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Abstract: This work studies a general distributed coded computing system based on the MapReduce-
type framework, where distributed computing nodes within a half-duplex network wish to compute
multiple output functions. We first introduce a definition of communication delay to characterize the
time cost during the date shuffle phase, and then propose a novel coding strategy that enables parallel
transmission among the computation nodes by delicately designing the data placement, message
symbols encoding, data shuffling, and decoding. Compared to the coded distributed computing
(CDC) scheme proposed by Li et al., the proposed scheme significantly reduces the communication
delay, in particular when the computation load is relatively smaller than the number of computing
nodes K. Moreover, the communication delay of CDC is a monotonically increasing function of K,
while the communication delay of our scheme decreases as K increases, indicating that the proposed
scheme can make better use of the computing resources.

Keywords: map reduce; data shuffling; parallel computing; coded computing; distributed computing

1. Introduction

A large number of data streams give rise to increased difficulty to handle large-scale
computing tasks by a single computing node. In recent years, distributed computing has
become an important part of processing large-scale data and solving complex computing
problems. Distributed computing refers to a group of computing nodes acting as a single
through shared network and storage resources. The system assists in solving a large
number of complex computing tasks. The main advantages of distributed computing
are high reliability and high fault tolerance; when a node fails, other nodes can still
complete the assigned tasks efficiently and reliably. Secondly, with high computing speed,
complex computing tasks are split and handed over to all nodes to cooperate. This parallel
computing method greatly shortens the computing time. At the same time, distributed
computing has good scalability, as computing nodes in the system can be easily added.
Distributed computing is important for computing nodes. The hardware requirements
of the node are lower, and the cost of the node can be controlled. Based on the above
advantages, distributed computing has been used in many real-life applications [1–3], such
as various parallel computing models (cluster computing [4], grid computing [5], and cloud
computing [6,7]).

Consider the MapReduce framework [8], popular distributed computing frame-
works for computing tasks that use many computing nodes to process large-scale data.
Due to its scalability and ability to tolerate failures [9], the MapReduce framework is widely
applied in Spark [10] and Hadoop [11] for processing various applications [8], such as the
analysis of web access log documents, file clustering or machine learning, deep learning
algorithms development, etc. Generally speaking, the entire computing task can be divided
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into three stages: the mapping (Map) stage, the data shuffling (Shuffle) stage, and the reduc-
tion (Reduce) stage. In the mapping phase, the entire task is divided into multiple subtasks
and assigned to the computing nodes, and the computing nodes calculate the intermediate
value results through the Map function according to the assigned subtasks. In the data
shuffling phase, the computing nodes exchange the intermediate values required by each
other through the shared network. In the reduction phase, the computing node calculates
the final result through the Reduce function, according to the intermediate value sent by
other nodes and the intermediate value obtained by the local Map operation.

While distributed computing has a number of advantages, it also faces significant
challenges, such as communication bottleneck. Since each node only processes a part of the
data, multiple intermediate values need to be exchanged through the network in the Shuffle
phase to calculate the final result, which obviously increases the communication overhead
and limits the performance of distributed computing applications, such as Self-Join [10],
Terasort [11], and Machine Learning [12] (for Facebook’s Hadoop cluster, the data exchange
phase accounts for an average of 33% of the overall job execution time). Zhang et al. [13]
pointed out that when running Self-Join and Terasort on heterogeneous Amazon EC2
clusters, the time overhead of the shuffle phase accounted for 70% and 65% of the total time.

1.1. Related Work

To alleviate the communication bottleneck, many methods have been proposed to
reduce the communication overhead [14]. For example, communication-efficient shuffling
strategies [15–17] were proposed to achieve different goals, such as minimizing job exe-
cution time, maximizing resource utilization, and accommodating interactive workloads.
Ahmad et al. reduced the total delay of the task by partially overlapping Map calculation
and Shuffle communication [18], but computing nodes need to consume a lot of storage
space for caching. An efficient and adaptive data shuffling strategy was proposed by
Nicolae et al. to trade off the accumulation of shuffled blocks and minimize memory
space utilization to reduce the overall job execution time and improve the scalability of
distributed computing [19]. Additionally, the virtual data shuffling strategy was also pro-
posed in [20] to reduce the total network storage space and transmission load. In [21], the
delayed scheduling algorithm was proposed to allocate tasks more optimally. However,
the above non-coding methods have the limitation of minimizing the communication load
in the data shuffling stage.

Recent results show that coding can not only effectively reduce system noise, but also
greatly accelerate the speed of distributed systems by creating and using computational
redundancy. The idea of reducing the communication load through encoding and data
redundancy was first proposed by Ali and Neisen et al. [22,23], and the creation of multicast
gain reduces the communication load by multicasting coded symbols that are simulta-
neously useful for multiple users. For the amount of data that needs to be transferred,
the core idea is to make each file fragment cached by multiple users when the network
demand is low, and wait until the demand peak stage, according to user needs, then
multiple file fragments are compressed by XOR into a file fragment length data packet.
After the data packet is broadcast to multiple nodes, it can be decoded by all target nodes
using local cache fragments. This idea was extended by Li and Ali et al. [24] to distributed
MapReduce systems in which a coded distributed computing (CDC) scheme was proposed.
In CDC, each computing node performs a similar encoding processing on the intermediate
values that each node of distributed computing needs to exchange, realizing the optimal
computation–communication tradeoff in distributed computing. The increase of compu-
tation load r (representing that each file is mapped repeatedly by r different nodes) can
create broadcast opportunities, thereby reducing the communication load required for
computing. These coding methods can greatly reduce the communication load compared
to the uncoded scheme, and achieves a theoretical trade-off between the computation
and communication loads. However, in the CDC scheme, each node takes turns to send
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encoded symbols to a subset all intended nodes, while the remaining nodes are totally
silent, which may result in unnecessary waiting latency.

1.2. Our Contribution

This paper considers a K-user MapReduce-type distributed computing system, where
the computing nodes connect with each other via a switch in a half-duplex mode (i.e.,
cannot transmit and deliver signals simultaneously). We define the communication delay
to characterize the time cost (in seconds) during the date shuffle phase, and propose
a novel coding strategy, which enables parallel and efficient transmission among the
computation nodes. In order to achieve the parallel communication while avoid redundant
transmission of the same information, we delicately design the data placement, message
symbols encoding, data shuffling and decoding such that as many computing nodes as
possible participate in the transmission or receiving, as large of a multicast gain as possible
is achieved in each transmission, and no content is repetitively transferred. It can be
proved that our scheme can achieve the communication delay bK/(r + 1)c fraction of
that achieved by the CDC scheme. Unlike the communication delay of CDC, which is a
monotonically increasing function of K, the communication delay of the proposed scheme
tends to decrease as K increases. This means that the proposed scheme can make better use
of the computing resources.

2. System Model and Problem Definitions
2.1. Network Model

Consider a MapReduce system as shown in Figure 1, where K distributed computing
nodes connect with each other via a switch in a half-duplex mode, i.e., each node cannot
transmit and deliver signals simultaneously. Assume that each connection link between
the user and switch is rate limited by C bits per seconds. Additionally, the network is
assumed to be flexible in the sense that each node can flexibly select a subset of nodes to
communicate through a shared but rate-limited noiseless link. This is a similar assumption
in [25] and matches some high-flexibility distributed network, such as the fog network.

User 1 User K

User K-1User 2

Switch

Figure 1. The MapReduce system where multiple users connect with each other via a switch.

2.2. Mapreduce Process Description

The MapReduce-type task has Q output functions and N input files with F bits size
ω1, , . . . , ωN ∈ F2F . Similar to [24], we assume that the Q reduce functions are symmetrically

assigned to K nodes and satisfy
Q
K
∈ N+.

There are three phases in the whole process: map, data shuffling and reduce. In the
mapping phase, according to the deposition set, each node stores and maps the local
files to intermediate values and encodes them into packets; in the data shuffling phase,
nodes broadcast the encoded packets to each other according to the broadcast set; in the
reduce phase, each node decodes the received encoded packets and combines the local
intermediate values to obtain the final desired information.
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2.2.1. Map Phase

Given N input files ω1, , . . . , ωN , letMk denote the index set of files stored at node k,
where ∪k∈{1,2,...,K}Mk = {1, 2, . . . , N}, and g(·) be the map function which maps each file
to Q intermediate values of size T, i.e.,

g(ωn) = (v1,R, v2,R, . . . , vQ,R),

where g is of form F2F → (F2T )Q. In the map phase, each node k maps each of its local file
to Q intermediate values of size T as follows.

(v1,n, . . . , vQ,n) = g(ωn), n ∈ Mk.

Similar to [24], we introduce the computation load r as average number of files placed

and computed on each node, i.e., r =
∑K

k=1 |Mk|
N

.

2.2.2. Shuffle Phase

In the shuffle phase, the nodes exchange data to obtain the desired intermediate values.
Assume the shuffle phase takes place in I channel slots. At slot i ∈ {1, . . . , I}, the set of
nodes that serve as transmitter nodes is denoted by Ti ⊂ {1, . . . , K} and who serve as
receivers is denoted byRi ⊂ {1, . . . , K}. Since we consider the half-duplex model where
the node cannot transmit and receive signals at the same time, we have Ti ∩Ri 6= ∅ for all
i ∈ {1, . . . , I}.

At time slot i, each node k ∈ Ti generates symbols Xi
k = f (v1,n, . . . , vQ,n : n ∈ Mk)

and sends them to a set of nodes Di,k ⊆ Ri ⊆ {1, . . . , K}.

Definition 1 (Communication Load and Delay). Define the communication load L as the total
number of bits communicated by the K nodes, normalized by NQT, during the Shuffle phase.
Define communication delay, D, as the time (in seconds) required in the shuffle phase such that all
required contents are successfully sent.

2.2.3. Reduce Phase

Recall thatWk represents the set of output functions to be reduced by node k, then
the required intermediate value {vq,n : q ∈ Wk, n ∈ {1, . . . , N}}, where {vq,n : n ∈ Mk} is
generated locally and does not require other nodes to share. For a certain function q ∈ Wk,
node k uses decoding function χ

q
k to decode desired intermediate values

(vq,n : n /∈ Mk) = χ
q
k
(
{Xi,j : k ∈ Di,j,∈ {1, . . . , K} \ k}, {vq,n : n ∈ Mk, q ∈ {1, . . . , Q}

)
.

For any q ∈ Wk, node k converts the decoded intermediate value into the desired
result through the Reduce function uq = hq(vq,n : n ∈ {1, . . . , N}).

Definition 2 (Execution Time). The achievable execution time of MapReduce task with parameters
(K, N, Q, r), denoted by Tsum, is defined as

Tsum , Tint + Tmap + D + Treduce, (1)

where Tint, Tmap, D, TRedcue represent the time cost in the initialization, map, shuffle and reduce
steps, respectively.

According to Table 1 in [24] in actual TeraSort experiments, shuffle execution takes up
most of the total time and leads to the communication bottleneck problem.
Thus, in this paper, we mainly focus on reducing the overhead of shuffle, so the con-
sideration of performance in the following paper is mainly its communication delay D.
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2.3. Examples: The Uncoded Scheme and the CDC Scheme

For the uncoded scheme and the CDC scheme, since all nodes broadcast and send
signals individually in sequence, and there is no situation in which signals are sent at the
same time, their respective communication delays are

Duncoded (r, K) =
(

1− r
K

)
· NQT

C
, (2)

DCDC(r, K) =
1
r
·
(

1− r
K

)
· NQT

C
. (3)

3. Main Results

Theorem 1. In the case of allowing parallel communication, in the data interaction stage, the com-
munication delay of the proposed scheme is

Dproposed(r, K) =
1
r
· 1

max
{

1,
⌊

K
r+1

⌋} · (1− r
K

)
· NQT

C
, r ∈ [K]

where Q length T intermediate values are computed from N input files, which correspond to Q
output functions. For the general case of 1 6 r 6 K, the downward convex envelope composed of
points

{(
r, Dproposed(r, K)

)}
can be reached.

Proof. Please see the proposed scheme and analysis in Section 4.

The first factor in Dproposed(r, K) is 1
r , which also appears in the formula, can be called

the coding broadcast gain. This is because each encoded packet generated and broadcast
by the node XORs is the information needed by r receiving nodes, so the total amount of
transmitted data is reduced by r times.

The second factor of Dproposed(r, K) is max
{

1,
[

K
r+1

]}
, which can be called the parallel

transmission gain. This is the core gain of this scheme, which is generated by sending
information by two sending nodes in parallel in their respective broadcast groups without
interfering with each other.

The third factor in Dproposed(r, K) is 1− r
K , appearing in both communication delay of

the uncoded scheme and CDC scheme, which can be called the local computing gain. This is
because each node has r/K shares of N files in the file placement stage, so the intermediate
value generated by this part can be directly obtained by local mapping without exchange
with other nodes.

Compared with the CDC scheme, the algorithm of the proposed scheme only has
one more subdivision for the encoding package, and the complexity of other parts is the
same as that of the CDC scheme. The low degree of calculation does not greatly reduce the
overall computational efficiency. Next, the communication delay of the uncoded scheme,
the CDC scheme and the proposed scheme are compared through the numerical results.
Figure 2 compares the communication delay of the uncoded, CDC and proposed schemes
as a function of the computational load r when both the given compute node K and the out-
put function Q are 50. It can be clearly observed that when r is small, the proposed scheme
can greatly reduce the communication delay, while when r is large, the communication
delay of the proposed scheme is similar to that of the CDC scheme. The main reason is
that the number of broadcast groups communicating in parallel in each time period equals
max

{
1,
⌊

K
r+1

⌋}
. When r increases and decreases, when only one broadcast group is send-

ing at a time, proposed is equivalent to the CDC scheme. When r = 2, DCDC(2, 50) = 750,
Dproposed(2, 50) = 50, compared to the CDC scheme, the proposed scheme reduces the
communication delay by 15 times, and the effect is very obvious. In [25], it is pointed out
that with the increase in the computational load r, the complexity of the system increases,
so it is recommended to use a smaller computational load (r 6 5) in practical applications.
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Figure 2. Variation trend of communication delay D with computation load r: the computing node K
and output function Q in a given network are 50. Number of file N and output function Q are both
50. In addition, the transmission rate C is 100 Mbps, while the length of intermediate value T is 100
Mbits. Compare the variation of communication delay with computing load for uncoded, CDC and
proposed scheme.

Figure 3 compares the change trend of the communication delay of each scheme with the
increase in the number of computing nodes in the network when the computing load r = 2
is given. It can be seen that the proposed scheme is always better than the uncoded scheme
and the CDC scheme. In addition, the communication delay of the uncoded scheme and the
CDC scheme both increase with the increase in computing nodes. When K < 6, the proposed
scheme cannot achieve parallel transmission of multiple broadcast groups, and there is no
parallel transmission gain. The communication delay of the scheme is consistent with the
CDC scheme, and the communication delay of the proposed scheme reaches the maximum
when K = 5, and when multiple broadcast groups are allowed to transmit in parallel in the
scheme, due to the increase of nodes, the overall communication delay of the broadcast of
parallel transmission will decrease as the number of groups increases, which is very beneficial
to a multi-node computing network. The communication delay as function of computation
load r and the number of computing nodes are presented in Figure 4.
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Figure 3. Variation trend of communication delay D with the number of computing nodes K.
The computation load r is 2, and the number of file N and output function Q = 50 are both 50.
In addition, transmission rate C is 100 Mbps while the length of intermediate value T is 100 Mbits.
The communication delay of uncoded computing, coded distributed computing and parallel coded
computing changes with the number of computing nodes K in the network.
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Figure 4. Variation trend of communication delay D with the number of computing nodes K and
computation load r. The number of file N and output function Q are both 50. In addition, transmission
rate C is 100 Mbps while the length of the intermediate value T is 100 Mbits. The communication delay
of the uncoded computing, coded distributed computing and parallel coded computing changes with
the number of computing nodes K in the network.

4. The Proposed Coded Distributed Computing Scheme

Due to the advantages of centralized control, we can evenly distribute the workload of
each node and the total length of the files placed. Assuming that each round of the system
processes N files, Q reduce functions need to be calculated, and each node calculates Q/K
different functions, then node k can be responsible for generating the operation result
uWk := {uq : q ∈ Wk}.

To better describe how nodes communicate in the data shuffling phase after file
placement, define broadcast groups and broadcast sets as follows.

Definition 3 (Broadcast Group and Broadcast Set). A set S ⊆ {1, . . . , K} is called a broadcast
group if all nodes in S can only exchange information with nodes within S . Given an integer
α ≥ 1 and multiple broadcast groups {S1,S2, . . . ,Sα} with Si ∩ Sj = ∅, ∀i 6= j, we define
B = {S1,S2, . . . ,Sα} as the broadcast set.

Assume there exist β different broadcast sets for K nodes, and each broadcast set
πi(i ∈ {1, . . . , β}) contains αi ∈ N+ broadcast groups

(
Si1,Si2, . . . ,Siαi

)
, i.e.,

πi =
{

Si1,Si2, . . . ,Siαi

}
,

for Sij ⊆ {1, . . . , K}, Sij ∩ Sij′ = ∅ if j 6= j′, and
⋃

j∈{1,...,αi} Sij ⊆ {1, . . . , K}.

4.1. Map Phase

Let ωR be the files stored by nodes in R ⊆ {1, . . . , K}. Similarly, let vWk ,R be the
intermediate values locally known by nodes in R and related to the output functions in
Wk. Make each file equal in size and be placed r times repeatedly. In order to make the
files symmetrically placed,R is equal to the set of all the subsets of {1, . . . , K} containing
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r elements, i.e, |R| = r. Therefore, the number of files N is a multiple of (K
r ), here for

simplicity, set to N = (K
r ). According to the definition of the computation load, we know

that the computation load is r.
In the Map phase, each node k performs the Map operation to obtain the local interme-

diate values {vWk ,R : k ∈ R}. The intermediate values that need to be exchanged during the
data communication phase of the entire system are represented by {vWk ,R : k ∈ [K], k 6∈ R}.

4.2. Shuffle Phase

Recall that in the Map phase, each file is stored by r node nodes, and each file ωR
can be mapped to Q intermediate values. We first partition all nodes into groups and then
present the data shuffle strategy.

Group Partitioning Strategy

The purpose of grouping is to make multiple broadcast groups transmit in parallel,
and further reduce the communication delay. In addition, the synchronization problem
must be solved in the process of parallel communication, so that α ∈ {1, . . . , K} broadcast
groups in the same group can start and complete the communication tasks arranged in the
group at the same time, and the broadcast set B has completed the exchange of all coded
packets in the group after communication.

Since the communication load of each broadcast group S ⊆ {1, . . . , K}, denoted by
LS , is the same, in order to achieve the goal of synchronously ending communication,
the broadcast groups in each broadcast set πi must share the same communication load,
and each broadcast group should repeat the same times among all broadcast sets πi :
i ∈ [β]}. Let γ be the number of times that each broadcast group S appears among
{πi : i ∈ {1, . . . , β}}.

Use index set ΓS = {i : S ∈ πi} to mark the groups where S appears, |ΓS | =
γ. For the selection of {πi : i ∈ [β]}, β and γ, in order to reduce the additional error
and communication delay in the process of splitting coded packets and synchronous
communication, the values of β and γ should be as small as possible.

Let the best
(

β∗, γ∗, {π∗i , i ∈ [β∗]}
)
= arg min

β,γ
(β, γ, {πi : i ∈ [β]}) : {{πi : i ∈ [β]}

cover B and transfer complete.
Now we prove that there exists a group scheme {πi : i ∈ [β]}, which satisfies the

synchronization completion of communication and the group covers all broadcast groups
in B, then β∗ ≤ β = K!

(r+1)!α ·α!·(K mod r+1)! and γ∗ ≤ γ = (K−r−1)!
(r+1)!α ·(α−1)!·(K−r−1 mod r+1)! .

Here, β is the number of all permutations which choosing α broadcast groups with
size of r + 1,

β =

(
K

r + 1

)(
K− (r + 1)

r + 1

)
. . .
(

K− (α− 1)(r + 1)
r + 1

)
α!

=
K!

(r + 1)!α · α! · (K mod r + 1)!

(4)

where γ is the number of all permutations and combinations of (α− 1) broadcast groups
of size t + 1 selected from all the remaining (K− r− 1) nodes when a broadcast set with a
size of (r + 1) is fixed,

γ =

(
K− (r + 1)

r + 1

)(
K− 2(r + 1)

r + 1

)
. . .
(

K− (α− 2)(r + 1)
r + 1

)
(α− 1)!

=
(K− r− 1)!

(r + 1)!α · (α− 1)! · (K− r− 1 mod r + 1)!
.

.
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4.3. Data Shuffle Strategy

Given a broadcast set πi, and all broadcast groups
{

Si1,Si2, ...,Siαi

}
parallel communi-

cate information within their groups. In the following, we describe the data shuffle strategy
in a broadcast group S ∈ πi: |S| = r + 1, which appears γ times in {πi : i ∈ ΓS}

In a broadcast group S , the intermediate values that need to be transmitted in the
group {vWj ,S\{j} : j ∈ S} are divided into equal-sized non-coincident r · γ parts:

vWj ,S\{j} =
(

vi,k
Wj ,S\{j}, i ∈ ΓS , k ∈ S\{j}

)
,

where the superscript index i and k represent the index of broadcast set πi and the node k,
who will later send these parts, respectively. Then, in partition πi, node k ∈ S ∈ πi, sends
the following coded symbols to the nodes in S\{k}:

Xi
k,S = ⊕j∈S\{k}v

i,j
Wj ,S\{j}.

After shuffling the packet communication among nodes in S , each node j ∈ S receives
coded symbols {Xi

k,S : k ∈ S\{j}}. Based on {Xi
k,S : k ∈ S\{j}} and its local intermediate

values, node j ∈ S\{k} decodes the desired parts {vi,k
Wk ,S\{k} : k ∈ S\{j}} as follows:

vi,k
Wk ,S\{k} =

(
⊕y∈S\{j, k}v

i,y
Wy,S\{y}

)
⊕ Xi

j,S , ∀k ∈ S\{j}

Finally, the intermediate value segment corresponding to j ∈ S \ {k} is coupled to
obtain the intermediate value required by node k:

(
vi,k
Wk ,S\{k} : i ∈ ΓS , k ∈ S

)
→ vWk ,S\{k}.

The pseudocode for whole implementation algorithm of proposed scheme is given in
Algorithm 1.

Algorithm 1 Distributed computing process of parallel coding in lossless scenarios.

1: πi =
{

Si1,Si2, . . . ,Siαi

}
, i ∈ {1, . . . , β},

Sij ⊆ {1, . . . , K}, Sij ∩ Sij′ = ∅ if j 6= j′, and
⋃

j∈{1,...,αi} Sij ⊆ {1, . . . , K}.
2: for i = 1, · · · , β do
3: for S ∈ πi do
4: {vq,n : q ∈ [Q], wn ∈ Mk}
5: vWj ,S\{j} =

{
vq,n : q ∈ Wj, ωn ∈ ∩k∈S\{j}Mk, ωn /∈ Wj

}
6: Split vWj ,S\{j} as vWj ,S\{j} =

(
vi,k
Wj ,S\{j}, i ∈ ΓS , k ∈ S\{j}

)
7: for k ∈ S do
8: Node k sends the Xi

k,S to the nodes in S\{k} with Xi
k,S = ⊕j∈S\{k}v

i,j
Wj ,S\{j}

9: end for
10: for j ∈ S do
11: Node j decodes the desired parts {vi,k

Wk ,S\{k} : k ∈ S\{j}} as follows: vi,k
Wk ,S\{k} =(

⊕y∈S\{j, k}v
i,y
Wy,S\{y}

)
⊕ Xi

j,S , ∀k ∈ S\{j}
12: end for
13: end for
14: end for
15: for k ∈ S , S ∈ {1, . . . , K} : |S| = r + 1 do
16:

(
vi,k
Wk ,S\{k} : i ∈ ΓS , k ∈ S

)
→ vWk ,S\{k}.

17: end for

4.4. Reduce Phase

After the decoding phase, node k obtains all {vWk ,n : n ∈ {1, . . . , N}} and obtains the
objective function calculation result uWk , through reduce function.
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4.5. Analysis of Communication Delay

Since each node k broadcasts useful and decodable other r nodes in S simultane-
ously, and no content is repeatedly sent, the multicast gain of the broadcast group is r.
The communication load regarding the subset S is as follows:

LS =
∑k∈S lk
Q|S|T = (r + 1) · 1

r
· QT

Q|S|T =
r + 1

r
· 1
|S| . (5)

Since the communication content of each broadcast group is independent, the total
communication load of the system is computed as follows.

L = ∑
i∈{1,...,β}

∑
S∈πi

LS =

(
K

r + 1

)
· r + 1

r
· QT

QNT

=

(
K

r + 1

)
· r + 1

r
· 1(

K
r

) =
1
r
·
(

K− r
K

)
.

(6)

In order to minimize the communication delay, the number of broadcast groups
working in parallel should be the maximum, αp-coded = b K

r+1c. By letting α = αp-coded =

b K
r+1c and using the strategies above, according to the Definition of communication delay

in (1), it is obvious that the communication delay is

Dp-coded(r) = L · NQT
C

1
αp-coded

=
1

r · b K
r+1c

· (1− r
K
) ·
(

1− r
K

)
· NQT

C
. (7)

4.6. Illustrative Examples

Next, an example is used to illustrate the feasibility of the proposed scheme.
Consider a MapReduce model with 6 computing nodes and 15 input files, where each file is
stored by 2 nodes, needs to process 6 output functions, and distribute tasks symmetrically
so that each node processes 1 output function.

Then in the data shuffling process of the proposed scheme, there is a certain moment,
as shown in Figure 5, and there are two broadcast groups in the system (that is, the broadcast
group 1 composed of nodes 1, 2, and 3, nodes 4, 5, and 6). The constituted broadcast group
2 transmits and exchanges information that is independently and unrelated to each other.
As can be seen from the figure, node 1 stores files 1, 2, 3, 4 and 5, and the output function to
be processed is an orange circle. Node 2 stores files 1, 6, 7, 8 and 9, and the output function
to be processed is the blue square. Node 3 stores files 2, 6, 10, 11 and 12, and the output
function that needs to be processed is the yellow corner. In the broadcast group formed by
nodes 1, 2, and 3; nodes 2 and 3 both generate the intermediate value orange 6 through the
local map operation, nodes 1 and 2 both generate the intermediate value yellow 1 locally,
and similarly, nodes 1 and 3 both generate the intermediate value orange 6. The median
value is blue 2.

Then node 1 can send yellow 1 XOR blue 2 to nodes 2 and 3, similarly node 2 sends
yellow 1 XOR orange 6 to nodes 1 and 3, and node 3 sends blue 2 XOR orange 6 to
nodes 1 and 2. Since each intermediate value is sent twice, in order to avoid the repeated
transmission of the message, the intermediate value to be sent is divided into two disjoint
intermediate value segments, and then the encoded packet is sent to the nodes in the group
by XOR.

After node 1 receives the XOR encoded packets sent by the other two nodes (right yel-
low 1 XOR left orange 6, left blue 2 XOR right orange 6), it separates the encoding package
with the local intermediate value segment (right orange 6). (Yellow 1, left blue 2) XOR, so
you can obtain the middle value segment (left orange 6, right orange 6), and then combine
the middle value segments to obtain the required middle value (orange 6). The same is true
for the other two nodes. At the same time when this broadcast group is sent, the broadcast
groups composed of three nodes, 4, 5, and 6, communicate at the same time, and adopt
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the same sending strategy to exchange messages within the group. So at the same time,
as shown in Figure 6, two nodes are sending information to respective broadcast groups.

Figure 5. Example of coding strategy for simultaneous transmission of two broadcast groups: a
distributed computing network composed of K = 6 nodes, including N = 15 input files, and each file
is stored by r = 2 nodes. A total of Q = 6 output functions need to be processed.

Due to the small number of computing nodes in this example, when three nodes
form a broadcast group, there is no grouping strategy that makes the same broadcast
group appear multiple times. As in the above example, the broadcast group formed by
nodes 1, 2, 3 only appears once, so the encoded packets that need to be sent do not need
to be further divided. However, when nodes are added to form a more complex network,
further processing of the encoded packets is required. For example, when the network
contains 9 computing nodes, 36 input files, and the computing load is 2, the broadcast
group composed of nodes 1, 2, and 3 will appear in multiple broadcast groups. If there is
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, {{1, 2, 3}, {4, 6, 7}, {6, 8, 9}}, {{1, 2, 3}, {4, 5, 7}, {6, 8, 9}} and
other grouping situations, in all groups, the number of times the communication group

{1, 2, 3} appears is

(
6
3

)(
3
3

)
2 = 10, then in order to avoid redundant sending, it is

necessary to divide the encoded packets sent in the broadcast group {1, 2, 3} into 10 sub-
encoded packets evenly and disjointly in the presence of different groups of {1, 2, 3} sent in.

Node 1 Node 6Node 5Node 3 Node 4Node 2

time

Figure 6. An example of coding strategy for the simultaneous transmission of two broadcast groups.
At the same time, both nodes can send messages without interference. Solid lines from the same
point represent multicast messages.

5. Conclusions

This paper proposed a coded parallel transmission scheme for the half-duplex
MapReduce-type distributed computing systems. Our scheme allows the network to
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have multiple computing nodes broadcast the encoded intermediate value fragments to
other computing nodes at the same time during the data shuffling phase. We delicately
design the data placement, message symbols encoding, data shuffling and decoding such
that as many computing nodes as possible participate in the transmission or receiving,
as large of a multicast gain as possible is achieved in each transmission, and no content
is repetitively transferred. It can be proved that our scheme can significantly reduce the
communication delay compared to the CDC scheme. Our scheme can make better use
of the computing resources, as its communication delay decreases with the number of
computing nodes, while the communication delay of CDC is a monotonically increasing
function of the number of computing nodes.
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