluding remarks for this paper.

2. Real Data Collection and Dataset Construction

The data were collected over five years, as part of a pilot study conducted at the CHF
outpatient clinic of the Geriatrics Division at the “Mater Domini” University Hospital in
Catanzaro, Italy. The key steps undertaken are described below, and the statistical analysis
was performed using R software, version 4.0.1 [33].

Study population

A total of 154 patients suffering from CHF participated, comprising 119 men (77.3%)
and 35 women (22.7%). However, only 50 patients (i.e., 32.5% of the total) who voluntarily
provided their consent were enrolled in the pilot study. During the baseline assessment,
all patients underwent medical history examination requiring a full physical examination.
The medical history evaluation mainly focused on CV events, respiratory, and metabolic
comorbidities, while key haemodynamic and anthropometric parameters were measured.
The set of outpatients was meticulously monitored with a five-year follow-up conducted
every 3 months. During each visit, six parameters were measured: weight, heart rate (HR),
respiratory rate (RR), body temperature (BT), systolic blood pressure (SBP), and diastolic
blood pressure (DBP). Clinical decompensation, with or without hospitalisation, and
major CV events such as acute coronary syndrome, myocardial infarction, percutaneous
transluminal coronary angioplasty (PTCA), surgical coronary artery revascularisation,
stroke, death, and hospitalisation for any reason were reported. All clinical events had to be
validated by source data (hospital records, death certificates or other original documents).
Throughout the five-year follow-up, some patients missed a few medical visits, while
others did not attend any appointments from the second-year onwards. Only eight patients
completed the full five-year follow-up period.
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Patient characteristics

Among the 50 enrolled patients, 14 were women (28%) and 36 were men (72%). Table 1
summarises the demographic and clinical characteristics of the patients. The average age of
the population was 72.5 ± 14.2 years. Among the patients, 3 (6%) showed a NYHA I class,
38 (76%) were in NYHA II class, and 9 (18%) in NYHA III class. The aetiology of CHF was
represented as follows: ischaemic heart disease for 23 patients (46%); idiopathic dilated
cardiomyopathy for 9 patients (18%); arterial hypertension for 4 patients (8%); valvular
disease for 8 patients (16%); valvular disease that coexists with hypertension for 4 patients
(8%); and alcoholic habit for 2 patients (4%). With regard to CV history, 1 patient (2%)
had been revascularised by PTCA; 7 patients (14%) had undergone coronary artery bypass
grafting; 13 patients (23%) had atrial flutter; 3 patients (6%) had undergone pacemaker
implantation; 2 (4%) had implantable cardioverter defibrillator (ICD); 1 (2%) had undergone
cardiac re-synchronisation therapy; 21 patients (42%) had mitral insufficiency; 4 patients
(8%) had aortic insufficiency; 28 patients (56%) were hypertensive; and 2 patients (4%)
suffered from a transitory ischaemic attack (TIA). In regard to the other comorbidities,
11 patients (22%) were diabetics, 1 patient (2%) had hypothyroidism, 4 patients (8%)
suffered from chronic renal failure, 5 patients (10%) had chronic obstructive pulmonary
disease (COPD), 1 patient (2%) suffered from bronchial asthma, 4 patients (8%) suffered
from obstructive sleep apnoea, 4 patients (8%) suffered from gastrointestinal diseases and
3 patients (6%) suffered from liver disease. With regard to pharmacological treatment,
47 patients (94%) were on ACE-I/ARB, 29 patients (58%) were taking diuretic therapy, and
44 patients (88%) were receiving beta-blockers. No patients used corticosteroids or NSAIDs.
Finally, 25 patients (50%) were taking triple therapy, 18 patients (36%) were receiving
dual therapy with ACE-I/ARB - beta-blockers, 2 patients (4%) were on dual therapy with
ACE-I/ARB and diuretic, whilst 5 patients (10%) were on single therapy.

Events during follow-up

During an average follow-up of 60 months, 19 patients presented a CV event. Among
those patients who experienced an adverse event, 8 patients developed a second episode of
decompensation. Notably, patients who manifested episodes of clinical instability were
found to be older (p < 0.05). Figure 2 displays the distribution of events based on the nine
subtypes of CHF. Among the patients with ischaemic aetiology, 9 individuals (39.13%) had
an event, while 2 patients (22.2%) were affected by idiopathic dilated cardiomyopathy;
2 patients (50%) had hypertensive aetiology; 3 patients (37.5%) had valvular disease; and
2 patients (50%) presented both valvular disease and hypertension. Interestingly, patients
with alcoholic aetiology remained in stable clinical condition without any complications, in
contrast to other types of CHF. Approximately half of the patients who experienced CV
deterioration had a history of hypertension, and just under half had mitral insufficiency,
while no patient with transient ischemic attack (TIA) presented further complications.

Figure 2. Distribution of the events based on chronic heart failure aetiology.
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Table 1. Demographic and clinical characteristics of the patients. NYHA: New York Heart Asso-
ciation; CHF: chronic heart failure; PTCA: percutaneous transluminal coronary angioplasty; ICD:
implantable cardioverter defibrillator; TIA: transient ischaemic attack; COPD: chronic obstructive
pulmonary disease.

Characteristic

Age (years ± SD) 72.5 ± 14.2

Sex Male 36 (72%)
Female 14 (28%)

NYHA Class
I 3 (6%)
II 38 (76%)
III 9 (18%)

CHF aetiology

Ischemic heart disease 23 (46%)
Idiopathic dilatation 9 (18%)

Hypertension 4 (8%)
Valvular diseases 8 (16%)

Valvular diseases + hypertension 4 (8%)
Alcoholic habit 2 (4%)

Cardiovascular history

Instable angina 1 (2%)
PTCA 1 (2%)

By-pass 7 (14%)
Atrial flutter 13 (26%)
Pacemaker 3 (6%)

Cardiac resynchronisation 1 (2%)
ICD 2 (4%)

Mitral insufficiency 21 (42%)
Aortic insufficiency 4 (8%)

Hypertension 28 (56%)
TIA 2 (4%)

Other diseases

Diabetes 11 (22%)
Hypothyroidism 1 (2%)

Renal failure 4 (8%)
COPD 5 (10%)

Asthma 1 (2%)
Sleep apnea 4 (8%)

Pulmonary fibrosis 1 (2%)
Gastrointestinal diseases 4 (8%)

Hepatic diseases 3 (6%)

Pharmacological treatment

ACE-I/ARB 47 (94%)
Diuretic therapy 29 (58%)

Beta-blockers 44 (88%)
Corticosteroids/NSAIDs 0 (0%)

2.1. Data Preprocessing

A dataset consisting of 187 instances and suitable for the prediction task was created
based on the collected data. Originally, the dataset was in a wide format with 50 rows, each
containing personal data and a medical history of patients, along with visit dates, vital
signs recorded at the visit, events occurring between the current and previous visits, and
the corresponding event dates.

To perform the classification task, the data were converted into a long format where
each row represents a patient’s visit. Input errors were corrected, outliers were discarded,
and missing values were statistically imputed. Categorical variables with n values (e.g.,
aetiology, CV history, and other diseases) were converted into n numerical binary variables,
while numerical data were expressed in their correct units of measurement. The resulting
dataset comprises 794 instances and 37 features. Each instance was labelled as positive if
there were CV deterioration events between two consecutive visits, and negative otherwise.
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Instances representing CV deterioration events were assigned to Class 1, while instances
without any events were assigned to Class 2.

Imbalanced datasets are common in real-world applications and often become the
focus of significant research efforts in knowledge discovery and data engineering. A dataset
is considered imbalanced when one class, known as the minority class, is under-represented
compared to the other class, which is the majority class. Relative imbalances frequently
occur in practical scenarios, prompting extensive research in knowledge discovery and
data engineering. For ML algorithms, imbalanced datasets pose a challenge because they
tend to be overwhelmed by the abundance of majority class instances during the learning
process. Therefore, methods are needed to improve recognition rates and address the
issue of imbalanced data. In our dataset, the significant disparity between the number
of negative instances (majority class) and positive instances (minority class) makes it
imbalanced. Specifically, there are only 31 positive instances, accounting for a mere 4.6% of
the entire dataset.

2.2. Feature Selection

Our aim was to develop a predictive model for the early detection of cardiovascular
events in patients with CHF, utilising a limited set of basic clinical parameters. Through the
feature selection process, vital signs were identified as the most informative factors. Vital
signs, i.e., HR, RR, DPB, and SBP, were identified as the key factors for monitoring CHF
and assessing the patient’s overall condition. These parameters play a crucial role in the
predictive model’s design due to their significance in both CHF monitoring and patient
assessment. Following the feature selection process, duplicate instances were removed
from the dataset.

3. Machine Learning Process

In this section, we illustrate an overview of the entire machine learning process. We
constructed, tested, and compared five ML predictive models, which are briefly introduced
below. The details of this process are described in the subsequent section.

Supervised learning models were developed to accurately predict the risk of major
events in CHF patients. The ML models implemented to develop the related prediction
models are support vector machines (SVMs), artificial neural network, naïve Bayes, decision
tree, and random forest.

SVM is based on the statistical learning theory [34,35] and is the most widely used ML
technique available nowadays. It searches for an optimal hyperplane that separates the pat-
terns of two classes by maximising the margin. Let X be a dataset with N instances
X = (x1, . . . , xN), where xi, i = 1, . . . , N, denotes an instance with m features, and
yi ∈ {±1} its label. Finding the optimal hyperplane means solving the quadratic pro-
gramming model (1)–(3)

min
1
2
||w||2 + C

N

∑
1

εi (1)

yi(wTφ(xi) + b)− 1 + εi ≥ 0 i = 1, . . . , N (2)

εi ≥ 0 i = 1, . . . , N (3)

where C, named penalty parameter, is a trade-off between the size of the margin and
the slack variable penalty. In a non-linearly separable dataset, the SVM basically maps
inputs into high-dimensional feature spaces by the so-called kernel functions. A kernel
function denotes an inner product in a feature space, measures similarity between any
pair of inputs xi and xj, and is usually denoted by K(xi, xj) =

〈
φ(xi), φ(xj)

〉
[36]. Here, we

used three kernel functions: linear kernel K(xi, xj) =
〈

xi, xj
〉
, polynomial kernel K(xi, xj) =

(
〈

xi, xj
〉
+ 1)d, and the RBF kernel K(xi, xj) = exp(−γ||xi − xj||2). The linear kernels are a

special case of polynomial kernels as the degree d is set to 1 and they compute similarity in
the input space, whereas the other kernel functions compute similarity in the feature space.
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Artificial neural networks are computational models, consisting of a number of artifi-
cial neural units. They emulate biological neural networks [37]. In this study, we used a
feed-forward artificial neural network named multilayer perceptron (MLP) with a three-
layer structure of neurons: an input layer, one or more hidden layers with a variable
number of neurons, and an output classification layer. The neurons in the MLP are trained
with the back propagation learning algorithm [38].

Naïve Bayes [39] is a probabilistic ML algorithm based on the Bayes Theorem. It
assumes that a particular feature in a class is unrelated to the presence of any other feature.

Decision trees are a non-parametric supervised learning method [40]. One of their main
advantages is that they are simple to understand and interpret, and they can be visualised.

Random forest [41] consists of individual decision trees that operate as an ensemble.
Each tree is built by applying bagging, which is the general technique of bootstrap aggrega-
tion. A simple majority vote of all trees gives the final result. RF had good accuracy results
in medical diagnosis problems [42,43].

3.1. Dealing with Imbalance Data: Cost-Sensitive Learning and Methods for Model Assessment

The problem addressed here is one of the most challenging issues in applied ML, as the
event cases are under-represented. It is strongly important to correctly identify instances
from the minority class compared to the majority class. To handle this problem, specific
methods need to be employed. Usually, misclassification errors are treated equally but they
are different depending on the class. In this work, we use and test cost-sensitive algorithms
which involve the use of different misclassification costs.

A general cost matrix Cost denotes the cost of each class misclassification [44]. A cost
matrix for datasets with two classes is illustrated in Table 2.

Table 2. Cost matrix for a binary classification problem.

Actual Class
Positive Negative

Predicted class Positive c11 c12
Negative c21 c22

In general, cij is the cost of predicting an instance belonging to class i as belonging
to class j. The goal of this type of learning is to minimise the total misclassification cost
of a model on the training set. Formally, given a cost matrix Cost and an instance x,
the cost R(i|x) of classifying x into class i is R(i|x) = ∑j p(j|x)cij, where p(j|x) is the
probability estimation of classifying an instance into class j. In the above cost matrix, c12
represents the cost of a false positive misclassification and c21 is the cost of a false negative
misclassification. Usually, as we also assume here, there is no cost for correct classifications,
that is, c11 = c22 = 0. We tested different cost matrices, as detailed in the next section.

3.2. Hybrid Method for Imbalanced Dataset and Hyper-Parameter Optimisation Approach

Our dataset suffers from class imbalance, a common issue wherein classifiers devel-
oped on such data tend to be biased towards negative predictions due to the majority
class having no-event cases. To address this problem and enable the better generalisation
to new data, it is essential to use appropriate methods for handling imbalanced classes.
The main methods for sampling-based imbalance correction are based on over-sampling
and under-sampling. Over-sampling methods involves adding more data to the smaller
class equalising its size with the larger class. On the other hand, under-sampling methods
involve randomly selecting data from the larger class, matching its size with the smaller
class. To tackle the class imbalance in our study, we adopted a hybrid method that balances
the class distribution by combining over-sampling and under-sampling approaches. This
approach adds data in the minority class while simultaneously removing data from the
majority class, achieving a more balanced representation of both classes in the dataset.
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To assess the models, we conducted a k-fold cross-validation process, ensuring the use
of k independent sets to test the model, effectively simulating unseen data. The procedure
basically consists in randomly partitioning the dataset into k equal-sized folds. During each
of the k rounds, the k- th fold is the test set while the remaining folds are used as the training
set. The test set is never used during the training of the model, preventing overfitting.
Each fold is used exactly once as a test set, ensuring that each instance is used for testing
exactly once. Figure 3 provides a schematic representation of the k-fold cross-validation
process. The performance metrics are averaged across the k estimates from each test fold.
In a well-designed k-fold cross-validation procedure, it is crucial to determine the training
and test partitions before applying any oversampling technique. As thoroughly discussed
in [45], conducting k-fold cross-validation on imbalanced data could have overly optimistic
estimates if oversampling methods are applied to the entire dataset. To ensure a reliable
evaluation of the model’s ability to generalise to real-world data, the oversampling should
only be applied to the folds designated as training data. This approach maintains the
integrity of the test sets, providing a more accurate assessment of the model’s performance.

Figure 3. Graphical representation of the k-fold cross-validation method

The impact of hyper-parameters on the performance of an ML model is widely
recognised. Generally, the hyper-parameters of each model are adjusted to find a hyper-
parameter setting that maximises the model performances and enables accurate predictions
on unseen data. Recent studies proved that hyper-parameter tuning with class weight
optimisation are efficient in handling imbalanced data [46–50]. In this study, we employed
the grid search optimisation strategy [51] to determine the optimal hyper-parameters for
each ML model on the entire dataset. This strategy involves exploring all specified hyper-
parameter combinations within a multi-dimensional grid. Each combination is evaluated
using a performance metric to assess its effectiveness in enhancing the model’s perfor-
mance. Multiple combinations of hyper-parameters are evaluated during the Grid Search
optimisation process. Among these combinations, the one that yields the best performance
is selected. Subsequently, this optimal set of hyper-parameters is utilised to train the ML
model on the entire dataset.

3.3. Performance Metrics for Imbalanced Dataset

The predictive performance of the constructed ML models is evaluated and compared
using various metrics, including the receiver operating characteristic (ROC—area under
the curve (AUC), sensitivity, specificity, balanced accuracy, and G-mean values.

Let P and N be the numbers of positive and negative instances in the dataset, respec-
tively. Let TP and TN be the numbers of instances correctly predicted as positive and
negative, respectively, and FP and FN be the number of instances predicted as positive
and negative while actually belonging to the opposite class, respectively.

• AUC measures the classifier’s ability to avoid false classification [52]. It is the area
under the curve of the true positive ratio vs. the false positive ratio that indicates the
probability that the model will rank a positive case more highly than a negative case.
A model whose predictions are 100% correct has an AUC of 1.0.

• Sensitivity, also referred to as true positive rate or recall, measures the proportion
of positive instances that are correctly identified, i.e., it is the ability to predict a CV
event:

Sens =
TP

TP + FN
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• Specificity (also known as true negative rate) is used to determine the ability to correctly
classify. It measures the proportion of negatives that are correctly identified, and is
defined as

Spec =
TN

TN + FP

• The accuracy metric can be misleading for our imbalanced dataset. As it is equally
important to accurately predict the events of the positive and negative classes for the
addressed problem, we used the balanced accuracy metric [53,54], which is defined as
the arithmetic mean of sensitivity and specificity:

B-acc =
Sens + Spec

2
=

TPR + TNR
2

• Another useful metric is the so-called geometric mean or G-Mean that balances both
sensitivity and specificity by combining them. It is defined as

G-Mean = sqrt(Sens ∗ Spec)

The sensitivity and specificity are also known as quality parameters and used to define
the quality of the predicted class.

4. Results and Discussions

For predicting cardiovascular deterioration events in CHF patients, we only used the
vital signs as predictive features for a deterioration event. With the aim of finding an ML
model that is able to predict CV events, we carried out computational experiments with
three methods, named as follows:

• Method1: cost-sensitive learning methods ;
• Method2: data resampling methods ;
• Method3: cost-sensitive learning methods combined with data resampling methods .

In cost-sensitive learning, we considered the cost of misclassifying a positive instance
and the cost of misclassifying a negative instance as hyper-parameters to be tuned during
the model training process. Referring to the notation of Table 2, we fixed the misclassifica-
tion cost c12 = 1 and explored different values for

c21 ∈ {1, 1.5, 2, 5, 10, 20, 30, 40, 50, 100, 200, 300, 400}, while setting c11 = c22 = 0.
The Waikato Environment for Knowledge Analysis (Weka, version 3.8.2, [55]) was

utilised for constructing and evaluating the classification models. For each ML model, we
used the grid search algorithm to select the optimal values of the cost matrix.

Table 3 presents the hyper-parameter tuning performed with a data resampling ap-
proach for SVM and MLP. The final column displays the optimal hyper-parameter values,
as follows:

SVM: We tested SVM with three kernel functions, i.e., the linear kernel, polynomial kernel,
and RBF kernel. The hyper-parameter C and those related to the polynomial kernel
and RBF kernel were optimised by searching for the best values within the specified
range, as reported in Table 3. The incremental value used for optimisation is denoted
in the fourth column as “Step.”

MLP: The model parameter optimisation involves choosing the number of hidden layers,
the number of neurons in each layer, the number of epochs, the learning rate, and
the momentum. We tested different MLP models consisting of one input layer, one
output layer, and one hidden layer. The number of neurons in the hidden layer was
set according to the formula

nr.neurons =
nr. o f input f eatures + nr. o f classes

2
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We optimised the learning rate, the momentum, and the number of epochs in a
defined range of values, as reported in Table 3. The incremented value is denoted in
the fourth column as “Step”.

Table 3 presents the values tested for optimising the hyper-parameters of SVM and
MLP models through the grid search algorithm. The results of the hyper-parameter tuning
for both SVM and MLP models using a cost matrix with equal misclassification costs (i.e.,
false negative cost and false positive cost) are shown as optimal hyper-parameter values in
the last column.

Table 3. Hyper-parameter tuning for SVM and MLP and best values.

ML Model Parameter Search Space Step Selected Value

SVM d [1 , 5] 1 2
(polynomial kernel) C [1 , 10] 0.5 5

SVM γ [0.01 , 1.00] 0.01 0.82
(RBF kernel) C [1 , 10] 0.5 3

MLP
Learning rate [0.1 , 1.0] 0.1 0.6
Momentum [0.1 , 1.0] 0.1 0.1

Number of epochs [400 , 600] 100 500

Table 4 displays the hyper-parameter values set for each model, alongside the corre-
sponding cost matrix with equal misclassification costs. The table provides a comprehensive
overview of the selected hyper-parameter values for each model in the study and the same
cost matrix.

Table 4. Optimal hyper-parameters values.

Model Parameter Value

SVM with linear kernel C 1

SVM with polynomial kernel d 2
C 5

SVM with RBF kernel γ 0.82
C 3

MLP

Learning rate 0.6
Momentum 0.1

Number of epochs 500
Number of neurons in input layer 4

Number of neurons in hidden layer 3
Number of neurons in output layer 2

Naive Bayes useKernelEstimator False
useSupervisedDiscretisation False

Decision tree Confidence factor 0.25

Random forest Bag size percent 100
Number of iterations 100

Predictive Models Performance Metrics

We carried out computational experiments with the three methods. The following
tables only report the best performance results. The performance metrics are related to
both three-fold cross-validation and five-fold cross-validation. The best values for each
performance metric achieved by a ML model are highlighted in bold.

Table 5 summarises the best results related to Method1, i.e., cost-sensitive learning
methods. The SVM models with the linear kernel and RBF kernel demonstrated the best
overall performances compared to the other models when the misclassification costs were
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set to c12 = 1 and c21 = 30. The decision tree models exhibited a comparable prediction
performance in terms of sensitivity and specificity only when the cost of misclassifying
the minority class was set to a high value, that is, c21 = 200 or c21 = 300. Naive Bayes
models showed a comparable prediction performance with both c21 = 30 and c21 = 40
with five-fold cross-validation. Random forest models showed a comparable prediction
performance only when the cost of misclassifying the minority class was set to a high value,
that is, c21 = 500. Furthermore, it is noteworthy that, in general, hyper-parameters that
allow one to find the highest sensitivity have the lowest specificity, and vice versa.

Table 5. Predictive cost-sensitive learning model performance metrics by the cost-sensitive method.

3-Fold Cross-Validation 5-Fold Cross-Validation
Model c12 c21 AUC Sens Spec B-acc G-mean AUC Sens Spec B-acc G-mean

SVM with
linear kernel

1 10 0.535 0.130 0.940 0.536 0.278 0.611 0.257 0.964 0.611 0.498
1 20 0.597 0.394 0.801 0.598 0.542 0.703 0.586 0.820 0.703 0.693
1 30 0.576 0.558 0.594 0.576 0.557 0.670 0.719 0.620 0.670 0.668
1 35 0.499 0.621 0.376 0.499 0.429 0.601 0.752 0.449 0.601 0.581
1 40 0.482 0.788 0.176 0.482 0.182 0.535 0.881 0.189 0.535 0.408

SVM with
polynomial
kernel

1 10 0.542 0.13 0.954 0.542 0.278 0.583 0.195 0.972 0.584 0.435
1 20 0.609 0.33 0.889 0.610 0.515 0.635 0.357 0.913 0.635 0.571
1 30 0.544 0.397 0.692 0.545 0.488 0.586 0.843 0.329 0.586 0.527
1 35 0.544 0.745 0.341 0.544 0.485 0.565 0.719 0.412 0.566 0.544
1 40 0.472 0.621 0.322 0.472 0.414 0.544 0.786 0.303 0.545 0.488

SVM with
RBF kernel

1 10 0.557 0.161 0.952 0.557 0.317 0.583 0.19 0.976 0.583 0.431
1 20 0.546 0.227 0.865 0.546 0.428 0.661 0.424 0.898 0.661 0.617
1 30 0.578 0.558 0.599 0.579 0.559 0.677 0.719 0.635 0.677 0.676
1 35 0.551 0.555 0.548 0.552 0.534 0.589 0.69 0.487 0.589 0.580
1 40 0.505 0.558 0.452 0.505 0.470 0.548 0.724 0.371 0.548 0.518

MLP
1 10 0.579 0.464 0.641 0.553 0.279 0.72 0.362 0.83 0.596 0.548
1 15 0.528 0.464 0.652 0.558 0.280 0.716 0.633 0.382 0.508 0.492
1 20 0.609 1.000 0.000 0.500 0.000 0.559 1.000 0.000 0.500 0.000

Naive
Bayes

1 10 0.619 0.324 0.886 0.606 0.528 0.667 0.257 0.91 0.584 0.484
1 20 0.619 0.391 0.807 0.599 0.555 0.667 0.390 0.826 0.608 0.568
1 30 0.619 0.455 0.724 0.590 0.565 0.667 0.490 0.746 0.618 0.605
1 40 0.619 0.485 0.621 0.553 0.539 0.667 0.586 0.655 0.621 0.620
1 50 0.619 0.518 0.510 0.515 0.509 0.667 0.619 0.562 0.591 0.590
1 60 0.619 0.615 0.448 0.532 0.519 - - - - -

Decision
tree

1 10 0.553 0.197 0.916 0.557 0.412 0.526 0.133 0.921 0.527 0.35
1 20 0.56 0.197 0.924 0.561 0.415 0.527 0.133 0.919 0.526 0.350
1 30 0.563 0.230 0.898 0.564 0.434 0.553 0.200 0.897 0.549 0.424
1 40 0.533 0.197 0.870 0.534 0.402 0.568 0.233 0.892 0.563 0.456
1 50 0.543 0.230 0.863 0.547 0.425 0.577 0.267 0.874 0.571 0.483
1 100 0.572 0.364 0.773 0.568 0.477 0.578 0.324 0.805 0.565 0.511
1 200 0.554 0.430 0.672 0.551 0.484 0.618 0.590 0.611 0.601 0.600
1 300 0.538 0.524 0.515 0.520 0.496 0.642 0.652 0.473 0.563 0.555
1 350 0.516 0.691 0.296 0.493 0.292 - - - - -
1 400 0.516 0.691 0.296 0.493 0.292 - - - - -

Random
forest

1 10 0.593 0.164 0.961 0.563 0.380 0.639 0.100 0.972 0.536 0.312
1 20 0.579 0.164 0.961 0.563 0.380 0.617 0.100 0.964 0.532 0.310
1 30 0.596 0.164 0.958 0.561 0.379 0.618 0.200 0.958 0.579 0.438
1 40 0.585 0.197 0.954 0.576 0.405 0.626 0.167 0.957 0.562 0.400
1 50 0.572 0.197 0.952 0.575 0.405 0.624 0.200 0.949 0.575 0.436
1 100 0.587 0.164 0.929 0.547 0.374 0.629 0.262 0.930 0.596 0.494
1 200 0.595 0.230 0.879 0.555 0.413 0.601 0.324 0.865 0.595 0.529
1 300 0.568 0.364 0.787 0.576 0.496 0.597 0.390 0.759 0.575 0.544
1 400 0.568 0.330 0.684 0.508 0.429 0.599 0.486 0.690 0.588 0.579
1 500 0.562 0.397 0.610 0.508 0.429 0.588 0.552 0.602 0.577 0.576

Table 6 reports the performance of the predictive models with Method2 and Method3.
More specifically, the first row shows the results found by Method2 per each ML model
reported in the first columns; the rest of the rows show the results found by Method3.
Based on the performance results, the MLP with c12 = 1, c21 = 2 has the best performance
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among the built models with a mean sensitivity and a mean specificity of 65% and 55%,
respectively, a mean area under the curve of 0.71, and a G-mean of 0.60. In general,
we observed that the performance of the predictive models MLP, naive Bayes, decision
tree, and random forest improved when the cost of misclassifying the minority class was
higher (c21 > c12). Additionally, all constructed models achieved a meaningful prediction
performance with a five-fold cross-validation approach. However, the SVM model with
a polynomial kernel showed a lower sensitivity performance in certain cases. These
findings indicate that the combination of cost-sensitive methods with data over/under-
sampling approaches is effective for the meaningful prediction of cardiovascular events.
Comparing the three methods, the cost-sensitive learning methods proved to be superior to
the sampling approach. They achieved a high performance in terms of G-mean, indicating
their efficacy in handling imbalanced data and improving the model’s overall performance.

Table 6. Predictive model performance metrics related to the data resampling method, and the
cost-sensitive method combined with the data resampling method.

3-Fold Cross-Validation 5-Fold Cross-Validation
Model c12 c21 AUC Sens Spec B-acc G-mean AUC Sens Spec B-acc G-mean

SVM with
linear kernel

1 1 0.573 0.394 0.752 0.573 0.522 0.680 0.557 0.802 0.680 0.668
1 1.5 0.522 0.527 0.517 0.573 0.522 0.670 0.781 0.560 0.671 0.661
1 2 0.459 0.685 0.232 0.459 0.279 0.545 0.876 0.214 0.545 0.433
1 5 0.500 1.000 0.000 0.500 0.000 0.500 1.000 0.000 0.500 0.000

SVM with
polynomial
kernel

1 1 0.536 0.355 0.717 0.536 0.498 0.578 0.324 0.832 0.578 0.519
1 1.5 0.569 0.812 0.325 0.536 0.498 0.577 0.843 0.310 0.577 0.511
1 2 0.541 0.812 0.271 0.542 0.447 0.520 0.814 0.226 0.520 0.429
1 5 0.515 0.842 0.187 0.515 0.374 0.471 0.843 0.099 0.471 0.289
1 10 0.476 0.936 0.017 0.477 0.099 0.505 1.000 0.009 0.505 0.095
1 20 0.500 1.000 0.000 0.500 0.000 0.500 1.000 0.000 0.500 0.000
1 30 0.473 0.906 0.041 0.474 0.145 0.503 1.000 0.006 0.503 0.077

SVM with
RBF kernel

1 1 0.596 0.427 0.763 0.596 0.550 0.644 0.452 0.835 0.644 0.614
1 1.5 0.519 0.458 0.580 0.596 0.550 0.638 0.657 0.619 0.638 0.638
1 2 0.521 0.558 0.484 0.521 0.480 0.586 0.748 0.425 0.587 0.564
1 5 0.466 0.812 0.120 0.466 0.234 0.465 0.876 0.054 0.465 0.218
1 10 0.500 1.000 0.000 0.500 0.000 0.500 1.000 0.000 0.500 0.000

MLP

1 1 0.634 0.397 0.680 0.538 0.475 0.659 0.557 0.764 0.661 0.652
1 2 0.606 0.697 0.293 0.495 0.094 0.715 0.652 0.555 0.604 0.602
1 5 0.598 0.652 0.574 0.613 0.591 0.695 0.781 0.396 0.589 0.556
1 10 0.548 0.767 0.351 0.559 0.385 0.663 0.724 0.348 0.536 0.502
1 20 0.498 0.652 0.385 0.519 0.446 0.629 0.790 0.136 0.463 0.328
1 30 0.533 0.632 0.416 0.524 0.500 0.570 0.752 0.180 0.466 0.368

Naive
Bayes

1 1 0.619 0.391 0.789 0.590 0.548 0.680 0.424 0.797 0.611 0.581
1 1.5 0.619 0.488 0.681 0.590 0.548 0.680 0.552 0.716 0.634 0.629
1 2 0.619 0.548 0.588 0.569 0.560 0.680 0.619 0.607 0.613 0.613
1 5 0.619 0.879 0.201 0.540 0.388 0.680 0.843 0.202 0.523 0.413
1 10 0.619 0.879 0.093 0.486 0.170 0.680 0.910 0.0434 0.477 0.199
1 20 0.619 0.939 0.057 0.498 0.125 0.680 1.000 0.012 0.506 0.110
1 30 0.619 0.939 0.039 0.489 0.103 0.680 1.000 0.006 0.503 0.078

Decision
tree

1 1 0.524 0.164 0.884 0.524 0.293 0.617 0.357 0.864 0.611 0.555
1 2 0.540 0.197 0.874 0.536 0.389 0.602 0.324 0.871 0.598 0.531
1 5 0.515 0.297 0.754 0.526 0.445 0.615 0.457 0.741 0.599 0.582
1 10 0.500 0.464 0.520 0.492 0.418 0.621 0.586 0.618 0.602 0.602
1 20 0.509 0.555 0.430 0.493 0.460 0.613 0.648 0.448 0.548 0.539
1 30 0.475 0.621 0.339 0.480 0.304 0.473 0.748 0.155 0.452 0.340

Random
forest

1 1 0.595 0.164 0.921 0.542 0.372 0.640 0.195 0.931 0.563 0.426
1 2 0.570 0.230 0.916 0.573 0.422 0.638 0.257 0.933 0.595 0.490
1 5 0.599 0.230 0.879 0.555 0.431 0.638 0.257 0.895 0.576 0.480
1 10 0.580 0.330 0.807 0.569 0.485 0.613 0.390 0.828 0.609 0.568
1 20 0.568 0.430 0.630 0.531 0.473 0.634 0.552 0.675 0.614 0.610
1 30 0.572 0.558 0.505 0.531 0.500 0.601 0.619 0.503 0.561 0.558
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This model could be particularly useful in CHF patients with NYHA class III or IV,
where functional reserves are reduced and each exacerbation leads to a further deterioration
of cardiac function that worsens the symptomatology and often requires hospitalisation
and sometimes results in death. In this context, the early identification and treatment of
a re-exacerbation of HF may improve the patient’s symptoms and prognosis and avoid
hospitalisation with reduced healthcare costs [6].

5. Conclusions

Technology is increasingly playing a significant role in clinical practice. In this context,
machine learning represents an innovative methodology for managing chronic disorders,
empowering clinicians with a key role in predicting cardiovascular events rather than
merely being spectators.

The data used in this study were collected during a pilot study in a well-characterised
CHF population of patients. The results open up numerous potential perspectives for ap-
plying ML approaches to clinical practice. Having a predictive system for CV deterioration
events in CHF patients can lead to significant advantages, such as reducing hospitalisations
and associated costs. The clinical importance of utilising such a model cannot be under-
stated, as early detection can prevent CV events, improve patient health, and optimise
healthcare expenditure.

The findings suggest that cost-sensitive methods can effectively predict CV deteri-
oration events in CHF patients using only a few clinical variables. CHF remains one of
the most severe chronic diseases in terms of mortality, hospitalisation rate, and healthcare
costs. Successfully addressing even one variable linked to the natural course of this disease
would be a significant achievement, benefiting the patients, clinicians, and the National
Health System. Our KD process yielded promising results, paving the way for large-scale
application. It is interesting that a few clinical variables such as HR, RR, DBP, and SBP
had a good performance in the prediction of CV deterioration events. Furthermore, the
performance of these models may be enhanced by including other variables of study pa-
tients. Further studies, however, are needed to validate this approach in a more large-scaled
patient population. As part of future work, we plan to expand the sample size by including
more patients, reducing the interval between consecutive visits using remote monitoring,
and conduct an in-depth feature selection study to better understand which other features
are crucial in diagnosing deterioration events in CHF patients.
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