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Abstract: Deep learning (DL) and machine learning (ML) are widely used in many fields but rarely
used in the frequency estimation (FE) and slope estimation (SE) of signals. Frequency and slope
estimation for frequency-modulated (FM) and single-tone sinusoidal signals are essential in various
applications, such as wireless communications, sound navigation and ranging (SONAR), and radio
detection and ranging (RADAR) measurements. This work proposed a novel frequency estimation
technique for instantaneous linear FM (LFM) sinusoidal wave using deep learning. Deep neural
networks (DNN) and convolutional neural networks (CNN) are classes of artificial neural networks
(ANNs) used for the frequency and slope estimation for LFM signals under additive white Gaussian
noise (AWGN) and additive symmetric alpha stable noise (SαSN). DNN is composed of input,
output, and two hidden layers, where several nodes in the first and second hidden layers are 25
and 8, respectively. CNN is the content input layer; many hidden layers include convolution, batch
normalization, ReLU, max pooling, fully connected, and dropout. The output layer consists of a fully
connected softmax and classification layers. SαS distributions are impulsive noise disturbances found
in many communication environments such as marine systems, their distribution lacks a closed-form
probability density function (PDF), except for specific cases, and infinite second-order statistics, hence
geometric SNR (GSNR) is used in this work to determine the effect of noise in a mixture of Gaussian
and SαS noise processes. DNN is a machine learning classifier with few layers for reducing FE and
SE complexity. CNN is a deep learning classifier, designed with many layers, and proved to be more
accurate than DNN when dealing with big data and finding optimal features. Simulation results show
that SαS noise can be much more harmful to the FE and SE of FM signals than Gaussian noise. DL
and ML can significantly reduce FE complexity, memory cost, and power consumption as compared
to the classical FE based on time–frequency analysis, which are important requirements for many
systems, such as some Internet of Things (IoT) sensor applications. After training CNN for frequency
and slope estimation of LFM signals, the performance of CNN (in terms of accuracy) can give good
results at very low signal-to-noise ratios where time–frequency distribution (TFD) fails, giving more
than 20 dB difference in the GSNR working range as compared to the classical spectrogram-based
estimation, and over 15 dB difference with Viterbi-based estimate.

Keywords: frequency estimation; LFM; sensors; IoT; software-defined radio (SDR); alpha-stable
noise; TFD; deep learning

1. Introduction

Frequency estimation is utilized in various engineering applications, including com-
munications, RADAR, frequency identification of sinusoidal signals, and resonance sensing
systems. Many signals in practice are nonstationary, such as FM, which is a signal found
in communication and other application. Those signals can be classified as either mono-
component or multicomponent signals. The estimation of the instantaneous frequency (IF)
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is a natural evolution from the measure of the steady-state sinusoidal frequency, which has
been intensively studied for many years [1,2].

Ref. [3] proposes an algorithm for frequency estimation of sinusoidal FM signals
using interpolation of the fast Fourier transform (FFT) and discrete-time Fourier transform
(DTFT), relying on N-point FFT to find the position of the maximum FFT. Three spectral
lines located within the main lobe are used to estimate the frequency. A non-zero-padded
sinusoidal signal frequency estimation technique was developed using FFT and DTFT.
The model of a single-frequency signal with additive white Gaussian noise is used to
estimate the frequency based on the maximum spectrum line of the frequency spectrum
indexed by the FFT. The root mean square error (RMSE) of a suggested algorithm is much
lower than that of Candan, a rational combination of three spectrum lines (RCTSL), and
Aboutanios and Mulgrew (A&M) algorithms and close to the Hybrid A&M and q-shift
estimator (HAQSE) algorithm. When the SNR is between 5 dB and 100 dB, the suggested
approach outperforms the competitor algorithms [3].

Ref. [4] studies the instantaneous frequency estimation of multicomponent signals
within the time–frequency domain, where a combination of Eigen decomposition of time–
frequency distributions and time–frequency filtering is used to extract signal components
and estimate their instantaneous frequencies using the ridge detection and tracking proce-
dure, where time frequency (TF) signal analysis, signal decomposition, and IF estimation
methods are based on quadratic forms to estimate the IF. The Wigner-Ville distribution is
a quadratic class prototype distribution. Eigen decomposition of TFDs is used to extract
components from a quadratic TFD. The ridge tracking approach is then used to estimate
instantaneous frequency. The estimation approach may occasionally fail to evaluate the IFs
of elements that overlap in the TF domain. This method extracts IFs based on amplitudes,
neglecting directional variations in ridge curves. In other words, this approach only consid-
ers the patterns of the remaining components after detecting the target ridge component.
As a result, the estimating process may take the incorrect course [4].

1.1. State-of-the-Art Methods

Ref. [5] offers a method that relies on neural networks for F0 estimate. It includes
two sub-tasks as a classification to determine whether or not the frame has the voice and
regression for estimating the (F0) value. A single model is used for both, and the output
is (F0) values for voice frames and zeroes for unvoiced frames. F0 estimation consists of
two sub-tasks: a classification task determining whether the structure contains a voice or
not and a regression task that estimates the F0 value. A primary solution is accomplished
by utilizing a single model for both, with reference F0 values for voice frames and 0 for
“unvoice” frames (frames not presenting a valid voice F0). This strategy, however, may
be performance-limited because varying target values rather than probabilities are not
appropriate for classification and may result in an unstable boundary between voice and
unvoice. The zeros for unvoice denote an infinitely large F0 period, which should not be
included in the training data for numerical regression. A numerical regression is used to
formalize the F0 estimation. By changing the output layer to rectified linear unit (ReLU)
activation, the networks for voice detection should be suitable as an F0 estimator [5].

Ref. [6] proposes estimating the Doppler frequency using an artificial neural network
(ANN). The results explain that this method has a better performance and lower computa-
tional cost compared to traditional methods such as Robust Chinese Remainder Theorem
(RCRT). They used an ANN with three neurons in the input layer (remainders by RCRT),
ten neurons in a hidden layer, and 17 neurons in the output layer. It is randomly divided
into three parts: 60% is used for training, 10% is used for validation, and 30% is used
for the test. A feed-forward network comprises layers of neurons, and an input layer is
used to introduce data into the system. Following that, processing occurs in one or more
intermediate (hidden) layers.

The network’s final layer produces output data. The ANN learning algorithms aim
to modify the weights on all the edges. The weighted inputs from the previous layer



Information 2023, 14, 18 3 of 43

are then pooled within each neuron and pass via an activation function, which generally
constrains its output to [0,1]. Although different functions are feasible, sigmoid functions
are commonly utilized. A feed-forward network is made up of layers of neurons. An input
layer is used to introduce data into the system. Following that, processing occurs in one or
more intermediate (hidden) layers. The network’s final layer produces output data. The
ANN learning algorithms aim to modify the weights on all the edges. The weighted inputs
from the previous layer are then pooled within each neuron and pass via an activation
function, which generally constrains its output to [0,1]. Although different functions are
feasible, sigmoid functions are commonly utilized [6].

Ref. [7] introduces a model that relies on a convolutional neural network to signal
frequency signal and LFM signal detection and estimation. The pre-trained model is based
on signals with a 2-dimensional domain containing multiple convolutional layers, pooled
layers, and fully connected layers. Finally, softmax classification is used as the output layer.
The RADAR echo is first demodulated, and the pulse is compressed. The preprocessed
LFM signal is then sampled, yielding a series of one-dimensional sequences. The one-
dimensional line is split into equal-length segments at regular intervals, splicing from
top to bottom in chronological order to generate a one-dimensional matrix that serves
as samples for the training and test sets. At the same time, fractional Fourier transform
(FRFT) calculates all of the LFM signal sequences to acquire genuine starting frequency
and frequency modulation (chirp rate) information. The training set is then categorized
using CNN based on the obtained frequency and chirp rate. Finally, the trained model is
put through its paces with the test. The dataset is used for calculating the parameters of the
LFM signal. There are three types of data utilized in model training and testing. The first
type is a single-frequency signal, with uniform motion as the matching target motion state.
The second type is the chirp rate signal, and the target motion is acceleration with an initial
velocity of 0 m/s (acceleration 1). The third type is the LFM signal, and the associated
target motion is acceleration with a non-zero beginning velocity (acceleration 2). AlexNet
is used for training and testing. The simulation findings show that when the SNR is large,
the recognition rate of all three types of signals is greater than 90% [7].

In various applications, such as wireless communications and image processing, SαS
noise is widely encountered. Ref. [8] analyzes the characteristics of α-stable noise, and the
chirp signal in α-stable noise is converted into Gaussian-like distribution. Then, fractional
Fourier transform was used to estimate the initial frequency and chirp rate of signal in
α-stable noise. The FRFT approach produces good parameter estimation results for chirp
signals in Gaussian noise. However, when the signal is polluted with α-stable noise, the
performance of FRFT suffers. As a result, based on the pulse characteristics of α-stable
noise, FRFT can remove the sharp spikes of the echo signal and convert the non-Gaussian
noise into a Gaussian-like distribution, and then uses energy concentration of FRFT to
gain accurate initial frequency and chirp rate estimates of the chirp signal. The simulation
results show that the approach has high anti-noise performance when predicting chirp
signal parameters in α-stable noise, and the estimated effects are consistent with noise-free
signals [8].

In [9], Aboutanios and Mulgrew (A&M) suggested two similar numerical methods that
outperform all existing DFT-interpolation-based methods, with asymptotic variances that
are only 1.0147 times the Cramer-Rao Lower Bound (CRLB). The A&M approach employs
the signal’s DFT coefficients shifted by ∓0.5 from the peak DFT coefficient, which can be
thought of as interpolating the signal’s DFT twice. Moreover, they demonstrated using the
fixed-point theorem that the iterative A&M algorithm converges in only two iterations and
that adding some other iteration does not enhance estimation performance [9].

Ref. [10] presents two approaches for estimating the frequency of a complex sinusoidal
in noisy conditions. The first approach interpolates on the signal’s Q-Shifted Estimator
(QSE) DFT coefficients, and the optimal iterative process number is found to be a logarith-
mic role of the signal size. Hybrid half-shifted and q-shifted (HAQSE) DFT interpolators are
used in the second approach, which converges in only two iterations. Both estimators are
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shown to be asymptotically unbiased, with their mean squared errors performing near the
Cramer-Rao lower bound. The algorithm’s effectiveness is uniform over [0.5,0.5], and the
proposed estimator is unbiased. The number of optimized iterations is chosen, and perform-
ing additional iterations does not enhance the total asymptotic performance; then, the value
of the optimum DFT shift is determined. The frequency estimate has been asymptotically
standard, with mean frequency and variance near the Cramer-Rao lower bound (CRLB).
Estimators QSE and HAQSE are efficient methods because they are minimum-variance,
unbiased estimators. HAQSE needs two iterations to converge, whereas QSE may need
more than two. It was also demonstrated that HAQSE performs better with shorter signal
lengths. QSE requires one more iterative process for most practical signal lengths [10].

Ref. [11] suggests that the parameters of the LFM signal under an α-stable noise
environment can be estimated using the fractional Fourier transform and the Sigmoid
transform. Two new functions are defined: the sigmoid fractional correlation function and
the sigmoid fractional spectral density (Sigmoid-FPSD). A novel method for estimating LFM
signal parameters based on Sigmoid-FPSD under alpha-characterized noise is proposed
based on these two definitions. Furthermore, the boundedness of the Sigmoid-FPSD under
SαS noise and the feasibility analysis of the Sigmoid-FPSD are described to evaluate the
proposed method’s performance. Both theoretical studies and simulations show that the
proposed approach outperforms other existing methods [11].

1.2. Related Works

In a parallel direction of IF estimation for single-tones, Almayyali and Hussain reached
promising results for using deep neural networks [12], where complexity has been reduced
compared with classical techniques, making the DL approach suitable for SDR networks,
sensors, and IoT applications. Generally, it is difficult to estimate the parameters of FM sig-
nal under a mixture of α-stable noise (non-Gaussian noise) and Gaussian noise. Moreover,
the extensive dataset for noisy LFM signals is used for frequency and slope estimation.
Deep learning significantly contributes to estimating parameters under the influence of
these conditions. The convolutional network extracted features from these signals and then
classified them for frequency and slope prediction. It is then compared with the classical
method TFD.

The rest of this paper is outlined as follows: Section 2 introduces the problem. Section 3
presents objectives and contributions; Section 4, FM and noise. Section 5 introduces the
proposed method. Section 6 introduces IF estimation based on TFD. Section 7 discusses the
results; Section 8, further remarks; and Section 9 presents the paper’s conclusion.

2. Problem Definition

Two fundamental issues in signal processing are a signal estimation and the separation
of nonstationary signals. The parameter estimation includes the measure of the IF and
linear chirp rate (LCR) or slopes for LFM signals under noise. Usually, Gaussian noise
is considered. However, in underwater communications and many other environments,
impulsive noise is the real problem. An essential kind of impulse noise is the α-stable noise,
which is impulsive in the time domain and highly affects the accuracy of estimating the
parameters of noisy LFM signals. Impulse noise is typically associated with Gaussian noise,
making the estimation problem more difficult. FM signals are used in various engineering
applications, including RADAR, SONAR, and communications. The frequency content
of such signals contains the intended information. This work considers the recovery of
information carried by linear FM signals contaminated by a mixture of α -stable noise and
Gaussian noise.

3. Objectives and Contributions

The frequency estimation problem has been processed by classical techniques such as
Fourier and correlative techniques. Moreover, the same problem is currently processed by
deep neural networks and CNN. This work aims to:
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• Provide an accurate and fast estimation of IF and instantaneous slope using deep
learning, as deep learning for frequency classification is promising. The proposed
method can be used for RADAR and medical SONAR applications, where RADAR
functions include range (localization), angle, and velocity, while medical SONAR func-
tions include diagnosis, classification, and tracking. The use of the proposed approach
can lead to improved RADAR localization and improved medical SONAR diagnosis.

• Create a dataset of noisy LFM signals with varying LCR and frequency.
• Two types of noise are combined by a linear equation, as explained in Section 5.1.
• Convolutional deep learning, rather than recursive networks, estimate parameters.

Researchers commonly use convolutional networks to classify signal types.
• A comparison between the classical and convolutional deep learning methods.
• They obtain high accuracy in the presence of impulsive noise without the use of

de-noise methods.

The contributions of this work involve the following:

• The performance of the DL approach is compared with the version of the still-active
classical techniques based on Fourier analysis. It is shown that the classical time–
frequency-based methods are ineffective under the damaging alpha-stable noise,
especially under low signal-to-noise ratios, where a difference of 20 dB in performance
has been noticed compared to the DL approach. This result is vital for underwater
RADAR systems, where impulsive noise is dominant.

• The DL approach is SNR-dependent, so an investigation of the system performance
under various SNRs is presented. Based on our previous work [12], a change in SNR
will have little effect on the performance of the DL-based approach.

• The reduced complexity introduced by DL-based FE and avoiding complex valued
arithmetic will make FE easier and cheaper for IoT communications, sensors, sensor
networks, and SDR. This work presents discussions on such possibilities.

4. FM Signals and Noise

This section illustrates FM signals, AWGN, and SαS noise as follows:

4.1. Instantaneous Frequency and FM

A key feature of FM transmissions is the instantaneous frequency, which describes the
fluctuations in frequency content across time. The IF of a signal is a time derivative of its
instantaneous phase θ(t) [13,14]:

f (t) =
1

2π

dθ(t)
dt

(1)

θ(t) = 2π( fot + σ
t2

2
+ ρ

t3

3
) (2)

Note that the initial phase θo has been omitted as it has no effect on the frequency
estimation.

The signal model with LFM law used in this work is [15]:

s(t) = A ej2π( fot+ σ
2 t2) (3)

where σ is the linear modulation index, fo is the initial frequency (in Hertz), and A is the
amplitude. Using Equation (1), the LFM signal IF will be [16]:

f (t) = fo + σt (4)

The quadratic IF law has also been used to consider the quadratic frequency modula-
tion (QFM) signal in this work:

s(t) = A ej2π( fot+ σ
2 t2+

ρ
3 t3) (5)
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where ρ is the quadratic modulation index of the QFM signal, with the quadratic IF law:

f (t) = fo + σt + ρt2 (6)

4.2. Additive White Gaussian Noise

AWGN has the following probability density function with zero mean and variance
(power) υ2 [13]:

FZ =
1

υ
√

2π
e−Z2/2υ2

(7)

where Z is a random variable and υ is the standard deviation of the noise.
The procedure for generating AWGN is as follows:

1. Calculating the power px contained in the input signal x(t), were

px =
1
L ∑L−1

i=0 |x[i]|
2, L = |x| (8)

2. Converting the supplied SNRdB (SNR in dB) to a linear scale and finding the noise
power in terms of SNR and signal power px, were

SNR = 10SNRdB/10, N0 = px/SNR (9)

3. Using the following equations to determine the AWG noise:

G = υ·Z. if x is real (10a)

G = υ(Z + i M), if x is complex (10b)

where Z, M ∈ N
(
0, υ2). For a real signal υ =

√
N0, for a complex signal υ =

√
N0/2.

4.3. Symmetric α-Stable Noise

The α-stable distribution noise necessitates four parameters (α, γ, β, and µ), with the
stable distribution characteristic function specified as [17,18]:

ψ(ω) = exp(−γ|ω|α [1 + βsign(ω)W(ω, α)) (11a)

W(ω, α) =

{
tan
(

απ
2
)

for α 6= 1
2
π log |ω| for α = 1

}
(11b)

And sign(ω) is the signum function.
The characteristic function for the SαS distribution when β = 0 is specified as follows:

ψ(ω) = exp
(
−γ|ω|α

)
(11c)

where (0 < α≤ 2) is also known as the tail index or characteristic exponent. When α < 2, the
distribution is algebraic-tailed with a constant tail α, meaning infinite variance. The density
of tails becomes heavier as it gets smaller. When α = 2, the SαS distribution is reduced
to the Gaussian distribution. When α = 1 and β = 0, the SαS distribution is reduced to
the Cauchy distribution. When α = 0.5 and β = 1, the SαS distribution is reduced to the
Lévy distribution. The parameter γ > 0, usually called the dispersion, is a positive constant
related to the distribution scale. The parameter γ plays a role that is analogous to that of the
variance for a second-order process. The skewness parameter is β ∈ [−1,1]. The location
parameter is µ ∈ R. The procedure of SαS simulation is explained in Appendix A.

5. The Proposed Method

This section explains the proposed method for estimating the frequency and slope.
Deep learning and machine learning were used to predict the frequency and slope of
noisy signals and then calculate the instantaneous frequency. Then it is compared with the
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time–frequency distribution as shown in the results. ANN includes feedforward neural
network (FNN), the same multilayer perceptron (MLP). The input–output layer is called a
single-layer network, and one hidden layer is called a shallow neural network. Two or more
hidden layers are called DNN. The nodes in neighboring layers are fully connected. DNN
with a complex structure is time-consuming for training [19]. The activation functions
are chosen depending on the type of problem to be solved by the network. The most
common activation functions are sigmoid or logistic and hyperbolic tangent or tanh [20].
SCG and adaptive moment estimation (Adam) are used as optimization algorithms in ANN.
SCG uses second-order neural network information while requiring just O(N) memory
use, where N is the number of weights in the network [21]. The procedures of Adam
are explained in reference [22]. DL is a subset of machine learning. CNN is used in deep
learning. A CNN type of deep ANN [23], consists of input, output, and hidden layers. CNN
works with multiple hidden layers and 2D data, so the input data must be transformed into
2D matrices before it can detect frequency or slope. Each input image is passed through a
series of convolution layers with filters (kernels), pooling, fully connected layers, and the
Softmax function to train and test deep learning CNN models. CNN transforms manual
feature extraction methods into automated processes [24,25]. Many metrics are used to
evaluate ML and DL methods. The perfect models chosen using these metrics [26] include
accuracy, precision, recall, F-measure, and receiver operating characteristic (ROC).

This paper demonstrates for the first time the estimation of FM parameters by deep
learning, which is one of the main contributions, as most researchers use deep learning
to classify the signals, where the proposed CNN model has less complexity than found
models. We have not used pre-trained CNN models such as AlexNet, VGG, GoogLeNet, or
ResNet, as they have more layers and complexity. The signal was used in the time domain
because conversions to the frequency domain are complex and affect the efficiency of deep
learning. We also propose the b ratio to combine the Gaussian noise and the symmetric
α-stable noise to form a noisy signal.

5.1. Hybrid Noise and Noisy Signal Generation

A nonstationary signal is one with a changing frequency content over time. This
work is based on LFM signals influenced by noise (AWGN and SαSN). SαSN requires four
parameters (α, γ, β, µ). The most critical parameters are the tail index (α) and scale of the
distribution (γ > 0), while the less essential parameters are β and µ. Gaussian noise is
fixed power, and SαS noise is geometric power.

Geometric SNR (GSNR) is used to determine noise impulsiveness, characterized by
zero-order statistics. Since all 2nd order moments are infinite, the standard SNR does not
apply. The geometric power of SαSN is defined as follows:

pS = γ2. C( 2
α−1) (12)

where C is the exponential of Euler’s constant, C = eEc ≈ 1.7811, Ec Is Euler’s constant
(Ec = 0.5772156649). When α = 2, SαS noise is Gaussian with finite variance σ2 = γ2.

GSNR = px/γ2 (13)

GSNRdB = 10· log10(GSNR) (14)

px = A2/2 (15)

In wireless networks, received signals are corrupted by the noise mixture of Gaussian
(G) and SαS (Y) noises. Total noise (NT) is represented in the equation as follows:

NT = G + Y (16)
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The overall GSNR is defined as follows,

GSNR = px/pT (17)

Let pT = pG + pS, where pT total noise power, and pG be the Gaussian power. We
proposed b ratio, if pG = b·pS, then pT = (1 + b)pS, pS = pT

1+b , and

b = pG/pS (18)

If b is less than one, then pG is less than pS, else pG is greater than pS. The scale
parameter is:

γ =

√
pS/C( 2

α−1) (19)

Consider AWGN and SαSN affected by single-tone sinusoidal and FM signals as
follows:

x(t) = A cos(θ(t) +∅0) + NT (20)

where A is the signal amplitude, and ∅0 is an initial phase. The single tone and LFM signals
are generated, where the amplitude of signals is A = 1, signal power is px = A2

2 , initial
phase ϕo = 0. To find the instantaneous phase as shown in Equation (2), the frequency and
LCR are computed as follows:

• The frequency ( fo) range:

Initial frequency is f1 = 10
Final frequency is f2 = 19
The number of frequencies is n f = 10
The differential frequency step is d f = ( f2 − f1)/n f

The range of frequency is fo = [ f1 : increasing by d f : f2]

• The LFM slope (σ) range:

Initial slope is e1 = 0.1
Final slope is e2 = 0.9
The number of slopes is ne = 10
The differential frequency step is de = (e2 − e1)/ne
The range of slope is σ = [e1 : increasing by de : e2]

• The time vector (t) range:

Initial time is t1 = 0
Final time is t2 = 640
Sampling period is Ts = 0.1
The range of time in seconds is t = [t1 : increasing by Ts : t2 − Ts]

The following procedure shows a summary of hybrid noise (NT) Generation:

• GSNR range is chosen as [−50 50]dB.
• To generate SαS as shown in Equations (27b), (33) and (35) with four parameters

chosen as follows: α = 1.8, β = 0, µ = 0, while the choice of γ is (scale parameter)
relies on the ratio b = 20 as shown in Equation (19).

Total power is pT = px/GSNR as shown in Equation (17).
SαS geometric power is pS = pT/(1 + b) and pG = b× pS as explained in the line

above Equation (18).
The AWGN power is pndB = 10· log 10(pG).

• AWGN (G) is generated as shown in Equation (10).
• Total noise (NT) is a hybrid: AWGN with SαSN, as shown in Equation (16).

5.2. Converting 1D Signal into 2D Signal and Dataset Creation

After the noisy LFM signals are generated in the time domain with 1-dimensional
(1D) signals and length 6400, it is converted into 2-dimensional (2D) with size [80 80] and
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in the time domain because CNN deals with 2D signals. An example illustrating how to
convert a 1D signal in the time domain into a 2D signal, let input 1D-signal with length 9 is
as follows:

InputsigID = [1 2 3 4 5 6 7 8 9]

It converts into 2D signals with a length of 3× 3 as follows:

Outputsig2D =

1 2 3
4 5 6
7 8 9


Data are converted to the graphics format of an image. The images are represented as

two-dimensional arrays (matrices) and stored in one of the graphics file formats, such as
tagged image file format (TIFF).

After reshaping the input signal into 2D, it saves it as a TIFF type in a folder. The
proposed CNN is then trained using 2D signals or images as input. The 1D signals are
converted into 2D signals as explained in Algorithm 1.

Algorithm 1: Converting 1D Signals into 2D Signals

Input: The noisy signals 1D in the time domain (NSignal ).
Output: The noisy signals with 2D (Outsig2D) .
Begin:

1. For h← 1 to NS // NS = 12120
2. initial counter k← 1, where k ∈ [1 6400].
3. tack the values from sig1D and place in sig2D column by column and row by row

as follows:
4. sig1D = Nsignal(h)
5. For i← 1 to R // R = 80

6. For j← 1 to C // C = 80
7. sig2D(i, j)← sig1D(k)
8. k← k + 1

9. End for j
10. End for i
11. Save the sig2D with TIFF type in folder, where Outsig2D = sig2D .TIFF
12. End for h
13. Return Outsig2D in folders. // name folder is label.

End algorithm

The Dataset Generates

The dataset was created after converting signals into 2D, containing ten folders and
the name folder is the label, each representing one class. Each class has an IF and an LCR.
The number of samples in each class equals the number of GSNR samples 101 multiplied
by the number of realizations 12, which equals 1212. The total number of samples in the
dataset equals the number of samples in each class multiplied by the number of classes
12120. The target or true label of samples denotes ([0 9]), which represents the number of
frequencies and slopes. The dataset is randomly divided into 80% for the training set, 10%
for the validation set, and 10% for the testing set, where Algorithm 2 illustrates the dataset
divided, where noisy LFM signals dataset denoted Data_X and labels denoted by DataL.
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Algorithm 2: The Dataset is Divided into Training, Validation, and Testing Sets

Input: Noisy LFM signals dataset (Data_X) and labels (DataL), where each label is presented as
frequency and slope.
Output: Noisy LFM Signals divided into a training set (XTr, LTr), validation set
(XVa, LVa), and testing set (XTe, LTe).
Begin:

1. Select a random index as the following:
Rind = Random(N ), where N = |Data_X|

2. Sorted dataset according to Rind as follows:
X = Data_X(:, Rind), L = Data_L(:, Rind)

3. Select the length of training, validation, and testing percent:
Tr = N × 0.8
Va = N × 0.1
Te = N × 0.1

4. Divided dataset into a training set (XTr), and labels (LTr) as follows:
XTr = X(:, 1 : Tr)
LTr = L(:, 1 : Tr)

5. Divided dataset into validation set (XVa), and labels (LVa) as follows:
XVa = X(:, Tr + 1 : Tr + Va)
LVa = L(:, Tr + 1 : Tr + Va)

6. Divided dataset into the testing set (XTe), and labels (LTe) as follows:
XTe = X(:, Tr + Va + 1 : Tr + Va + Te)
LTe = L(:, Tr + Va + 1 : Tr + Va + Te)

7. End of algorithm

5.3. Estimation of IF and LCR by DNN

A deep neural network (DNN) is used for IF and LCR estimates. It contains the
network’s components and represents the network’s structure. It also needs two phases,
forward and backward, for training and predicting the output. Each of them is explained
as follows:

DNN structure includes an input layer, two hidden layers, and an output layer. The
input layer contains twenty nodes. The number of nodes in the first and second hidden
layers is 25 and 8, respectively. The output layer has four nodes (the number of classes).

DNN forward stage, in which the training set is used, finds the sum of the product of
input nodes with corresponding weights, then adds bias. The initial weights and biases
are generated at random. Then an activation function is applied, where the first and
second hidden layers use ReLU for activation. The output layer’s activation function is
sigmoid. The most important term in the loss expression is an error. There are numerous
cost functions. In this work, cross-entropy was used to compute the error for each node in
the output layer and the loss value. When the error (the difference between the desired and
expected output) is greater than a certain threshold, the neural network stops training, or
the neural network stops its access to the last epoch.

DNN backward stage applies an optimization algorithm to update the parameters
(weights and biases) and compute the error ratio for each layer in the backward path based
on gradient descent, as shown in the optimization algorithm. The optimization algorithm
governs how the network’s parameters are adjusted. The scale conjugate gradient (SCG)
optimization algorithm is used in this work to update weights and biases. The maximum
number of epochs for stope training is 1000, and the learning rate is 0.0001. The update is
given by:

New_parameters = Old_parameters + RSCG × learning_rate (21)

where New_parameters are new weights and biases, Old_parameters are older weights
and biases, and RSCG = αk pk, αk is the kth (adaptive) step-size and pk is the search direction
as explained in reference [12,21], noting that SCG updates the weights and biases relying
on the derivative of the loss (entropy). The derivative of the entropy is applied in the
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backward stage for DNN as gradient descent, while the loss is applied in the forward stage
for DNN to measure the performance of a network.

Evaluation of the training set for each epoch is performed using a validation set. The
validation loss is similar to the training loss and is calculated as the sum of the errors
for each sample in the validation set. Forward and backward steps are performed until
reaching the last epoch (end of training), where the trained DNN model is returned.

The final step is to test the DNN model with a testing set, where a testing data set is
applied to the trained DNN model to predict the label. Then the DNN model’s evaluation
is performed using some metrics such as accuracy.

After the label’s prediction, it is possible to estimate the frequency and slope to which
it belongs. Then the amount of error and the accuracy between the predicted parameters
and the true parameters are calculated as follows:

• True frequency (Tf ) is the target frequency of a signal
• Estimate frequency (Pf ) is the predicted frequency of the DNN network

• The relative absolute error of the frequency E f =
∣∣∣Tf − Pf

∣∣∣/Tf

• True slope (TS) is the target slope of a signal
• Estimate slope (PS) is the predicted slope of the DNN network
• The relative absolute error of the slope is Es = |Ts − Ps|/Ts
• Estimate IF is IF = Pf + Ps t

Figures 1–6 explain the several essential cases to show the effect of feature extraction
and deep neural network design on the error rate, frequency, and slope estimation accuracy.
Figure 7 shows GSNR vs. RMSE of FE for noisy LFM by DNN. Figure 8 shows the ROC of
FE for noisy LFM by DNN. Figure 9 shows a confusion matrix for noisy LFM by DNN.
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Figure 1. Iteration vs. cross-entropy loss for noisy signals with length 6400 and one hidden layer
with ten nodes for DNN. Note that the error is higher than in Figure 32 and has less accuracy at 74
with more than 500 iterations.
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Figure 3. Iteration vs. cross-entropy loss for noisy signals with length 1600, and one hidden layer
with ten nodes for DNN.
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one hidden layer.
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Figure 5. Iteration vs. cross-entropy loss for noisy signals with length 6400 and three hidden layers
with (30, 25, and 20) nodes. Note that increased layers and nodes lead to increased accuracy of 96 and
more iterations of 963.
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Figure 6. Iteration vs. cross-entropy loss for features extraction of noisy signals with length 6400 and
three hidden layers with (30, 25, 20) nodes. Note that increased layers and nodes lead to an accuracy
of 98 with fewer iterations of 158.
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5.4. Estimation of IF and LCR by CNN

The CNN model’s input layer includes a training set with 2D. The hidden layer
(feature extraction stage) includes convolution, batch normalization, ReLU, max pooling,
fully connected, and dropout. The output layer (classification stage) consists of a fully
connected, softmax classification layer. The number of nodes in the input layer is 80× 80.
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The number of nodes in the hidden layer is based on the parameters for each layer. The
number of nodes in the output layer equals ten; it represents the number of labels. The
convolution layer includes 30 filters, where the filter size is 3× 3, and the stride equals 1× 1.
Other convolution layers have different numbers of filters: 60, 90, and 128; max pooling
with size 2× 2, stride 2× 2, zero padding; fully connected layer with 100 output nodes in
feather extraction stage. The dropout layer ratio is 50%. A fully connected layer has ten
output nodes in the classification stage. The classification layer uses cross-entropy. These
layers are explained in Appendix B as shown in Table A1. Figure 10 shows the proposed
CNN model layers. Algorithm 3 illustrates the CNN model procedure. CNN contains the
network’s components and represents the network’s layers and options. It also needs two
phases, forward and backward, for training and predicting the output. Each of them is
explained as follows:
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Forward Stage of CNN Model:

1. Batch normalization is applied on input signals; it speeds up training by halving the
epochs (or faster).

2. Feature map is found by computing the sum of product for input node with weights
(filters), then summation with bias is performed, where bias is used in the for-
ward stage.

3. An activation function is applied to the sum of the product, where the activation
function is ReLU.

4. Max pooling is applied; it is used to decrease the size of the feature maps.
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5. The convolution layer is applied three times with the number of filters (60, 90, and
128), and each of them is followed by a ReLU layer and max pooling layer.

6. A fully connected network is applied: it is a feedforward neural network where all of
the inputs from the previous layer are linked to each node in the next layer.

7. Dropout is applied: it is a method of stochastic regularization. It aids in the prevention
of overfitting, and the accuracy and loss will gradually improve.

8. The classification stage includes three layers that are fully connected, followed by
softmax, then a classification operation. The fully connected layer has ten output
nodes: a feedforward neural network. The softmax is utilized as the activation
function in the output layer for multi-class classification tasks. The loss function is
finding the error for a single sample in data training that relies on actual and predicted
labels. The loss function is cross entropy loss used to measure how well a classification
model in deep learning performs. The loss (or error) is calculated as a number between
zero and one, where the zero value referred the perfect model. The cost function is the
summation of the loss function for all data training. The objective function is referred
to as a cost function (cross-entropy).

9. The parameters of the CNN model are a learning rate of 0.0001, max epochs are 5,
and mini-batch size is 8. At the same time, Adam uses an initial learning rate is 0.001,
Epsilon is 0.00000001, squared gradient decay factor is 0.999, and Gradient decay
factor is 0.9. Hyperparameters in convolution are: the number of filters (30, 60, 90,
and 128), the filter size is 3× 3, and padding and stride are equal to one. In batch
normalization, the parameters are ε, B, and λ, max pooling uses the size 2× 2, and
the stride is 2× 2. In the dropout layer, the probability of dropout is 50%, and in the
fully connected layer, the number of classes is 10.

Backward Stage of CNN Model:

1. In this stage, an optimization algorithm is needed to update the parameters, and
each layer’s error should be calculated. The optimization algorithm controls how the
parameters of the neural network are adjusted. In this work, Adam is used as the
optimization algorithm

2. The weights and biases update is given by:

New_parameters = Old_parameters + RAdam × learning_rate (22)

3. where New_parameters are new weights and biases, Old_parameters are old weights
and biases, and RAdam = m∼t /

√
v∼t + ε as explained in reference [22], Adam is

updating the weights and biases relying on the derivative of the loss function (entropy).
The derivative of the loss function is applied in the backward stage for CNN, while the
loss function is applied in the forward stage for CNN. It measures the performance of
the network. The training set is evaluated for each epoch using the validation set. The
validation loss is similar to the training loss and is calculated as the sum of the errors
for each sample in the validation set. Forward and backward stages are performed
until reaching the last epoch (end of training).

4. The final step is to evaluate the CNN model by applying a testing set to the trained
CNN model to predict the label (class) for the test data. The CNN model is evaluated
using relevant metrics such as accuracy.

5. After the class number (label) prediction, it is possible to estimate the frequency and
slope to which it belongs. Then it is possible to calculate the amount of error and the
accuracy of the predicted parameters versus the true parameters as follows:

• True frequency (Tf ) is the target frequency of a signal
• Estimate frequency (Pf ) is the predicted frequency of the CNN network

• The relative absolute error of the frequency E f =
∣∣∣Tf − Pf

∣∣∣/Tf

• True slope (TS) is the target slope of a signal
• Estimate slope (PS) is the predicted slope of the CNN network



Information 2023, 14, 18 18 of 43

• The relative absolute error of the slope is Es = |Ts − Ps|/Ts
• Estimate IF is IF = Pf + Ps t

Algorithm 3: CNN Model Procedure

Input: Training set (XTr, LTr), validation set (XVa, LVa), and testing set (XTe, LTe), where
each label is represented by the target frequency (Tf ) and target slope (TS) .
Output: Frequency and slope estimation.
Begin:
Step 1: A training stage

1. The input layer is the training set (XTr, LTr) with length N, and validation set
(XVa, LVa).

2. Divided training set into min-batches, where mini-batch size (MB) equals 8. Iteration is
one-time processing for forward and backward for a batch of samples. Iterations per epoch =
number of training samples ÷mini-batch size. Iterations = iterations per epoch × number
of epochs.

3. Find the batches, where batches = N
MBS .

4. Find batch list, where blist = 1 → MB → (N −MB + 1)
5. For epoch =1→ No of epoch
6. For iteration =1→ batches
7. Select data by b = blist(iteration)
8. For k = b→ b + MB− 1
9. The convolutional layer applies convolutional operation between input signals and filters,

where the number of filters equals 30.
10. A batch normalization layer is applied as a result of step 2.
11. ReLU is used as an activation function.
12. Max pooling layer is applied to reduce the features map.
13. The convolution layer is applied with several filters 60 to find feature maps, and then

ReLU and max pooling layer are used.
14. The convolution layer is applied with several filters 90 to find feature maps, and then

ReLU and max pooling layer are used.
15. The convolution layer is applied with the number of filters 128 to find feature maps and

then used, ReLU and max pooling layer.
16. A fully connected layer and dropout layer are applied to avoid overfitting.
17. A fully connected layer is used with an equal output number of classes.
18. Softmax is applied to find the output of the network that presents the predicate label

( ˆLTr), where each label is predicate frequency and slope.
19. In the classification layer, calculate the performance of the network by entropy as follows:

ETrj = −
n

∑
i=1

LTri · log
(

L̂Tri

)

where n is the number of classes, ˆLTri is predicate labels, LTri is actual labels in one-hot encoding,
j ∈ [1, . . . , N], N is the number of samples training.

20. In the backward stage, calculate the error by the derivative of the loss function and
compute the change of the weights (∆w) as follows:

E = LTr− L̂Tr

MLk =
(

LTr = L̂Tr
)

∆w =
m̂t√

v̂t + ε
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21. End of k loop
22. Cross entropy is computing the cost function of the network. The sum of loss for each

batch in the training set calculates the cost function of the training loss function:

LossTr =
1
N

N

∑
j=1

ETrj

Then compute the accuracy of the training data set:

AccTr =
∑ ML

size of minibatch

23. The weights (wt) are updated as follows:

wt = wt−1 − η. ∆w

24. Evaluate the network during training by using validation data for each iteration, where
applied same network layers on validation data and new weights are used to predict the label of
validation data, and the cost of loss for validation is similar to the cost of loss for training
as follows.
Moreover, find loss as follows:

LossVa = − 1
Nv

Nv

∑
i=1

n

∑
j=1

LVaij · log
(

L̂Vaij

)
where n is the number of classes, L̂Vaij is predicate labels, LVaij is actual labels in one-hot

encoding, j ∈ [1, . . . , Nv], Nv is number of validation samples. The accuracy of validation is:

AccVa =
∑Nv

j=1 LVaj = L̂Vaj

Nv

25. End of iteration
26. End of epoch
27. CNN model trained (CNNTrain) is returned.

Step 3: Testing stage
1. The testing set (XTe, LTe) It used the CNN model trained, which has the same layers

but uses optimal weights.
2. The CNN trained is applied on the testing set to predict the label, where each label is

predicate frequency and slope.
• Estimate frequency (Pf ) is predicted frequency and estimated slope (PS) is the

predicted slope from the predicated label (Plabel) of CNN network as follows:

Plabel = CNNTrain(XTe)

• Compute the error of frequency and slope as follows:

• The relative absolute error of the frequency E f =
∣∣∣Tf − Pf

∣∣∣/Tf

• The relative absolute error of the slope is Es = |Ts − Ps|/Ts
• Estimate IF is IF = Pf + Ps t

3. Evaluation of the CNN model trained using metrics is accuracy, precision, recall,
F-Measure, and ROC.
End of algorithm

6. IF Estimation Based on TFD

The Fourier transform cannot detect the time-varying properties of nonstationary
signals with time-varying frequency content (such as FM and bio-logical signals). This is
due to the FT’s use of a time-averaging process (time integration). TFDs are two dimen-
sional double transforms from the time domain to the time–frequency domain representing
the Fourier transform of an analytical signal’s instantaneous autocorrelation. The most
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straightforward formula for a time–frequency distribution is the short-time Fourier trans-
form (STFT), which is a windowed frequency distribution [27,28]. STFT is a sequence of
Fourier transforms of a windowed signal; it is used to determine the sinusoidal frequency
of local sections of a signal as it changes over time. STFTs divide a longer time- signal
into segments of equal length and then compute the Fourier transform separately on each
segment. A nonstationary signal is one with a changing frequency content over time. A
nonstationary signal’s spectrogram estimates its frequency content’s time evolution. TFD
IF estimation in the presence of noise AWGN and SαSN in FM signals. TFD and STFT
are used to estimate the IF for analytical signals. Before frequency calculation, the ana-
lytic noisy signal is computed by using the Hilbert transformation. A real-valued signal’s
Fourier Transform (FT) is complex and symmetric. This implies that the content at negative
frequencies is superfluous. Negative frequencies may cause aliasing while analyzing FM.
The analytic signal helps avoid aliasing. Although the analytic signal is complex valued,
its spectrum is unipolar (only positive frequencies). The real part of the analytic signal is
the original signal, and the imaginary part is the signal’s Hilbert Transform (HT). To pass
complex-valued data to a neural network, you can use the input layer to split the complex
values into their real and imaginary parts before it passes the data to the subsequent layers
in the network. See reference [29].

We calculate the spectrogram of STFT (spec(t. f )), then estimate the IF from the peak
(max) of the spec as follows:

f̂ = arg(max{spec(t, f )}), 0 ≤ f ≤ fs

2
(23)

Then, we calculate the relative squared error for each GSNR as follows:

e =
∣∣∣( f̂ × d f − IFt

)
/ fo

∣∣∣2 (24)

where fo fundamental frequency, f̂ estimated frequency, IFt theoretical IF with spectrogram
timing, d f = fs

N and N = 1024. TFD estimated IF using spectrogram and pspectrum
MATLAB functions, pspectrum differs from spectrogram in segment lengths, overlapping
segments, and window. Spectrogram length = 1×

[
N
2 + 1

]
, while pspectrum length =

1× N. Pspectrum controls the length of the segments and the overlap between adjacent
segments using the time resolution and overlap percent pair arguments. It divides the
signal into overlapping segments and applies a Kaiser window to each segment.
The algorithms (4, 5, and 6) illustration frequency estimation by TFD, Hilbert transform,
and spectrogram by short time Fourier transform respectively as shown in Appendix C.

7. Discussion of Results

This section simulates the instantaneous frequency and slope estimation of FM signals
using additive white Gaussian noise and symmetric stable noise. Simulation was performed
with MATLAB under Academic License 40635944. [−50 50] dB is the GSNR range. The
network learns from the input data and predicts the frequency and slope. The DNN
and CNN models were used to simulate frequency and slope estimation for LFM signals.
The results show high accuracy for parameter estimation by confusion matrix and some
measures such as accuracy, precision, F1-score, FNR, FPR, and ROC, as well as few errors
rate, and SαS is an impulsive model, where alpha is more harmful even if it is of small
value, where it affects the slope and frequency guess. A variable b determines the ratio of
AWGN and SαSN.

Figure 11 shows α-stable probability density functions with different parameters.
Figure 12 shows alpha-stable noise in the time domain; it is impulsive. Figure 13 shows
single-tone and noise signals. Figures 14 and 15 show frequency estimation of single-
tone (ST) and LFM signals by DNN. Figure 16 shows the slope estimation of single-tone
and LFM signals by DNN. Figure 17 show the accuracy and loss rate of FE and SE for
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noisy LFM. Figure 18 show confusion matrices for FE and SE for noisy LFM. Figure 19
show the accuracy and loss rate of FE and SE for noisy LFM. Figure 20 show confusion
matrices for FE and SE for noisy LFM. Tables 1 and 2 show the performance evaluation
criteria of noisy LFM signals. Figure 21 shows the accuracy of the frequency estimation of
LFM. Figure 22 shows the test error of frequency estimation for LFM. Figure 23 shows the
accuracy of the slope estimation of LFM. Figure 24 shows the test error of slope estimation
for LFM. Figures 25 and 26 show MSE versus GSNR for TFD of a noisy single-tone signal
by spectrogram and pspectrum, where α = 1 and b = 20. Figures 27 and 28 show MSE
versus GSNR for TFD of noisy LFM signal by spectrogram and pspectrum, where α = 1
and b = 20. Figures 29 and 30 show the accuracy of FE for noisy single tone and LFM
signals by TFD (pspectrum). Figure 31 shows the accuracy of FE for noise LFM by DNN
and TFD (spectrogram and pspectrum). Figure 32 shows the test error of FE for noisy
LFM by DNN and TFD (spectrogram and pspectrum). Figure 33 shows the test error rate
for SE of noisy LFM by CNN, where fo = 19.0005. Figure 34 shows ROC for noisy LFM
by 2D-CNN. Figure 35 shows ROC for noisy LFM by 2D-CNN, where the epoch number
equals 30. Table 3 shows measures of the 1D-CNN model for noisy LFM signals. Figure 36
shows ROC for noisy LFM by 1D-CNN. Figure 37 signals in the time domain with different
frequencies, LCR, and GSNR. Figure 38 shows 2D-signals in the time domain with different
initial frequencies. Figure 39 shows signals in time frequency distribution.
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Table 1. Measures of FE and SE for noisy LFM signals.

Measures
LFM

Frequency Slope

Accuracy 99.8118 98.4431
Precision 99.8303 99.0445

Recall 99.8118 98.4432
F1_Score 99.8210 98.5477

FNR 0.0039 0.0216
FPR 0.0037 0.0195

Table 2. Measures of 1D-CNN model for noisy LFM signals.

Measures Values

Accuracy 56.6575
Precision 57.5019

Recall 56.6575
F1_Score 57.0766

Epoch 10
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Figure 27. MSE versus GSNR for TFD of noisy LFM signal by spectrogram, where α = 1 and b = 2.
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Figure 28. MSE versus GSNR for TFD of noisy LFM signal by pspectrum, where α = 1 and b = 20.
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Figure 29. Accuracy of FE for noisy single tone signal by TFD (pspectrum).
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Figure 35. ROC for noisy LFM by 2D-CNN, when epoch equal 30.

Table 3. Training parameters of noisy LFM dataset. Best performance is shown in bold.

Parameters Accuracy Recall Precision F1-Score

Learning rate
10−3 90.4959 90.4959 91.5224 91.0062
10−4 96.2810 96.2810 96.3523 96.3166
10−5 70.4959 70.4959 77.6223 73.8876

Epoch
5 96.2810 96.2810 96.3523 96.3166
10 97.6033 97.6033 97.7144 97.6588
30 99.8347 99.8347 99.8374 99.8361

Min-patch
8 96.2810 96.2810 96.3523 96.3166
32 97.6033 97.6033 97.7144 97.6588
64 99.8347 99.8347 99.8374 99.8361

Training
Method

SGDA 74.2149 74.2149 82.8702 78.3041
RMSPROP 93.7190 93.7190 94.2774 93.9974

Adam 96.2810 96.2810 96.3523 96.3166
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Tables 1 and 2 show the differences between implementing a 1D-CNN and 2D-CNN.
Table 3 shows the training parameters of the noisy LFM dataset. Because the classification
accuracy in a one-dimensional convolutional network is very low, the guess of parameters
is influenced. The lower error of the slope and frequency estimation refers to the higher
accuracy of the classification and the rest of the measures. The measures are used to
evaluate the efficiency of the CNN model. If these measurements have high values, we can
conclude that the slope and frequency estimations are correct. ROC scale is used to test the
effectiveness of the CNN model (as shown in Figures 34–36).
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The results show that deep neural networks are better than time–frequency distribution
for estimating the instantaneous frequency, and CNN is better than deep neural networks
in estimating the instantaneous frequency of nonstationary signals. For time–frequency
distribution, spectrogram and pspectrum functions have been used, where the results show
that pspectrum is better than spectrogram for the IF estimate.

Further inspection of Figures 31 and 32 reveals that the performance of CNN (in terms
of accuracy) can give acceptable results at very low signal-to-noise ratios where TFD fails,
giving more than 20 dB difference in the GSNR working range as compared to the classi-
cal spectrogram-based estimation. Considering more advanced (though more complex)
methods of LFM instantaneous frequency estimation such as Viterbi-based approach [30]
and fractional Fourier transform-based approach [31], the performance of CNN gives more
than 15 dB difference (please compare with Figure 3 in [30], knowing that reference [30]
considers only Gaussian noise. In contrast, this work finds the much more damaging
α-stable noise.

Future Directions: It should be noted that this research considers only mono-component
linear FM signals. Future directions may consider multicomponent signals and non-linear
FM, where more advanced time–frequency distributions would be used instead of the spec-
trogram of Equation (23) [32–34]. As we only considered mono-component LFM signals in
this work, the spectrogram and Wigner–Ville distribution (WVD) are the widely used FE
methods, where the spectrogram is chosen as per Equation (23) as it behaves better under
noise than WVD due to the fact that it does not suffer from the cross-term effect [32,34]. In
addition, as compressive sensing is a promising technology for sensors, wireless sensor
networks (WSNs), and IoT applications [35], this research can be further enhanced by
considering frequency estimation from compressed measurements [36].

8. Further Remarks

We will highlight some points in the proposed network prediction.

8.1. Comparing Network Training with and without Extracted Features

From Figures 31 and 32, we conclude that extracting the features of the noisy input
signals significantly reduces the error rate and increases the system’s accuracy. Thus,
this affects the estimation of slope and frequency. A previously trained CNN model
extracted the features. The CNN model was used to extract the features and classification
as described in Section 5.4. The CNN model has two functions, which are feature extraction
and classification. The parameters were estimated by extracting the features from the
pre-trained CNN model and predicting parameters using simple DNN, which consists of
one hidden layer containing ten nodes, ReLU activation function for the hidden layer, and
softmax activation function for the output layer. Note the increasing number of iterations
when DNN is trained without feature extraction.

8.2. Different Lengths for the Input Signal and Feature Vector

From Figures 33 and 34, we conclude that the input length also affects the neural
network. If the input is a noisy signal with a large number of samples (size), it would be
difficult for the network to work with high accuracy, especially if the network structure is
simple. Then when reducing the length of such signals, the accuracy improves. Reducing
the features has the opposite effect. That is the fewer features, the lower the accuracy.
DNN consists of one hidden layer containing ten nodes, a ReLU activation function for the
hidden layer, and a softmax activation function for the output layer. Note that decreasing
the length of input signals leads to better accuracy and less time, but reducing the size of
input features leads to less accuracy and less time.

8.3. Effect of Network Training by the Number of Layers and Number of Nodes

The number of hidden layers and the number of nodes per layer play significant roles
in deciding the speed and accuracy of neural networks. Figures 35 and 36 illustrates the
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effect of the network structure on the prediction results, where the network performance
improves when a specific number increases the number of hidden layers. In contrast,
an excessive increase may lead to negative results. DNN consists of three hidden layers
containing (30, 25, and 20) nodes, ReLU activation function for hidden layers, and softmax
activation function for the output layer.

9. Conclusions

This paper provided an overview of the performance of machine learning and deep
learning approaches for estimating the frequency and slope of a noisy LFM signal. Under
additive white Gaussian noise and symmetric α-stable noise, the simulation is a relevant
signal (impulsive model). This work solves problems using traditional, machine, and deep
learning approaches. It examines the frequency and slope estimation error under various
GSNRs. In DNN, only two hidden layers are used. The convolution layer, ReLU activation
function, max-pooling layers, dropout layer, fully connected layer, softmax layer, and
classification layer are the 19 layers used in the CNN model. The simple structure designed
for the DNN or CNN model works to reduce the communication system’s complexity,
power consumption, and cost. These characteristics are advantageous for systems with
limited memory and computational processes, such as WSNs, which connect to the internet
of things applications. The simulation results show that alpha is more harmful than beta,
even if it has a small incapacity, and it significantly affects guess frequency and slope. CNN
was used to estimate the parameters of LFM signals in this paper. Future research will
focus on compressed and multicomponent non-linear FM signals.
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Appendix A

The procedures of SαS are as follows:

1. For β = 0: symmetric α-stable noise (Y) can be generated as follows. A uniformly
distributed random variable V and an independent exponential random variable W
are generated as follows:

V =
π

2
· (2U − 1) (A1)

W = − log(H) (A2)

where U, H ∈ U , the standard uniform distribution. Then SαS for α 6= 1 is obtained:

X =
sin(α·V)

{cos(V)}1/α
·
[

cos(V·(1− α))

W

](1−α)/α

(A3a)

Y = γX + µ (A3b)
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Moreover, SαS for α = 1 is obtained:

X = tan V (A3c)

Y = γX + µ. (A3d)

2. For α 6= 1, a uniformly distributed random variable V and an independent exponential
random variable W are generated as follows to get X:

V = π· (U − 0.5) (A4)

W = − log(H) (A5)

X = Sα,β·
sin
{

α
(
V + Bα,β

)}
{cos(V)}1/α

·
[

cos
{

V − α
(
V + Bα,β

)}
W

](1−α)/α

(A6)

Sα,β =
{

1 + β2 tan2
(πα

2

)}1/(2α)
(A7)

Bα,β =
arctan

(
β tan πα

2
)

α
. (A8)

When scale and shift are applied, we have:

Y = γX + µ. (A9)

3. For α = 1, random variables V and W are generated as above, then:

X =
2
π

{(π

2
+ βV

)
tan V − β log

( π
2 W cos V

π
2 + βV

)}
(A10)

When scale and shift are applied as an equation, we have:

Y = γX +
2
π

βγ log γ + µ. (A11)

Appendix B

Table A1 shows the parameters description of CNN layers, where FS is filter size, NF
is the number of filters (number of output feature maps), S is stride, P is padding, C is the
number of channels (number of input feature maps), a total of parameters is number of
weights plus number of biases; in batch normalization ε is epsilon, B is sifted, λ is scale, Tρ
is the total number of parameters in a convolutional layer, and bias b = 1:

Tρ = (FS·FS·C + b)·NF (A12)

Table A1. Topology of the proposed CNN model.

Indexes Layers Name Input Size OutputSize Hyperparameters Total of
Parameters

1. Image Input 80 × 80 × 1 80 × 80 × 1 Normalization zero-center 0

2. Convolution 80 × 80 × 1 80 × 80 × 30
FS = 3× 3,

NF = 30, S = 1,
P = 1, C = 1

300

3. Batch Normalization 80 × 80 × 30 80 × 80 × 30 ε =0, B =0, λ =1 0

4. ReLU 80 × 80 × 30 80 × 80 × 30 - 0

5. Max Pooling 80 × 80 × 30 40 × 40 × 30 FS = 2× 2, S = 2 0
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Table A1. Cont.

Indexes Layers Name Input Size OutputSize Hyperparameters Total of
Parameters

6. Convolution 40 × 40 × 30 40 × 40 × 60 FS = 3× 3,
NF = 60, S = 1, P = 1, C=30 16,260

7. ReLU 40 × 40 × 60 40 × 40 × 60 - 0

8. Max Pooling 40 × 40 × 60 20 × 20 × 60 FS = 2× 2, S = 2 0

9. Convolution 20 × 20 × 60 20 × 20 × 90 FS = 3× 3,
NF = 90, S = 1, P = 1 48,690

10. ReLU 20 × 20 × 90 20 × 20 × 90 - 0

11. Max Pooling 20 × 20 × 90 10 × 10 × 90 FS = 2× 2, S = 1 0

12. Convolution 10 × 10 × 90 10 × 10 × 128 FS = 3× 3,
NF = 128, S = 1, P = 1 103,808

13. ReLU 10 × 10 × 128 10 × 10 × 128 - 0

14. Max Pooling 10 × 10 × 128 5 × 5 × 128 FS = 2× 2, S = 1 0

15. Fully Connected 5 × 5 × 128 = 3200 100 Nodes = 100 320,100

16. Dropout - - Probability = 0.5 0

17. Fully Connected 100 10 No. class = 10 1010

18. Softmax 10 10 - 0

19. Classification 10 1 Loss Function = cross-entropy 0

Number of weights for convolution layers = (270 + 16200 + 48600 + 103680) = 168750
Number of biases for convolution layers = (30 + 60 + 90 + 128) = 308

Total parameters for convolution layers = 169058

Total parameters for all network = 169058 + 320100+1010 = 490168

Appendix C

Algorithm A1: Frequency Estimation by TFD

Input: The sin gle− tone and LFM signals x(t).
Output: Instantaneous frequency estimate f̂ .
Begin:
Step 1: Initial parameters are initial frequency fo = 23, Ts = 0.01, f s = 1

Ts , f s2 =
f s
2 , d f =

f s
N ,

f1 = 0 → d f → f s2 , and N = 1024.
Step 2: Geometric SNR vector (sr ), sr ∈ [−50 50], number of realizations R = 50, the duplicate
input signal in R rows, may repeat run R times to get a good result.
Step 3: For m = 1→ |sr|

• The SαS noise (Y) and Gaussian noise (G) are generated as above explained.
• The input signals are corrupted by hybrid noise, where total noise (NT) is a mixture of

both Gaussian noise and SαS noise:
NT = G + Y

y(t) = x(t) + NT

• IF error temporary matrix, where E = zeros (initially).
Step 4: For h = 1 : R

� Take hth realization, where z = yh.
� Eliminate the negative portion of the signal spectrum by called Alg. (5) with an input

parameter (z) and an output parameter (SA).
� IF estimate with spectrogram and pspectrum by called Alg. (6) with input parameter (SA)

and output parameter (spec(t, f )) :
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� Estimate the IF from the peak (max) of the spec(t, f ) as follows:

f̂ = max{spec(t, f )}

� Calculate the relative squared error for each GSNR:

e =

∣∣∣∣∣∣
(

f̂ × d f − IFt

)
fo

∣∣∣∣∣∣
2

E = E + e

where IFt theoretical instantaneous frequency.
� End of h loop

Step 6 : IF estimation error at GSNR dB, where FE(m) = E
R

End of m loop
End of algorithm

Algorithm A2: Hilbert Transform

Input : The signal (z(t)).
Output : Analytic signal (SA(t)).
Begin:
Step 1 : Compute the FFT of the signal z(t) to give spectrum (Z( f )).
Step 2 : Creates a vector h whose elements hi have three values as follows:

hi =


1 if i = 1 or

( n
2
)
+ 1

2 if i = 2, 3, . . . ,
( n

2
)

0 if i =
( n

2
)
+ 2, . . . , n

where n = |Z|.
Step 3 : Find signal (ms) , where ms = Z× h.
Step 4 : Compute (SA ) by inverse FFT of vector ms, where SA = IFFT(ms)
End of algorithm

Algorithm A3: Spectrogram of Short-Time Fourier Transform

Input: Analytic signal SA(t) and N = |SA(t)|.
Output: Spectrogram spec(t, f ), time and frequency vectors t, f .
Begin:
Step 1: Define the parameters of STFT are window length (m), hop size (h), window overlap (q),
sampling frequency ( fs), and the number of FFT points (nfft).
Step 2: Create Hamming window (win) of length m = 32, q = m

4 , and h = m− q.
Step 3: STFT matrix (S) with size [NUP, L], where L is the number of signal frames.

NUP = nfft

L =

1 
 

⌈   N − q
h

 

2 

 ⌉ 
 Step 4: Divides the input signal SA(t) into overlapping segments and multiply each segment by

the window (Sw). Then fast Fourier transform is applied to each segment (Sw) :
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For i = 0→ L− 1
Sw = SA(i ∗ h + 1 → i ∗ hop + m)∗ win

X = FT(Sw)

S(:, i + 1) = X(1→ NUP)

End of i loop
Step 5: Find the spectrogram (spec(t, f )), were

spec(t, f ) =
2

∑ win/N
× S.

Step 6: Calculation of the time (t) vector in second and frequency ( f ) vector in Hz, were

t =
(m

2
,

m
2
+ h, . . . ,

m
2
+ (L− 1)× h

)
/ fs

f = (0, . . . , NUP− 1)× fs/nfft

End of algorithm
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