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Abstract: Normalization as a layer within neural networks has over the years demonstrated its
effectiveness in neural network optimization across a wide range of different tasks, with one of
the most successful approaches being that of batch normalization. The consensus is that better
estimates of the BatchNorm normalization statistics (µ and σ2) in each mini-batch result in better
optimization. In this work, we challenge this belief and experiment with a new variant of BatchNorm
known as GhostNorm that, despite independently normalizing batches within the mini-batches,
i.e., µ and σ2 are independently computed and applied to groups of samples in each mini-batch,
outperforms BatchNorm consistently. Next, we introduce sequential normalization (SeqNorm), the
sequential application of the above type of normalization across two dimensions of the input, and
find that models trained with SeqNorm consistently outperform models trained with BatchNorm
or GhostNorm on multiple image classification data sets. Our contributions are as follows: (i) we
uncover a source of regularization that is unique to GhostNorm, and not simply an extension from
BatchNorm, and illustrate its effects on the loss landscape, (ii) we introduce sequential normalization
(SeqNorm) a new normalization layer that improves the regularization effects of GhostNorm, (iii) we
compare both GhostNorm and SeqNorm against BatchNorm alone as well as with other regularization
techniques, (iv) for both GhostNorm and SeqNorm models, we train models whose performance
is consistently better than our baselines, including ones with BatchNorm, on the standard image
classification data sets of CIFAR–10, CIFAR-100, and ImageNet ((+0.2%, +0.7%, +0.4%), and (+0.3%,
+1.7%, +1.1%) for GhostNorm and SeqNorm, respectively).

Keywords: batch normalization; ghost normalization; loss landscape; computer vision; neural
networks; ImageNet; CIFAR

1. Introduction

The effectiveness of batch normalization (BatchNorm), a technique first introduced
by Ioffe and Szegedy [1] on neural network (NN) optimization, has been demonstrated
over the years on a variety of tasks, including computer vision [2–4], speech recognition [5],
and other [6–8]. BatchNorm is typically embedded at each NN layer either before or after
the activation function, normalizing and projecting the input features to match a Gaussian-
like distribution. Consequently, the activation values of each layer maintain more stable
distributions during NN training, which in turn is thought to enable faster convergence
and better generalization performance [1,9,10]. Following the effectiveness of BatchNorm
on NN optimization, other normalization techniques emerged [11–15], a number of which
introduced normalization across a different input dimension (e.g., layer normalization [12]),
while others focused on improving other aspects of BatchNorm, such as the accuracy of the
batch statistics estimates [11,16,17], or the train–test discrepancy in BatchNorm use [18].

Despite the wide adoption and practical success of BatchNorm, its underlying mechan-
ics within the context of NN optimization has yet to be fully understood. Initially, Ioeffe
and Szegedy suggested that it came from it reducing the so-called internal covariate shift [1].
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At a high level, internal covariate shift refers to the change in the distribution of the inputs
of each NN layer that is caused by updates to the previous layers. This continual change
throughout training was conjectured to negatively affect optimization [1,9]. However,
recent research disputes that with compelling evidence that demonstrates how BatchNorm
may in fact be increasing the internal covariate shift [9]. Instead, the effectiveness of Batch-
Norm is argued to be a consequence of a smoother loss landscape [9]. In our present work,
we began with a novel analysis of the effects on the loss landscape [9] between BatchNorm
and Ghost normalization (GhostNorm) on MNIST and CIFAR-10 data sets. GhostNorm can
be thought as an extension to BatchNorm, as GroupNorm is to LayerNorm (illustrated in
Figure 1). In particular, in GhostNorm, the initial batch is divided into a number of smaller
batches (also called “ghost” batches), each normalized independently of the other [19].
GhostNorm goes against the popular belief that associates the degradation in BatchNorm
performance with smaller batch sizes to poorer estimates of mean and variance due to
having a smaller sample size [11,14,20]. We observed that although GhostNorm decreased
the smoothness of the loss landscape when compared to BatchNorm, models trained with
GhostNorm across a range of batch sizes (4 to 32 and in later experiments, up to 512), and
ghost batch sizes, consistently outperformed BatchNorm alternatives. Our experimental
results corroborate our hypothesis that GhostNorm has a fundamentally different, yet
better, effect on NN optimization when compared to BatchNorm. Finally, we used the
insights revealed by our analysis to propose a new type of normalization, which we term
sequential normalization (SeqNorm).

Figure 1. The input tensor with (M, C, F) dimensions is divided into a number of line (1D) or
plane (2D) slices. Each normalization technique slices the input tensor differently and each slice is
normalized independently of the other slices. For ease of visualization, both GC and GM are set to 4.

The contributions of this paper are as follows: (i) we introduce different ways of
employing GhostNorm as a normalization layer, (ii) we identify a source of regularization
in GhostNorm that cannot be found in any of the existing alternatives, (iii) we visualize the
loss landscape of GhostNorm under vastly different experimental setups, and observe that
GhostNorm consistently decreases the smoothness of the loss landscape, especially on the
later epochs of training, while outperforming BatchNorm alternatives, (iv) we introduce a
new normalization layer called SeqNorm that adopts the GhostNorm approach to normal-
ization sequentially over more input dimensions, (v) we demonstrate consistently better
generalization performances on CIFAR-10, CIFAR-100, and ImageNet when BatchNorm
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is replaced with either GhostNorm or SeqNorm, with the latter surpassing the SOTA on
CIFAR-100 and ImageNet.

The rest of the paper is organized as follows. In Section 1.1, we discuss the related
work for both GhostNorm and SeqNorm. In Section 2, we formulate the existing layer nor-
malization techniques as well as the key novelty of the present work, SeqNorm, highlight
the differences, and provide implementation details for both GhostNorm and SeqNorm. In
Section 3, we first conduct experiments to visualize the loss landscape of GhostNorm, a
component which has been described as the primary reason behind the effectiveness of
BatchNorm, and then train models for image classification on CIFAR-10, CIFAR-100, and
ImageNet. This section, alongside Appendices B and C, provides reproducibility informa-
tion for all conducted experiments. Finally, we conclude our work with a discussion of our
experimental results in Section 4.

1.1. Related Work

Ghost normalization is a technique originally introduced by Hoffer et al. [19]. Over
the years, the primary use of GhostNorm has been to optimize NNs with large batch
sizes over multiple GPUs [21]. Unfortunately, when compared to other normalization
techniques [11–15], the adoption of GhostNorm has been rather scarce, and narrow to
large batch size training regimes [21–24]. More recently, GhostNorm has been used over
BatchNorm as a means of regulating the amount of noise that arises from the estimation of
the normalization statistics for increasingly larger batch sizes [22–24]. This was achieved
by keeping the ghost batch size constant [19].

Closest in spirit to the present work is the recent research by Summers and Din-
neen [21], who experimented with GhostNorm on both small and medium batch size
training regimes. Summers and Dinneen [21] tuned the number of groups within Ghost-
Norm (see Section 2.1) on CIFAR-100, Caltech-256, and SVHN, and reported positive results
on the first two data sets. More results are reported on other data sets through transfer
learning. However, the use of other new optimization methods confounds the attribution
of the observed improvement.

The closest line of work to SeqNorm is, again, found in the work of Summers and
Dinneen [21]. Therein, they employed a normalization technique which although at first
glance may appear similar to SeqNorm, it is fundamentally different. This stems from the
vastly different goals between our works, i.e., Summers and Dinneen tried to improve layer
normalization for small batch sizes [21], whereas we strive to improve layer normalization
in a more general setting. At a high level, where SeqNorm performs GroupNorm and
GhostNorm sequentially, their normalization method applies both simultaneously. At a
fundamental level, the normalization layer that was used by Summers and Dinneen embeds
the stochastic nature of GhostNorm into that of GroupNorm (see Section 2.2), thereby
potentially disrupting the learning of channel grouping within NNs. Other works that apply
simultaneous normalization strategies include that of Bronskill et al. [25], who blended
the moments of BatchNorm with InstanceNorm or LayerNorm, as well as Luo et al. [26],
who introduced switchable normalization—a layer that enables the NN to learn which
normalization techniques to employ at different layers.

2. Methodology
2.1. Formulation

Given a fully connected or convolutional neural network, the parameters of a typ-
ical layer l with normalization, Norm, are the weights W l as well as the scale and shift
parameters γl and βl . For brevity, we omit the l superscript. Given an input tensor X, the
activation values A of layer l are computed as

A = g(Norm(X�W)⊗ γ + β) (1)
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where g(·) is the activation function, � corresponds to either matrix multiplication or
convolution for fully connected and convolutional layers respectively, and ⊗ describes an
element-wise multiplication.

Most normalization techniques differ in how they transform the product X�W. Let
the product be a tensor with (M, C, F) dimensions, where M is the so-called mini-batch
size, or just batch size, C is the channels dimension, and F is the spatial dimension.

In BatchNorm [1], the given tensor is normalized across the channels dimension. In
particular, the mean and variance are computed across C number of slices of (M, F) di-
mensions (see Figure 1), which are subsequently used to normalize each channel c ∈ C
independently. In LayerNorm [12], statistics are computed over M slices, each having
the dimension (C, F), normalizing the values of each data sample m ∈ M independently.
InstanceNorm [15] normalizes the values of the tensor over both M and C, i.e., computes
statistics across M× C slices of F dimension.

GroupNorm [14] can be thought as an extension to LayerNorm, wherein the C dimen-
sion is divided into GC number of groups, i.e., (M, GC,C /GC , F). Statistics are calculated
over M× GC slices of (C/GC , F) dimensions. Similarly, GhostNorm can be thought as an
extension to BatchNorm, wherein the M dimension is divided into GM groups, normalizing
over C× GM slices of (M/GM , F) dimensions. Both GC and GM are hyperparameters that
can be tuned based on a validation set. All of the aforementioned normalization techniques
are illustrated in Figure 1.

SeqNorm can be thought as the employment of GroupNorm and GhostNorm se-
quentially. Initially, the input tensor is divided into (M, GC,C /GC , F) dimensions, nor-
malizing across M × GC number of slices, i.e., same as GroupNorm. Then, once the
GC and C/GC dimensions are collapsed back together, the input tensor is divided into
(GM,M /GM , C, F) dimensions for normalizing over C× GM slices of (M/GM , F) dimen-
sions, i.e., same as GhostNorm.

Any of the slices described above is treated as a set of values S with one dimension.
The mean and variance of S are computed in the traditional way (see Equation (2)). The
values of S are then normalized as shown below.

µ =
1
M ∑

x∈S
x and σ2 =

1
M ∑

x∈S
(x− µ)2 (2)

∀x ∈ S, x =
x− µ√
σ2 + ε

(3)

Once all slices are normalized, the output of the Norm layer is simply the concatenation
of all slices back into the initial tensor shape.

2.2. The Effects of Ghost Normalization

There is only one other published work which has investigated the effectiveness of
ghost normalization for small and medium mini-batch sizes [21]. Therein, the authors
hypothesized that GhostNorm offers stronger regularization than BatchNorm, as it com-
putes the normalization statistics on smaller sample sizes [21]. In this section, we support
that hypothesis by providing insights into a particular source of regularization, unique to
GhostNorm, that stems from the normalization of activations in independent groups and
with different statistics.

Consider as an example the tuple X with (35, 39, 30, 4, 38, 26, 27, 19) values, which can
be thought as an input tensor with (8, 1, 1) dimensions. Given to a BatchNorm layer, the
output is the normalized version X̄ with values (0.7, 1.1, 0.3,−2.2, 1.0,−0.1,−0.02,−0.8).
Note how although the values have changed, the ranking order of the activation values has
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remained the same, e.g., the 2nd value is larger than the 5th value in both X (39 > 38) and
X̄ (1.1 > 1.0). More formally, the following holds true:

Given n-tuples X = (x0, x1, . . . , xn) and X̄ = (x̄0, x̄1, . . . , x̄n),

∀i, j ∈ I, x̄i > x̄j ⇐⇒ xi > xj

x̄i < x̄j ⇐⇒ xi < xj

x̄i = x̄j ⇐⇒ xi = xj

(4)

On the other hand, given X to a GhostNorm layer with GM = 2, the output X̄ is
(0.6, 0.9, 0.2,−1.7, 1.5,−0.2,−0.07,−1.2). Now, we observe that after normalization, the
2nd value has become much smaller than the 5th value in X̄ (0.9 < 1.5). Where BatchNorm
preserves the ranking order of the received activations, GhostNorm can end up modifying
their values, and hence alter the course of optimization. Our experimental results demon-
strate how GhostNorm improves upon BatchNorm, supporting the hypothesis that the
above type of regularization can be beneficial to optimization. Note that for BatchNorm, the
condition in Equation (4) only holds true across the M× F dimension of the input tensor,
whereas for GhostNorm it cannot be guaranteed for any dimension.

2.2.1. GhostNorm to BatchNorm

One can argue that the same type of regularization can be found in BatchNorm over
different mini-batches, e.g., given [35, 39, 30, 4] and [38, 26, 27, 19] as two different mini-
batches. However, GhostNorm introduces the above during each forward pass rather than
between forward passes. Hence, it is a regularization that is embedded during learning
(GhostNorm), rather than across learning (BatchNorm).

2.2.2. GhostNorm to GroupNorm

Despite the visual symmetry between GhostNorm and GroupNorm, there is one major
difference. Grouping has been employed extensively in classical feature engineering, such
as SIFT, HOG, and GIST, wherein independent normalization is often performed over these
groups [14]. At a high level, GroupNorm can be thought as motivating the network to
group similar features together [14]. However, for GhostNorm, this would not be possible
due to random sampling, and random arrangement of the data within each mini-batch.
Therefore, we hypothesize that the effects of these two normalization techniques could
be combined for their benefits to be accumulated. Specifically, we propose SeqNorm, a
normalization technique that employs both GroupNorm and GhostNorm in a sequential
manner. SeqNorm can also be thought as a natural extension to GhostNorm that allows
smaller sample size normalization on more input dimensions.

2.3. Implementation
2.3.1. Ghost Normalization

An implementation of GhostNorm is shown in the Appendix A, Figure A1. Since
the exponential moving averages are omitted for brevity, it is worth mentioning that they
were accumulated in the same way as BatchNorm. In addition to the above implementa-
tion, GhostNorm can be effectively employed while using BatchNorm as the underlying
normalization technique.

When the desired batch size exceeds the memory capacity of the available GPUs,
practitioners often resort to the use of accumulating gradients. That is, instead of having a
single forward pass with M examples through the network, nfp number of forward passes
are made with M/nfp examples each. Most of the time, gradients computed using a smaller
number of training examples, i.e., M/nfp , and accumulated over a number of forward passes
nfp are identical to those computed using a single forward pass of M training examples.
However, it turns out that when BatchNorm is employed in the NN, the gradients can
be substantially different for the above two cases. This is a consequence of the mean and
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variance calculation (see Equation (2)) since each forwarded smaller batch of M/nfp data
will have a different mean and variance than if all M examples were present. Accumulating
gradients with BatchNorm can thus be thought as an alternative way of using GhostNorm
with the number of forward passes nfp corresponding to the number of groups GM. A
PyTorch implementation of accumulating gradients is shown in the Appendix A, Figure A2.

Finally, the most popular implementation of GhostNorm via BatchNorm, albeit typ-
ically unintentional, comes as a consequence of using multiple GPUs. Given ng GPUs
and M training examples, M/ng examples are forwarded to each GPU. If the BatchNorm
statistics are not synchronized across the GPUs, often the case for image classification, then
ng corresponds to the number of groups GM.

A practitioner who would like to use GhostNorm should employ the implementation
shown in Appendix A. Nevertheless, under the discussed circumstances, one could explore
GhostNorm through the use of other means.

2.3.2. Sequential Normalization

The implementation of SeqNorm is straightforward since it applies GroupNorm, a
widely implemented normalization technique, and GhostNorm, for which we have dis-
cussed three possible implementations, in a sequential manner. A CUDA-native approach
is subject to future work.

3. Experiments and Results

In this section, we first strive to take a closer look at the effects of GhostNorm by
visualizing the smoothness of the loss landscape during training: a component which has
been described as the primary reason behind the effectiveness of BatchNorm. Then, we
conduct a number of ablation experiments, comparing both GhostNorm and SeqNorm
against other approaches (methods that failed to improve over our baselines are discussed
in Appendix D). Finally, we evaluate the effectiveness of both GhostNorm and SeqNorm on
the standard image classification data sets of CIFAR-10 (Canadian Institute For Advanced
Research), CIFAR-100, and ImageNet. Note that in all of our experiments, the smallest
M/GM we employ for both SeqNorm and GhostNorm is 4. A ratio of 1 would be undefined
for normalization, whereas a ratio of 2 results in large information corruption, i.e., all
activations are reduced to either 1 or −1 values.

3.1. Loss Landscape Visualisation

We visualize the loss landscape during optimization on MNIST and CIFAR-10, using
an approach that was described by Santurkar et al. [9]. Each time the network parameters
are to be updated, we walk toward the gradient direction and compute the loss at multiple
points. This enables us to visualize the smoothness of the loss landscape by observing how
predictive the computed gradients are. In particular, at each step of updating the network
parameters, we compute the loss at a range of learning rates, and store both the minimum
and maximum loss. Implementation details are provided in Appendix B.

For both data sets and networks, we observe that the smoothness of the loss landscape
deteriorates when GhostNorm is employed. In fact for MNIST, as seen in Figure 2, the loss
landscape of GhostNorm bears a closer resemblance to our baseline which did not use any
normalization technique. For CIFAR-10, as seen in Figure 3, this is only observable toward
the last epochs of training. In spite of the above observation, we consistently witness better
generalization performance with GhostNorm in almost all of our experiments, even at the
extremes, wherein GM is set to 128, i.e., only 4 samples per group.

Our experimental results challenge the often established correlation between a
smoother loss landscape and a better generalization performance [9,13]. Although be-
yond the scope of our work, a theoretical analysis of the implications of GhostNorm when
compared to BatchNorm could potentially uncover further insights into the optimization
mechanisms of both normalization techniques.
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Figure 2. Comparison of the loss landscape on MNIST between BatchNorm, GhostNorm, and
the baseline.

Figure 3. Comparison of the loss landscape on CIFAR-10 between BatchNorm, GhostNorm, and
the baseline.
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3.2. Image Classification
3.2.1. CIFAR–100

Initially, we turn to CIFAR-100, and tune the hyperparameters of both GhostNorm
and SeqNorm in a grid-search fashion. The results are shown in Table 1. We also examine
a noisy version of BatchNorm, wherein we inject Gaussian noise on the activations just
before normalization. Finally, for all normalization layers, we also train models that employ
dropout as well as RandAugment [27]. All of the aforementioned regularization techniques
were tuned as described in Appendix C.

Both GhostNorm and SeqNorm improve upon the BatchNorm baseline by a large
margin (+0.7% and +1.7%, respectively). Noisy BatchNorm does not improve the gen-
eralization performance, showing that GhostNorm and SeqNorm embed more than just
unstructured noise. Models with dropout are omitted since they fail to provide any im-
provement on the validation set over the baselines. RandAugment substantially improves
the BatchNorm (+0.9%) and GhostNorm models (+0.7%), but fails to benefit models
with SeqNorm. Despite the lack of synergy with RandAugment, it is important to note
that SeqNorm still manages to surpass the current SOTA performance on CIFAR-100 by
0.5% [27]. These results support our hypothesis that sequentially applying GhostNorm and
GroupNorm layers can have an additive effect on improving NN optimization.

However, the grid-search approach to tuning GC and GM of SeqNorm can be rather
time consuming (time complexity: Θ(GC × GM)). Hence, we attempt to identify a less
demanding hyperparameter tuning approach. The most obvious, and the one we actually
adopt for the next experiments, is to sequentially tune GM and GC. In particular, we find that
first tuning GM, then selecting the largest gM ∈ GM for which the network performs well
(amongst similarly performing models, select the one with the lowest variance), and finally
tuning GC with gM to be an effective approach (time complexity: Θ(GC + GM)). In other
words, for tuning the hyperparameters of SeqNorm, one first tunes the hyperparameter
of GhostNorm GM, and then the hyperparameter of GroupNorm GC while keeping GM
constant. Note that by following this approach on CIFAR-100, we still end up with the
same best hyperparameter configuration, i.e., GC = 4 and GM = 8.

Table 1. Results on CIFAR-100. For SeqNorm, we only show the best results for each GC. Both
validation and testing performance results are averaged over two different runs.

Validation Accuracy Testing Accuracy

BatchNorm 80.6± 0.2% 82.1± 0.2%
Noisy BatchNorm 80.8± 0.1% 82.0± 0.3%

GhostNorm (GM = 2) 80.9± 0.1% -
GhostNorm (GM = 4) 81.2± 0.1% -
GhostNorm (GM = 8) 81.4± 0.5% 82.8± 0.6%
GhostNorm (GM = 16) 80.3± 0.5% -

SeqNorm (GC = 1, GM = 4) 82.3± 0.1% -
SeqNorm (GC = 2, GM = 4) 82.4± 0.2% -
SeqNorm (GC = 4, GM = 8) 82.5± 0.1%82.5± 0.1%82.5± 0.1% 83.8± 0.04%83.8± 0.04%83.8± 0.04%
SeqNorm (GC = 8, GM = 8) 82.4± 0.2% -
SeqNorm (GC = 16, GM = 8) 82.3± 0.3% -

BatchNorm w/ RandAugment 81.4± 0.0% 82.9± 0.2%
GhostNorm w/ RandAugment 82.3± 0.1% 83.5± 0.1%
SeqNorm w/ RandAugment 82.4± 0.2% 83.8± 0.3%83.8± 0.3%83.8± 0.3%

3.2.2. CIFAR-10

As the first step, we tune GM for GhostNorm. We observe that for GM ∈ (2, 4, 8), the
network performs similarly on the validation set at ≈96.6% accuracy. We choose GM = 4
for GhostNorm since it exhibits slightly higher accuracy.
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Based on the tuning strategy described in the previous section, for SeqNorm, we
adopt GM = 8 (lowest variance) and tune GC for values between 1 and 16, inclusively.
Although the network performs similarly at≈96.8% accuracy for GC ∈ (1, 8, 16), we choose
GC = 16, as it achieves slightly higher accuracy than the rest. Using the above configuration,
SeqNorm is able to match the current SOTA on the testing set [28], yet as with CIFAR-100
without the employment of RandAugment.

3.2.3. ImageNet

We first train GhostNorm models with GM = (2, 4, 8, 16, 32), and find that GM = 4
achieves the best validation accuracy (69.2%). SeqNorm with GC = 4 (and GM = 4)
achieves the best performance (69.8%) out of (2, 4, 8, 16, 32, 64) GC values. BatchNorm
models only achieve 68.3% top1 accuracy, 0.9% lower than GhostNorm, and 1.5% lower
than SeqNorm. Following hyperparameter tuning, the models are trained for more epochs
(250 vs. 50) and re-evaluated on the validation set. The difference in performance between
the normalization layers is consistent with all the previous results, i.e., the highest is
SeqNorm (72.3%), then GhostNorm (71.6%), and finally BatchNorm (71.2%).

In addition to the original ImageNet validation set, we also evaluate our models on
three recently released test sets for ImageNet [29]. Without any further retraining (i.e., on
the validation set), on average, SeqNorm is able to surpass substantially the reproduced
top1 accuracy of BatchNorm, namely by 1.5%, while GhostNorm also improves the accuracy
by 0.8%. The results for both CIFAR-10 and ImageNet are shown in Table 2.

Table 2. Results on CIFAR-10 and ImageNet data sets. Both validation and testing performance
results of CIFAR-10 are averaged over two different runs. For ImageNet, each model is evaluated on
the conventional validation set, as well as on three newly released test sets [29].

Validation Accuracy Testing Accuracy

CIFAR–10
BatchNorm 96.6± 0.1% 97.1± 0.05%
GhostNorm (GM = 4) 96.7± 0.2% 97.3± 0.1%
SeqNorm (GC = 16, GM = 8) 96.8± 0.1%96.8± 0.1%96.8± 0.1% 97.4± 0.2%97.4± 0.2%97.4± 0.2%

ImageNet
BatchNorm 71.2± 0.01% 67.0± 6.9%
GhostNorm (GM = 4) 71.6± 0.1% 67.4± 6.7%
SeqNorm (GC = 4, GM = 4) 72.3± 0.2%72.3± 0.2%72.3± 0.2% 68.1± 6.8%68.1± 6.8%68.1± 6.8%

4. Discussion

In this work, we first demonstrate the effectiveness of GhostNorm on a number
of different networks, learning policies, and data sets. For instance, when using super-
convergence on CIFAR-10, GhostNorm performs better than BatchNorm, even though the
former normalizes the input activations using 4 samples (i.e., mini-batch is divided into
groups of 4 that are normalized based on their group µ and σ2), whereas the latter uses all
512 samples. This is antithetical to the common belief that associates poorer estimates of
batch statistics, perhaps due to having a smaller sample size, to BatchNorm performance
degradation [11,14,20,21]. Instead, our experimental results suggest that grouping along
the batch dimensional is effective. Indeed, similar results were observed in GroupNorm,
wherein any number of groups would give better results than LayerNorm (all channels in
one group) [14]. By providing novel insight on the source of regularization in GhostNorm,
and by introducing a number of possible implementations, we hope to inspire further
research into GhostNorm and more widespread adoption.

However, we argue that even though GhostNorm and GroupNorm both use grouping,
they have vastly different effects on optimization. Based on the understanding developed
while investigating GhostNorm, we introduce SeqNorm and follow up with the empirical
analysis. Unlike methods such as switchable normalization, we argue that SeqNorm
provides a better alternative, since the use of the different normalization techniques is
independent of the training optimization [21].
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Surprisingly, SeqNorm not only surpasses the performances of BatchNorm and Ghost-
Norm, but even meets or surpasses current SOTA methodologies on CIFAR-10, CIFAR-100,
and ImageNet [27–29]. The proposed normalization layer results in models that consis-
tently outperform our baseline alternatives with minimal cost (two hyperparameters) yet
notable generalization gains. SeqNorm provided performance gains that are comparable,
or better, than sophisticated data augmentation strategies [27,28]. Finally, we describe and
validate a hyperparameter tuning strategy for SeqNorm that provides a faster alternative
to the traditional grid-search approach.
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Appendix A. GhostNorm Implementations

Herein, we provide both the direct implementation of GhostNorm (Figure A1) as well
as through the use of accumulating gradients (Figure A2), as described in Section 2.3.

def GhostNorm(X, groupsM, eps=1e-05):
"""
X: Input Tensor with (M, C, F) dimensions
groupsM: Number of groups for the mini-batch dimension
eps: A small value to prevent division by zero
"""
# Split the mini-batch dimension into groups of smaller batches
M, C, F = X.shape
X = X.reshape(groupsM, -1, C, F)

# Calculate statistics over dim(0) x dim(2) number
# of slices of dim(1) x dim(3) dimension each
mean = X.mean([1, 3], keepdim=True)
var = X.var([1, 3], unbiased=False, keepdim=True)

# Normalize X
X = (X - mean) / (torch.sqrt(var + eps))

# Reshape into the initial tensor shape
X = X.reshape(M, C, F)

return X

Figure A1. Python code for GhostNorm in PyTorch.

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://image-net.org/challenges/LSVRC/index.php
https://image-net.org/challenges/LSVRC/index.php
https://github.com/modestyachts/ImageNetV2
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def train__for_an_epoch():
model.train()
model.zero_grad()
for i, (X, y) in enumerate(train_loader):

outputs = model(X)
loss = loss_function(outputs, y)
loss = loss / acc_steps
loss.backward()
if (i + 1) % acc_steps == 0:

optimizer.step()
model.zero_grad()

Figure A2. Python code for accumulating gradients in PyTorch.

Appendix B. Loss Landscape Visualization

Appendix B.1. Implementation Details

On MNIST, we train a fully connected neural network (SimpleNet) with two fully
connected layers of 512 and 300 neurons. The input images are transformed to one-
dimensional vectors of 784 channels, and are normalized based on the mean and variance
of the training set. The learning rate is set to 0.4 for a batch size of 512 on a single GPU.

In addition to training SimpleNet with BatchNorm and GhostNorm, we also train a
SimpleNet baseline without any normalization technique.

A residual convolutional network with 56 layers (ResNet–56) [4] is employed for
CIFAR-10. We achieve super-convergence by using the one cycle learning policy described
in the work of Smith and Topin [30]. Horizontal flipping, and pad-and-crop transformations
are used for data augmentation. Most of the hyperparameter values were adopted from
the work of Smith and Topin [30]. In particular, we employ stochastic gradient descent
with a weight decay of 0.0001, and a one-cycle learning policy linearly increasing from
0.1 to 3.0 in 15 epochs, linearly decreasing to 0.1 in the next 15 epochs, and decreasing to
0.003 linearly over the last 10 epochs. The optimizer does not employ any momentum. In
order to train ResNet-56 without a normalization technique (baseline), we have to adjust
the cyclical learning rate schedule to (0.1, 1).

We train the networks on 50,000 and 60,000 training images (CIFAR–10 and MNIST
respectively), and evaluate on 10,000 testing images.

Appendix B.2. Loss Landscape

For MNIST, we compute the loss at 8 learning rates ∈ [0.1, 0.2, 0.3, . . ., 0.8], whereas for
CIFAR–10, we do so for 4 cyclical learning rates ∈ [(0.05, 1.5), (0.1, 3), (0.15, 4.5), (0.2, 6)],
and analogously for the baseline.

Appendix B.3. Results

On MNIST, the smoothness of the loss landscape decreases with a larger GM (see
Figure A3). The best model used GhostNorm with GM set to 64, normalizing over 8 samples.
On CIFAR-10, we only observe an effect on the training loss landscape with large values
of GM, ∀gm ∈ GM = {16, 32, 64, 128} (see Figure A4). Nevertheless, all GM configurations
with GM > 1, i.e., GhostNorm, improved optimization with models performing better than
the BatchNorm baseline on the testing set.
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Figure A3. Comparison of the loss landscape on MNIST between the baseline, BatchNorm, and
GhostNorm with different GM values. The last figure (bottom right) depicts the misclassification
error on the testing set during training.

Figure A4. Comparison of the loss landscape on CIFAR–10 between BatchNorm and GhostNorm
with different GM values. The last figure (bottom right) depicts the misclassification error on the
testing set during training.
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Appendix C. Image Classification

Implementation Details

For both CIFAR-10 and CIFAR-100, we employ a training set of 45,000 images, a
validation set of 5000 images (randomly stratified from the training set), and a testing set of
10,000. The input data were stochastically augmented with horizontal flips, pad-and-crop
and Cutout [31]. We use the same hyperparameter configurations as Cubuk et al. [27].
However, in order to speed up optimization, we increase the batch size from 128 to 512, and
apply a warmup scheme [32] that increases the initial learning rate by four times in 5 epochs;
thereafter, we use the cosine learning schedule. Based on the above experimental settings,
we train Wide-ResNet models of 28 depth and 10 width [33] for 200 epochs. Note that since
8 GPUs are employed, our BatchNorm baselines are equivalent to using GhostNorm with
GM = 8. Nevertheless, to avoid any confusion, we refer to it as BatchNorm. It’s worth
mentioning that setting GM to 8 on 8 GPUs is equivalent to using 64 on 1 GPU.

For ImageNet, we train on 1.28 million training images and evaluate on 50,000 val-
idation images, as well as on three testing sets with 10,000 images each [16]. We adopt
the methodology described in the NVIDIA’s public repository for training on 8 GPUs
(20.08 docker container) using a ResNet-18 v1.5 architecture. See the repository for
the full implementation details. Repository available at https://github.com/NVIDIA/
DeepLearningExamples/, accessed on 1 December 2021. We tune our hyperparameters
using the 50 epoch script, and then retrain using the 250 epochs script. Both mixed precision
(AMP) and DALI are employed. Other than the addition of GhostNorm and SeqNorm, the
only other change we implement is to clip the gradients (threshold = 2) as it allows for a
more stable training.

For the ablation studies on CIFAR-100, we tune noisy Batch Norm with Gaussian noise
of zero mean and standard deviations of 0.00003, 0.0001, 0.0003, . . . , 0.1. The best validation
accuracy is achieved with a standard deviation of 0.0003. For models with dropout, we test
values of 0.03, 0.1, 0.2, 0.3, and 0.4 for all BatchNorm, GhostNorm, and SeqNorm. Dropout
consistently worsens the validation accuracy and is thus omitted from the results. Finally,
for RandAugment, we try N values of [1, 2] and M values of [2, 6, 10, 14] as also reported by
Cubuk et al. [27]. The best configurations are as follows: (1, 6) for BatchNorm, (1, 14) for
GhostNorm, and (1, 4) for SeqNorm.

Appendix D. Negative Results

A number of other approaches were adopted in conjunction with GhostNorm and
SeqNorm. These preliminary experiments on CIFAR-100 did not surpass the BatchNorm
baseline performances on the validation sets (most often than not by a large margin), and
are therefore not included in detail. Note that given a more elaborate hyperparameter
tuning phase, i.e., that would include learning rate, weight decay, these approaches may
had otherwise succeeded.

In particular, we experimented with placing GhostNorm and GroupNorm in reverse
order for SeqNorm (in retrospect, this could have been expected given what we describe
in Section 2.2), and also experimented with augmenting SeqNorm and GhostNorm with
weight standardization [13] as well as by computing the variance of batch statistics on the
whole input tensor [16]. Finally, on all datasets, we attempted to tune networks with only
GroupNorm [14] but the networks were either unable to converge or they achieved worse
performance than the BatchNorm baselines.
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