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Abstract: Mobile edge computing (MEC) sinks the functions and services of cloud computing to the
edge of the network to provide users with storage and computing resources. For workflow tasks, the
interdependency and the sequence constraint being among the tasks make the offloading strategy
more complicated. To obtain the optimal offloading and scheduling scheme for workflow tasks to
minimize the total energy consumption of the system, a workflow task offloading and scheduling
scheme based on an improved genetic algorithm is proposed in an MEC network with multiple users
and multiple virtual machines (VMs). Firstly, the system model of the offloading and scheduling
of workflow tasks in a multi-user and multi-VMs MEC network is built. Then, the problem of
how to determine the optimal offloading and scheduling scheme of workflow to minimize the total
energy consumption of the system while meeting the deadline constraint is formulated. To solve this
problem, the improved genetic algorithm is adopted to obtain the optimal offloading strategy and
scheduling. Finally, the simulation results show that the proposed scheme can achieve a lower energy
consumption than other benchmark schemes.

Keywords: mobile edge computing; workflow tasks; offloading strategy; genetic algorithm

1. Introduction

With the development of computer networks, cloud computing, and the Internet of
Things (IoT), mobile devices (MDs) have become indispensable parts of people’s daily
lives. However, due to the limited computing power and battery capacity, it is a great
challenge to execute complex workflow application tasks on MDs with limited computation
ability, such as interactive online games and image processing. Mobile cloud computing
(MCC) offloads applications from MDs to the cloud for execution. It can solve the problems
of insufficient computing capacity and poor storage capacity of MDs [1]. However, the
cloud is usually located far away from mobile users, which may cause higher delay and
energy consumption to data transmission, and reduce the quality of service (QoS) for users,
especially for specific delay-sensitive applications [2].

To solve this problem, mobile edge computing (MEC) is proposed as a new comput-
ing model [3-5]. It extends edge clouds with solid computing capabilities to resource-
constrained MDs to enhance the processing capabilities of MDs [6]. Thus, it can solve the
problem of high transmission cost, high energy consumption, and large delay in traditional
cloud computing [7]. MEC-enabled 5G wireless systems are expected to meet the real-time,
low latency, and high bandwidth access requirements for IoT device who has time sensitive
computation tasks to be executed. Thus, MEC has become a key technology of IoT and
5G. In MEC networks, many mobile applications, such as image processing applications
and face recognition applications, perform typical business processes in which the entire
task is split into multiple subtasks, with predetermined relationships and data dependen-
cies between the subtasks [8]. Compared with general parallel tasks, MEC’s workflow
scheduling problem is more complicated and challenging, since the execution order and
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execution position of subtasks will affect the latency and energy consumption of the entire
workflow [9,10]. Thus, how to optimally allocate the subtasks in a workflow to the local
node and the edge for execution to minimize the energy consumption of the entire system
under the maximum tolerance latency constraint is an essential issue in MEC networks.

To address this issue, considering an MEC network with multiple users and multiple
virtual machines (VMs), the problem of determining the optimal offloading strategy and
scheduling scheme under the deadline constraint is solved through genetic algorithm. The
main contributions of this paper can be summarized as follows:

1.  We study the offloading and scheduling problems of workflow tasks in an MEC
scenario with multi-MD and multi-VM. A workflow model based on the directed
acyclic graph which indicates execution order and execution location of workflow
tasks is proposed.

2. We propose a workflow scheduling strategy based on an adaptive genetic algorithm.
In genetic algorithm, the offloading scheduling consisting of the execution order and
execution location of workflow is defined as the individual. The optimal schedul-
ing strategy for workflow in multi-user and multi-task scenarios is finally obtained
through individual correction, competition for survival, selection, crossover, and
mutation operations.

3. The simulation results show that, compared with other benchmark methods, such as
local offloading and random offloading, the proposed method can achieve optimal
task scheduling for multi-user workflow to minimize the total energy consumption of
the system.

The remainder of this paper is structured as follows: Section 2 discusses the related
work in the past few years. Section 3 presents the system model. In Section 4, we formulate
the problem of minimizing the total energy consumption in a multi-user multi-workflow
MEC system, then propose an offloading and scheduling scheme to solve this problem.
Section 5 presents extensive simulation experiments. Finally, Section 6 concludes this paper.

2. Related Work

There have been some studies conducted on the computation offloading strategy in
MEC networks [11-19]. In [11], a new graph-based MEC workflow application strategy was
proposed. It adopted a graph-based partitioning technology to obtain an offloading decision
plan with the lowest energy consumption of terminal equipment under the deadline
constraint. In [12], an online dynamic task allocation scheduling method was proposed
to realize the high energy-efficient and low-latency communication in an MEC system.
Considering the application scenario consisting of single-user and single MEC server, the
authors of [13] used traditional genetic algorithm to reduce the execution time and energy
consumption of workflow. In [14], the author studied the security problem in workflow
task scheduling, and proposed a security and energy-aware workflow scheduling scheme.
However, the above studies only considered single user scenario instead of multi-user
scenario which was more common in real scene.

For the multi-user scenario, in [15], the authors proposed a heuristic algorithm to
minimize the execution cost of the system in a multi-user MEC network. In [16], a dynamic
offload and resource scheduling strategy is proposed to reduce energy consumption and
execution time. In [17], the collaborative relationship between cloud computing and MEC
in the IoT is considered comprehensively. They designed a heuristic algorithm to make the
offloading decision considering the resource competition among MDs. In [18], the authors
studied the makespan-minimization workflow scheduling problem in the Multi-user MEC
system and proposed an improved composite heuristic (ICH) algorithm. However, they
only considered single sever scenario. To enhance the computation ability of MEC sever,
the BS station is always equipped with multiple VMs or MEC severs.

For the multi-sever or multi-VM scenario, in [19], the authors proposed a new multi-
workflow scheduling method based on edge environment adopting a reliability estimation
model and coevolutionary algorithm. The proposed method maximized the reliability of
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the success rate of workflow task offloading while reducing the cost of service invocation
for users. However, they only considered execution latency and offloading efficiency, but
did not considered the energy consumption. Energy consumption problem is an essential
problem in IoT networks.

Above all, how to optimally offload and schedule the workflow tasks to minimize the
total system energy consumption in a multi-user and multi-VM MEC network is still an
open problem needed to be solved now.

3. System Model

In a multi-user and multi-VM MEC network, as illustrated in Figure 1, there are a
single-antenna base station (BS) and K MDs denoted as set U = {1,2,...,K} with some
workflow tasks to be computed randomly located around the BS. The MEC server includes
M VMs denoted as S = {1,2,..., M} for concurrent processing multiple computation
tasks. Each VM works independently. The workflow processed by the MDs consists of I
subtasks. Each subtask can be scheduled to be executed locally or by MEC server through
wireless access. MDs can offload all or part of the computation tasks to the MEC server for
computing to the reduce energy consumption and the delay.
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Figure 1. System model.

3.1. Workflow Task Model

In this paper, a weighted directed acyclic graph (DAG) is used to describe the execution
sequence dependency of workflow in the MEC network.

As show in Figure 2, let 2-tuples Wy = {V}, E;} denote the DAG describing the execu-
tion sequence dependency of workflow Wy, where V= {Ulrk, (Y TR ULK} is the set of [
subtasks in the workflow Wy and Ex ={e; |i,j € I} is the set of edges between subtasks.

Each edge connecting two subtasks indicates that there is a priority constraint between
them. For example, in the workflow W, vy is the entry subtask, and v; is the predecessor
of subtask vy. It means that subtask v; can only start when v is finished computing. For
each subtask v; ;, we use a two-tuples v;; = (w; xC; ) to represent the ith subtask of MD
k, in which w;  is the input data size (bits) of subtask v;, and c; x is the number of CPU
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cycles needed to process one bit of data. It is assumed that all VMs have enough capacity
to execute the computation tasks and execute the tasks until completion after the tasks

are assigned.

Figure 2. Workflow directed acyclic graph.

3.2. Communication Model

We consider an MEC network where orthogonal frequency division multiple access
(OFDMA) is adopted to offload tasks to the BS. When subtask v;  is offloaded to the edge
server, the uplink transmission rate 1’]‘(1 of MD k is given as

g ptrans
7 = B log, <1+ "U’; ) )
k

where B is the channel bandwidth between MD k and the MEC sever, P}fans is the trans-
mission power of the MD k, and §j is the channel gain between the MD k and the MEC
sever. In addition, the noise obeys the Gaussian distribution with zero expectation, and its
variance is represented by 07

We assume that the downlink channel has the same fading environment and noise;
thus, the downlink transmission r]‘j rate of MD k is given as

g ptrans
r,f = Blog, (1 4 2k (7’; ) (2)
k

3.3. Computation Model

Let Wy denote the workflow of MD k consisting of I subtasks. These subtasks can be
computed locally or offloaded to VMs via a wireless channel for computation. T;"®* repre-
sents the maximum deadline constraint of workflow W;. In the following, the computation
overhead will be discussed in terms of both execution time and energy consumption in
local computing and offloading computing.

(1) Local computing: We define f,loc as the local computation ability of the MD k. When
the subtask is executed locally, the local computation time T}‘,’f is

Wik Cik

flloc : (3)

Tii =
The energy consumption of computing the subtask can be calculated as
2
EY =« (f lloc> Wik Cij, 4)

where « is the energy consumption factor related to the CPU chip architecture, « ( ,loc)
is the energy consumption in each CPU cycle [20].
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(2) Offloading computing: If a subtask is offloaded to VM for computing, the total exe-

cution time consists of two parts. One is the transmission time that MD offloads the
subtask to the MEC server. The other is the computation time on VMs. Then, the
transmission time of offloading subtask to MEC can be calculated as follows

tr Wi k

Ti = W ®)

The energy consumption of uplink can be calculated as follows:

Wik
Elt.’fk — pirans rﬁ ) ©)
k
where pifa"s is the transmission power of MD k. The computation time of subtasks on
VM, which can be given as

Wi C;
com __ Vik“ik
Ti,m,k - ser 7/ (7)
m

where f," is the CPU frequency of the VMs m. Therefore, the total execution time for

m
offloading can be expressed as

w; W; 1 C;

ser __ mitr com __ Yik ik “ik

imk — Ti,k+ imk — u + ser - (8)
rk m

Similarly, in the case that a subtask is offloaded to VM, the energy consumption
of MD includes transmission energy consumption and the circuit loss of the local
device. Similar with [21], we only consider the energy consumption for offloading and
ignore the circuit loss. Thus, the energy consumption of MD for offloading subtasks is
given by

w;
ser __ ptr _ ptrans Yik
imk = Eix =P — )
k

Let L=SU{0} = {0,1,2,..., M} denote the execution position set of the subtasks.
Since a task can only be performed by one VM, an offloading decision x; ,, € {0,1} is
utilized. If subtask v;  is offloaded to the VM m (m € S) for computation, x; ,, = 1,
otherwise x; . ,, = 0. Thus, the total time and the energy consumption of subtask v;
for computation are given as follows

Tk = {(1 — Xigm) i + Xi o T ,rnk} , (10)

Eig = | (1= Xy EISE + Xl |- (11)

In the workflow, subtask v;  is the immediate successor of subtask v; x. When subtask
vjx is finished computing, the output data d; x of subtask v; ; is transmitted to succes-
sor subtask v; . We assume that subtask v; x is computed locally and v; x is computed
on VM m. The output data d; ;x transmission time from v; to v; and transmission
energy consumption are

dijk
Tk = ~u (12)
k
dijk

tr __ ptrans
Eijx = Px

i, (13)

u
T

where p@" is the transmission power of MD k, and 7} is the transmission rate of
MD k.
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Similarly, in the case that the subtask v; ; is executed on VM m and the subtask v; s is
executed locally, the local device needs to download the data from VM. Let p;* denote
the downloading power of MD k. The data downloading time and the download
energy consumption can be calculated respectively as

djik

tr
Tk =~ (14)
tr  _ pre YL
Ejix = Pk . (15)

The total computation time of workflow Wy on MD k is the sum of computation
time and data transmission time of the data transmitted between the associated sub-
tasks. The total energy consumption of the workflow Wy on MD k is the sum of the
local computing energy consumption, offloading energy consumption, and the en-
ergy consumption for data transmission between associated subtasks. As mentioned
above, the total computation time and the total energy consumption can be calculated
respectively as

1 I-1 1
_ tr
Tk = Z Tik+ Z Z Xijm—x; | Tijks (16)
i=1 i=1j=2
1 I-1 1 ;
— T
Ex = Zl Eix+ Z; Zz xi,k,m—leklm Ei,j,k' (17)

4. Problem Formulation

In this section, an optimization problem to minimize the total energy consumption in
a multi-user multi-workflow MEC system is formulated. Considering the execution time
and the energy consumption of each MD, the workflow offloading position and execution
order are jointly studied.

The problem of minimizing the system energy consumption can be expressed as

K
P1: min Y Ey,

Yikm j—1

sit. C1:T < TP, Vk e U, (18)
C2:xjkme{0l}VieLkcUmel,
C3:) ) xipm <1Vkel.

ielmel

where Cl1 is the deadline constraint of workflow Wy, C2 is the offloading decision variable
constraint, and C3 is the offloading constraint of the subtasks, that is, each subtask in the
workflow can only be executed locally or offloaded to one VM.

4.1. Algorithm Implementation

P1 is an NP-hard problem that is difficult to solve using traditional methods such
as integer programming and convex optimization. In this section, we adopt a genetic
algorithm to solve this problem. Genetic algorithm is an effective method for solving
optimization problems based on the principle of evolution. It generates individuals with
suitable fitness through selection, crossover, and mutation operations to obtain feasible
solutions from a larger search space in a limited time. The implementation process of the
algorithm is shown in Figure 3.
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he termination condition i
met ?

Find the best individual, and get the best
offloading position and execution order

Figure 3. The algorithm flowchart.

4.1.1. Encoding

In the genetic algorithm, the task execution order and offloading position of the
subtasks are jointly expressed as an individual’s gene. The coding method is shown in
Figure 4. Assuming that there are k MDs and the workflow Wy of each MD is divided
into I subtasks, the length of the gene of an individual is I x K. The subtask execution
order is sorted in the workflow firstly, and then an offloading position is assigned to each
subtask. The offloading position of a subtask is indicated by the value of the corresponding
chromosome in the gene of this subtask. There are M + 1 possibilities for the offloading
position. If the subtask is executed locally, the value of this chromosome is set to be 0. If the
subtask is executed on VM m, the value is set to be m,m € {1,2,...,M}.

user1~ k-1 user k user k+1 ~K

| I
O A 7 v
Position @ |EH || || ||E|

Figure 4. Coding scheme in the genetic algorithm.
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4.1.2. Population Initialization and Individual Correction

The initialization operation includes the random initialization of the offloading posi-
tion and the execution order of the subtasks. Considering that the subtasks in the workflow
must meet the priority constraints, the initialization of the subtask execution order is de-
signed as follows: Let the set S denote the sortable subtasks, which are the tasks with no
predecessor or the predecessor task to be executed. Firstly, a sortable task is randomly
selected to join the set S. Then, another sortable task is selected to join the set S. This
process keeps iterating until a feasible task sequence is generated. For the initialization
of the task position, an integer range from 0 to M is randomly generated to indicate the
offloading position of each subtask. All tasks are iteratively checked in the same way as
that of the execution order to generate an initial set of task positions.

For each W, calculate the computation time according to Formula (16). The individual
that meets the deadline constraint becomes a valid individual.

4.1.3. Select

An elite selection strategy is adopted to select the individual with the best fitness
from the population. The individuals with the best fitness in the current population do not
participate in crossover and mutation operations. It replaces the individuals with the worst
fitness after crossover and mutation operations and enters the next generation.

4.1.4. Competition for Survival

In each generation, N individuals are randomly divided into N /2 pairs to compete
for survival. In each pair, the individual with more fitness is selected for the next crossover
operation. Then, N /2 individuals are obtained.

4.1.5. Crossover

The N /2 individuals obtained from the survival competition are randomly selected
in pairs to perform single-point crossover with the crossover probability P.. According to
the adaptively varying probabilities of adjustment formula proposed by Srinivas [22], the
adaptive crossover probability P. is

n _{ P (Pa *fpcz)(fmin*fc),fc < favg

min avg

(19)
P ffc > favg

where f;, and f,,, are the minimum fitness and the average fitness in the population,
respectively, and f, is the less fit of the two individuals in the crossover pair. Py and P
are the maximum and minimum crossover probabilities, respectively.

Since each subtask in the workflow needs to meet the particular order relationship,
the new individuals generated by the crossover operation also need to follow the certain
order relationship. The crossover operation of the execution order is shown in Figure 5.
Take two execution orders denoted as Orderl and Order2, for example. Firstly, a crossover
point is randomly generated. The crossover MD which is the MD involved in the crossover
operation with the crossover point in it can be indicated. Secondly, the two execution orders
cross each other to generate two temporary execution orders. Finally, each temporary
execution order is scanned from the beginning to the end. The repetitive subtasks in each
execution order are removed. Thus, two new execution orders are generated. The specific
operation is shown in Algorithm 1.

The process of the single-point crossing for the task offloading position is similar
to that of the execution sequence, as shown in Figure 6. First, a cut-off crossing point is
randomly selected in the task offloading position sequences. Then, the matching areas in
the two execution position orders are swapped. The details of the process are shown in
Algorithm 2.



Information 2022, 13, 348 9of 16

match area crossover area

oot (v I v ] b I wI B

Crossover point

o [vi] [Ve] [ ] [ [Vl [V V] [Wi] [ ] (] [ ] (] o]

mobile device 1~k —1 crossover mobile device k mobile device k+1~ K

Crossover operator

Crossover mobile device k

o V)] (] el o ol o T [ W W ) (]
o [ [ [0 ) (0 v v [ ) (0 Pl I W W (2

Remove duplicate tasks

ovsr [V [Va] [ | v [ ] v [va] [wa] Vil [ o] [ o] W] (]
OrderZ'IIIEIEIDD

Figure 5. The single—point crossover operation of task execution order.

Position 1 0 1 0 0 0 2 0
Crossover point

Position2 | 0 1 0 2 0 1 0

Position 1 0 1 0 2 0 1 0

Position2 | 0 1 0 0 0 2 0

Figure 6. Single—point crossover operation of task offloading position.

Algorithm 1 Task execution order single-point crossover algorithm.

1: BEGIN
2 f,=min(fy, f,);

3: iffc < favg;

4 Pe=Pa (pcl_ch)(fmin_fc)/<fmin_favg);
5. else

6: Pc =P,

7. end if

8:

Randomly select the crossover user and crossover points;
9:  Execute the cross operations and remove the duplicate tasks in new individuals;
10: END
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Algorithm 2 Single-point crossover algorithm for task offloading position.

1: BEGIN
2 fo=min(fy, f,);

3: iffc < fuvg;

4: Pe="Pa (pcl_pCZ)(fmin_fc)/<fmin_fuvg);
5. else

6: P = pcl;

7. end if

8:

Randomly select the crossover points;
9:  Execute the cross operations;
10: END

4.1.6. Mutation

In the mutation operation, the genes of some individuals are randomly selected and
changed to obtain new individuals with new characters. To maximize the chances of
obtaining more excellent individuals, in this paper, the best individual with the most fitness
in each generation is selected to be mutated. The best individual is mutated with mutation
probability Py, to generate N /4 individuals for the next generation. The mutation operation
of the subtask offloading position is shown in Figure 7. For each individual, the mutation
operation is performed with the mutation probability P,. The value range of the mutation
for each gene is 0~ M. The specific operation is shown in Algorithm 3.

The mutation position

v

Position 0 1 0 0 0 2 0

Condidate set [0,M]

Position 0 1 0 1 0 2 0

Figure 7. Single—point mutation operation of task offloading position.

Algorithm 3 Offloading position single-point mutation algorithm.
1: BEGIN

2: if fm < favg;

3: Pm:pm1<pm1*pWZ)(fmin*fm)/(fmin*favg);
4 else

5: Pm = P,

6: endif

7. Randomly select the mutation points;

8:  Execute the cross operations;

9: END

The mutation operation of the subtask execution order is shown in Figure 8 and
Algorithm 4. As shown in Figure 8, firstly, a subtask v; ; is randomly selected from the
workflow. Then, the predecessor subtasks subset {vo,k/ Vlkseees va,k} consisting of all pre-
decessor subtasks of v; ; and the subset {Ub,k, Vpt1r-v-s 0 Ifl,k} consisting of all successors
subtasks of v; ; are generated through forward searching and backward searching, respec-
tively. As the mutation operation of subtask execution order must meet with the order
constraint, the position of subtask v; , must be inserted between v, y and v;_; y with any
position. The set {v,.1,...,0p_1x} is called candidate set. Finally, the subtask v, can
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be placed in any position except the initial one. Similar to the crossover operation, the
adaptive mutation probability is

Pm :{ pml (pml 7fpm2)(;n—\in7fm)’fm S fu‘ug

min ~ Javg (20)
pml /fm > fuvg

where f;, represents the minimum fitness in the population, f,,, represents the average
fitness of the entire population, and f,, represents the fitness of the individuals who
choose to mutate. P,,; and P,,;» are the maximum and minimum values of the mutation

probability, respectively.

Mutation user k Mutation point

Figure 8. Task execution order single—point mutation operation.

Algorithm 4 Single-point mutation for task execution order algorithm.

1: BEGIN
2: if fm < favg;

P = pml(pml — P2 )(fmin _fm)/<fmin _favg>;
else

P = pml;
end if

Find mutation user;

Obtain the predecessor set of task vpy_p,user;

Obtain the successors set of task vmy_p,user;

10:  Obtain the candidate set { Vg1 users - - -, Vb1 user }

11:  Randomly select a new position in set {Us1users - - -, Vp—1,user § t0 INSETt Vyy_p user tO
generate a new individual

122 END

5. Simulation Results and Discussion

This paper evaluates the performance of the proposed algorithm on the Python plat-
form. Our simulation settings are described as follows. We consider a single-cell multi-user
MEC network, where MDs are randomly located in a 60 m x 60 m area. The wireless
access base stations are located in the center of this area. According to the path loss model
considered in [23], the channel gain between MD k and the MEC is §j ,, = dk_, ;‘1, where i m
is the distance between MD k and the MEC, and « = 4 is the path loss factor. Every MD has
a workflow task needed to be executed. To test the performance of the proposed scheme, in
our simulation, we consider an image processing application with some workflow tasks
needing to be executed. The simulation parameters are shown in Table 1.
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Table 1. Simulation parameter.

Simulation Parameter Value
Bandwidth 5MHz
Transmission power of mobile device pirans 600 mW
Receive power of mobile device P;° 100 mW
Background noise ¢ —113 dBm
Mobile device execution power consumption coefficient x 1024 Joule/cycle
MEC execution power consumption coefficient x; 10726 Joule/cycle
Data subtask w; x [50, 300] kB
The weight between two subtasks d; ; x [300, 500] kB
Needed CPU cycles to calculate 1 bit task ¢; ; 1000-1200 (cycles/byte)
MD’s local computation capability ,loc [0.1,1] GHz
MEC computation capability fi " [2,4] GHz
pcl pcz pml pmz 09, 04, 01, 0.05
Population Size 80

To evaluate the performance, the proposed scheme is compared with some other
computational offloading algorithms, which are introduced as follows:

(1) Local computing (LC): The local execution involves no offloading. All tasks are
executed locally on MDs;

(2) Random offloading (RA): All subtasks in the workflow are randomly offloaded to
some MEC servers for execution or executed locally;

(3) Adaptive genetic algorithm (AGA): All tasks of the workflow are executed locally or
offloaded to the MEC for execution based on the adaptive genetic algorithm in [24].

Figure 9 shows the total system energy consumption versus the number of MDs. The
number of subtasks in each workflow is 10. It can be seen from Figure 9 that, when the
number of MDs increases, the total system energy consumption of all the four methods
increase to executing more subtasks. Our proposed scheme consumes less energy than
other three compared algorithms due to its optimal allocation of the execution position
for subtasks. For the adaptive genetic algorithm, the adaptive crossover and mutation
probability can be dynamically adjusted with the adaptive value to avoid entering the local
optimal solution. Therefore, the energy consumption of this algorithm is second only to
that of our proposed algorithm.

301 —e— LC
—— RA
A_Ga
2.5 4 —#— Proposed Algorithm

System energy consumption (X 10%J))

0.0 T T T T T T T T
10 15 20 % 30 35 40 45 50
The number of MDs

Figure 9. The total system energy consumption versus the number of MDs.
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Figure 10 illustrates the total system energy consumption versus the number of the
workflow subtasks in the four algorithms. From Figure 10, we can observe that as the
number of tasks increases, the system total energy consumption increases accordingly. In
four algorithms, the proposed scheme consumes less energy than other three algorithms.
This is because the proposed scheme can optimally allocate the execution order and offload
the position of each subtask in the workflow.

—— IC
—&— RA
A Ga
—— Proposed Algorithm

3.0

2.5

System energy consumption (X 10%J)

00 T T T T
5 10 15 2 25
The number of workflow

Figure 10. The total system energy consumption versus the number of workflow.

Figure 11 illustrates the total system energy consumption versus the number of MEC
virtual servers. As shown in Figure 11, when the number of MEC virtual servers increases,
the total system energy consumption of these four algorithms is decreased accordingly,
since there are more virtual servers for the selection to minimize the energy consumption.
The proposed scheme consumes less energy than the other two algorithms due to its
optimal resource allocation. In addition, when the number of MEC virtual servers increases,
especially those greater than 9, the decrease in the total system energy consumption slows
down, since the number of virtual servers is large enough for subtasks to select to minimize
the energy consumption and some virtual servers are idle.
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Figure 11. The total system energy consumption versus the number of virtual servers.
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Finally, Figure 12 illustrates the total system energy consumption versus the average
workload size. In Figure 12, we can seen that, when the workload size of the subtask
increases, the energy consumption increases accordingly for computing more tasks. The
proposed scheme consumes less energy than the other three algorithms due to its optimal
resource allocation.
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Figure 12. The total system energy consumption versus the average workload size.

6. Conclusions

In this paper, to solve the problem of how to determine the scheduling and execution
position of the subtasks in a workflow, we propose a multi-user workflow task offloading
decision and scheduling scheme based on genetic algorithm. Firstly, a system model of
workflow scheduling and an offloading decision in a multi-user, multi-task scenario was
built. Secondly, we formulated the problem of how to optimally determine the scheduling
and the execution position of the subtasks to minimize the total energy consumption of
the system under the deadline constraint as an optimization problem. Then, an improved
genetic algorithm was adopted to obtain the optimal task execution order and offload-
ing position to minimize the system energy consumption under the deadline constraint.
Finally, the simulation results showed that, compared with other benchmark methods,
our proposed scheme consumes less energy by optimally determining the scheduling and
execution position of the subtasks.

7. Work Limitations

In our manuscript, we consider the resource allocation problem of how to minimize the
total energy consumption of the system under a deadline constraint in a multi-user, single-
BS static scenario. The major limitation of the present study is that we did not consider
the resource allocation problem of the workflow task offloading in a multi-BS mobile MEC
Network. Multiple BSs and the MDs with mobility will make the workflow schedule
problem more complicated to solve. The workflow schedule problem in this scenario is an
interesting problem which is worthy of being investigated in our future research.
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