
Citation: Cao, Y.; Zhang, L.; Zhao, X.;

Jin, K.; Chen, Z. An Intrusion

Detection Method for Industrial

Control System Based on Machine

Learning. Information 2022, 13, 322.

https://doi.org/10.3390/info13070322

Academic Editor: Gianluca Valentino

Received: 7 June 2022

Accepted: 1 July 2022

Published: 3 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

An Intrusion Detection Method for Industrial Control System
Based on Machine Learning
Yixin Cao, Lei Zhang *, Xiaosong Zhao, Kai Jin and Ziyi Chen

School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300132, China;
202022801034@stu.hebut.edu.cn (Y.C.); 202032803152@stu.hebut.edu.cn (X.Z.);
202132803089@stu.hebut.edu.cn (K.J.); 201932803013@stu.hebut.edu.cn (Z.C.)
* Correspondence: 2007094@hebut.edu.cn

Abstract: The integration of communication networks and the internet of industrial control in
Industrial Control System (ICS) increases their vulnerability to cyber attacks, causing devastating
outcomes. Traditional Intrusion Detection Systems (IDS) largely rely on predefined models and are
trained mostly on specific cyber attacks, which means the traditional IDS cannot cope with unknown
attacks. Additionally, most IDS do not consider the imbalanced nature of ICS datasets, thus suffering
from low accuracy and high False Positive Rates when being put to use. In this paper, we propose
the NCO–double-layer DIFF_RF–OPFYTHON intrusion detection method for ICS, which consists of
NCO modules, double-layer DIFF_RF modules, and OPFYTHON modules. Detected traffic will be
divided into three categories by the double-layer DIFF_RF module: known attacks, unknown attacks,
and normal traffic. Then, the known attacks will be classified into specific attacks by the OPFYTHON
module according to the feature of attack traffic. Finally, we use the NCO module to improve the
model input and enhance the accuracy of the model. The results show that the proposed method
outperforms traditional intrusion detection methods, such as XGboost and SVM. The detection of
unknown attacks is also considerable. The accuracy of the dataset used in this paper reaches 98.13%.
The detection rates for unknown attacks and known attacks reach 98.21% and 95.1%, respectively.
Moreover, the method we proposed has achieved suitable results on other public datasets.

Keywords: industrial control system; machine learning; intrusion detection; cyber-security

1. Introduction

The early Industrial Control System (ICS) was relatively independent and rarely
connected to the external Internet, which made ICS mainly focus on the availability and
rapidity of the system, ignoring security. Therefore, the ICS is vulnerable to attacks from
the external internet [1]. Although there have been many studies on the detection methods
of known attack traffic in historical network traffic, with the emergence of unknown attacks
in the external internet, it is difficult to ensure the security of ICS only by detecting known
attacks [2]. In addition, the attack traffic generally only accounts for a small part of all
traffic in ICS, and the uneven distribution or imbalance of the data also makes it difficult
to establish an intrusion detection model [3]. Therefore, it is crucial to efficiently detect
unknown attacks and develop a model for imbalanced data in the ICS.

Intrusion detection methods are mainly divided into misuse-based and anomaly-
based intrusion detection methods [4]. Misuse-based intrusion detection methods detect
attack traffic in ICS by comparing the feature of detected traffic with the known attack
traffic of historical traffic. A misuse-based model, such as Snort [5], can efficiently detect
known attacks with a low False Positive Rate (FPR), but it cannot identify unknown attacks.
Anomaly-based intrusion detection methods detect attack traffic in ICS by comparing the
detected network traffic with normal network traffic. The anomaly-based model [6] can
detect all anomaly traffic, including known and unknown attacks. However, it has a high
FPR and cannot classify attacks by the feature of attack traffic.

Information 2022, 13, 322. https://doi.org/10.3390/info13070322 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13070322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://doi.org/10.3390/info13070322
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13070322?type=check_update&version=2

Information 2022, 13, 322 2 of 16

The isolation forest algorithm [7] has become one of the most commonly used algo-
rithms for early intrusion detection due to its simplicity and rapidity. However, it can
only filter out outliers, which cannot meet the requirements of the increasingly complex
ICS environment. In recent years, the heuristic intrusion detection method [8] has become
more and more popular as an anomaly-based intrusion detection method. It detects attack
traffic by monitoring and learning normal activities and events on the ICS [9–11]. The
more patterns it learns about normal activities and events, the more accurately it can detect
anomaly activities and events. Prasath [12] presented a heuristic algorithm for intrusion
detection in SDN networks. This method is focused on finding anomalies using extracted
features of flows, e.g., duration, protocol type, service. Mukhopadhyay et al. [13] proposed
a lightweight heuristic intrusion detection and prevention system; its decision-making
engine is based on frame data and source/destination addresses.

In addition, there are many common intrusion detection algorithms. Azeroual and
Nikiforova proposed an intrusion detection method based on the big data analysis engine
Apache Spark, which implements intrusion detection in Sparks MLlib through the k-
means algorithm [14]. The k-means algorithm relies on the extraction of feature variables.
When there is a lot of noise in the dataset, it is difficult for k-means algorithm to achieve
good results. Muhuri and Chatterjee developed a new method for intrusion detection to
classify the IDS dataset by combining a genetic algorithm for optimal feature selection and
LSTM with an RNN [15]. Xiao, Y. and Xiao, X. proposed a simplified residual network
(S-ResNet), which consists of several cascaded and simplified residual blocks. S-ResNet
optimizes the problem that residual networks (ResNets) tend to overfit to low-dimensional
and small-scale datasets [16]. However, compared with machine learning, the number of
parameters and the size of the dataset required for deep learning are considerable, which
significantly increases the training cost. Zheng and Hong proposed an improved linear
discriminant analysis method based on extreme learning machine (ELM) classification for
intrusion detection. This method improves linear discriminant analysis (LDA) and then
uses it to reduce feature dimensions [17]. However, such methods cannot detect unknown
attacks. SVM and OCSVM are also common intrusion detection algorithms. SVM [18] and
OCSVM [19] are similar in that they cannot detect the attack category.

To address the limitations of misuse-based and anomaly-based intrusion detection
methods and imbalanced training samples, we propose the NCO–double-layer DIFF_RF–
OPFYTHON intrusion detection method for ICS. First, we propose the normal_DIFF_RF–
OPFYTHON method. The first step of normal_DIFF_RF–OPFYTHON uses the DIFF_RF
module, quickly filtering out anomaly traffic by comparing the detected network traffic
with the normal traffic. This step makes the following OPFYTHON module no longer
fit a large amount of normal traffic, because the normal traffic has been filtered by the
normal_DIFF_RF module, which solves the imbalance of the training samples. The second
step uses the OPFYTHON module to compare the filtered anomaly traffic with the known
attack traffic. In this step, the filtered anomaly traffic is classified according to feature of
attack traffic, which solves the problem that the first step can only detect the attack traffic
but cannot classify it by its features.

There are two types of problems in the above normal_DIFF_RF–OPFYTHON:
(i) The accuracy of the model is largely affected by the accuracy of normal_DIFF_RF.
(ii) It is unable to identify unknown attacks. When unknown attack traffic appears

in the detected network traffic, the unknown attack traffic will be classified into the most
similar known attack traffic by the OPFYTHON.

In this paper, we focus on the above two types of problems to improve the normal_DIFF_
RF–OPFYTHON intrusion detection method and propose the NCO–double-layer DIFF_RF–
OPFYTHON intrusion detection model as the final model. By analyzing the experimental
results, the method solves the imbalance of training samples. The accuracy and the detection
rate of unknown attacks reach 98.7% and 98.21%, respectively.

Information 2022, 13, 322 3 of 16

The rest of this paper is organized as follows. Section 2 reviews the related work and
some algorithms. Section 3 discusses the dataset preparation, the evaluation metrics of the
final model, and experimental results. Finally, conclusions are drawn in Section 4.

2. Materials and Methods

The intrusion detection method we proposed consists of three modules: the NCO
module, the double-layer DIFF_RF module, and the OPFYTHON module. It mainly
includes the following five steps:

(1) Preprocessing the original ICS network traffic data, including converting categorical
variables to numeric variables, normalization, and splitting the data.

(2) Using the NCO algorithm to optimize the input structure of the double-layer
DIFF_RF module.

(3) Training the double-layer DIFF_RF module and the OPFYTHON module with the
training set.

(4) Integrating the NCO module, the double-layer DIFF_RF module, and the OP-
FYTHON module to obtain a complete intrusion detection model (NCO–double-layer
DIFF_RF–OPFYTHON) and optimize the parameters.

(5) Using the testing set to prove the feasibility, reliability, and superiority of the
method we proposed.

The complete structure of the intrusion detection method is shown in Figure 1.

Information 2022, 13, x FOR PEER REVIEW 3 of 16

The rest of this paper is organized as follows. Section 2 reviews the related work and

some algorithms. Section 3 discusses the dataset preparation, the evaluation metrics of the

final model, and experimental results. Finally, conclusions are drawn in Section 4.

2. Materials and Methods

The intrusion detection method we proposed consists of three modules: the NCO

module, the double-layer DIFF_RF module, and the OPFYTHON module. It mainly in-

cludes the following five steps:

(1) Preprocessing the original ICS network traffic data, including converting categor-

ical variables to numeric variables, normalization, and splitting the data.

(2) Using the NCO algorithm to optimize the input structure of the double-layer

DIFF_RF module.

(3) Training the double-layer DIFF_RF module and the OPFYTHON module with the

training set.

(4) Integrating the NCO module, the double-layer DIFF_RF module, and the

OPFYTHON module to obtain a complete intrusion detection model (NCO–double-layer

DIFF_RF–OPFYTHON) and optimize the parameters.

(5) Using the testing set to prove the feasibility, reliability, and superiority of the

method we proposed.

The complete structure of the intrusion detection method is shown in Figure 1.

Testing Sets

Training Process

Attack Behavior Normal Behavior

Init-para

Ntrees1, a1, th1

Select Dista-
Nce Measure

OPFYTHON Anomaly_
DIFF_RF

Normal_
DIFF_RF

OPFYTHON Anomaly_
DIFF_RF

Normal_
DIFF_RF

Conform ICS
Standard?

END

YES

Adjustment-
Para

Adjusting
Parameters

Process

NO

Testing Sets

（Normal,Know Attack,Unknow Attack）

Normal_
DIFF_RF

Anomaly_
DIFF_RF

Output

 Normal

Unknow
Attack

Normal

Know
Attack

Pass The
Behavior

OPFYTHON

Output

 Unknow Attack

Know
Attack

Output The
Category Of Attack

Take
Countermeasures

END

Isolation
Analysis

Testing Process
Model Structure

Init-para

Ntrees2, a2, th2

NCO-Double Layer DIFF_RF-OPFYTHON

NCO
Optimization

NCO
Optimization

Training Training Training

Dataset

Data
Processing

Unknow
Attack

Unknow
Attack

Figure 1. The structure of the NCO–double-layer DIFF_RF–OPFYTHON model.

2.1. Normal_DIFF_RF–OPFYTHON Model

There is often an imbalance of data in the network traffic of ICS. The imbalance of

training samples will significantly affect the accuracy of the model. In this section, we

propose the normal_DIFF_RF–OPFYTHON detection model. It uses the binary classifica-

tion normal_DIFF_RF [20] module to filter the attack traffic in the detected network traffic

firstly, and then uses the multi-classification OPFYTHON [21] module to classify the

Figure 1. The structure of the NCO–double-layer DIFF_RF–OPFYTHON model.

2.1. Normal_DIFF_RF–OPFYTHON Model

There is often an imbalance of data in the network traffic of ICS. The imbalance of
training samples will significantly affect the accuracy of the model. In this section, we
propose the normal_DIFF_RF–OPFYTHON detection model. It uses the binary classifica-
tion normal_DIFF_RF [20] module to filter the attack traffic in the detected network traffic
firstly, and then uses the multi-classification OPFYTHON [21] module to classify the attack

Information 2022, 13, 322 4 of 16

traffic. In this way, the OPFYTHON module does not need to fit a large of normal traffic
during the training phase, and solves the imbalance of datasets caused by a large of normal
network traffic.

2.1.1. DIFF_RF Algorithm

The DIFF_RF algorithm builds a model by fitting the traffic of the same label to
determine whether the detected network traffic belongs to this label. For example, during
the training phase, DIFF_RF only fits the normal network traffic among all the network
traffic. In the testing phase, it is judged whether the detected network traffic is normal
network traffic.

The training phase of the DIFF_RF module needs to set two meta-parameters: Ψ,
the number of subsets S randomly drawn from training samples, and t, the number of
trees in the forest. The DIFF_RF F = {T(S1), T(S2), . . . T(St)} consists of {S1, S2, . . . St}
randomly drawn. Dimensions with high entropy can be assimilated to noise, so the
DIFF_RF algorithm prefers to use medium-low entropy input variables to train the model.
In order to obtain the entropy of each input variable, the DIFF_RF will calculate the entropy
of all input variables by histogram. Equation (1) shows the calculation process of the entropy
of each input variable, and Equation (2) shows the process of entropy normalization.

Entropy calculation:

EEi =
−1

log2(#bins)

#bins

∑
k=1

bk/|S|· log2(bk/|S|) ∀i ∈ {1, 2, . . . d} (1)

where #bins is the number of bins in the histogram, and S is a subset randomly drawn from
the training samples.

Entropy normalization:

Hqi = 1− Hq/ log2(#bins) ∀i ∈ {1, 2, . . . d} (2)

where Hq is the entropy of each of input variable.
We constructed a DIFF Tree of each sample using Algorithm 1.

Algorithm 1 Built a DIFF Tree

DIFF_Tree (S, h, hmax)
Input (S: a sample randomly drawn from Xn, h: the current depth level,
hmax: the maximal depth limit, empirically set up to log2 ψ)
1 : if h ≥ hmax or |S| ≤ 1
2: fn = |S|/ψ

3 : if |S| ≥ 0:
4: MS = Mean(S)
5 : σS = standard_Deviation(S)
6: else:
7 : MS = None
8 : σS = None
9: end if
10: return leafNode (S, MS, σS, fr)
11: else:
12 : D = get_qDistribution(S)
13: Randomly select a dimension q ∈ {1, . . . , d} according to distribution D
14: Randomly select a split value P between max and min values along dimension
15 : Sl = f ilter(S, q < p), Sr = f ilter(S, q ≥ p)
16: return inNode(Left = DIFF_Tree (Sl , h + 1, hmax),
17: Right = DIFF_Tree (Sr, h + 1, hmax),
18: splitAtt = q, splitVal = p)
19: end if

Information 2022, 13, 322 5 of 16

During the testing phase, the DIFF_RF algorithm classifies the detected network traffic
by calculating scores and setting an appropriate threshold parameter. When the score is
less than the threshold, the detected traffic is considered to be the same type with training
sample. Otherwise, it is considered not to be the same network traffic. Equation (3) shows
the process of calculating the score δT(x) of each DIFF tree.

δT(x) = 2
−α· 1d

d
∑

i=1
(

x(i)−MS(i)
σS

)
2

(3)

where MS(i) represents the centroid of the i-th input variable in the training samples, x(i)
represents the value of the i-th input variable in the testing samples, and σS represents the
standard deviation of the training samples.

The DIFF algorithm calculated score is the average mathematical expectation of each
tree in the forest. Equation (4) shows the process of calculating the score pwas(x) of
DIFF_RF, where E represents the average mathematical expectation.

pwas(x) = −E(δT(x)) (4)

2.1.2. OPFYTHON Algorithm

The OPFYTHON algorithm converts the training set into a complete graph, and the
complete graph consists of several nodes and arcs connecting the nodes. Each sample in
the training set corresponds to a node in the complete graph, and the arc between the two
adjacent nodes corresponds to the distance between the two adjacent nodes. The larger
the weight of the arc between the adjacent nodes, the lower the similarity between the
two nodes.

During the modeling process, let Z be a dataset composed of training and testing sets
denoted as Z1 and Z2, respectively. One can define a graph G = (V, A)3 which belongs to
Z such that v(s) ∈ V, where S stands for a sample in dataset Z and v(·) stands for a feature
extraction function. Additionally, let A be an adjacency relation that connects samples in V,
and let chord-distance be a distance function that weighs edges in A. Of course, there are
many choices of distance function for the OPFYTHON algorithm, and the chord-distance is
just one of them. Equation (5) shows the calculation formula of chord-distance.

chord-distance =

√
2− 2

∑n
i=1 xiyi

∑n
i=1 x2

i •∑
n
i=1 y2

i
(5)

In the training phase, let πS be a path in G that ends in nodes s ∈ V and let 〈πS·(s, t)〉
be the nexus between path πS and arc (s, t) ∈ A. The OPF classifier aims at establishing a
set of prototype nodes S ⊆ V using a cost function f defined by Equation (6).

fmax(〈S〉) =
{

0
+∞

, i f s ∈ S
, otherwise

fmax(πS · 〈s, t〉) = max{ fmax(πS), d(s, t)}
(6)

where fmax(πS · 〈s, t〉) is the maximum distance between adjacent samples along the path
πS · 〈s, t〉. Thus, its training algorithm minimizes fmax for every sample t ∈ Z1, assigning
an optimum path P(t) with a minimum cost defined by Equation (7).

C(t) = min
∀πt∈(Z1,A)

{ fmax(πt)} (7)

In the testing phase, each sample t will be connected to a sample s ∈ V1, becoming part
of the original graph. The algorithm’s goal is to find an optimum path P(t) that connects a

Information 2022, 13, 322 6 of 16

prototype to node t, which is achieved by evaluation of the path through an optimum cost
function denoted by Equation (8).

C(t) = min
∀s∈Z1

{max{C(s), d(s, t)}} (8)

2.2. NCO–Normal_DIFF_RF–OPFYTH Model

As mentioned at the end of the introduction, there are two types of problems in the
normal_DIFF_RF–OPFYTHON model.

(i) The accuracy of the model is largely affected by the accuracy of normal_DIFF_RF.
(ii) It is unable to identify unknown attacks.
For the first problem (i), in this section, we improve the DIFF_RF module by nested

clustered optimization (NCO) [22] based on the above work. NCO contains the instabil-
ity within each cluster, and the instability caused by intra-cluster noise does not propa-
gate across clusters. Compared to before the improvement, the NCO–normal_DIFF_RF–
OPFYTHON model has a better weight distribution of input variables, and it reduces the
prediction error of the model.

Certain covariance structures in the input variables can increase the prediction error
of the model. For example, assuming the correlation matrix between two variables is C, the
matrix C can be diagonalized as CW = WΛ, where:

C =

[
1 ρ
ρ 1

]
, Λ =

[
1 + ρ
1− ρ

]
, W =

[1√
2

1√
2

1√
2
− 1√

2

]
(9)

Inverse C to derive C−1.

C−1 = WΛ−1W ′ =
1
|C|

[
1 −ρ
−ρ 1

]
(10)

where |C| = Λ1,1Λ2,2 = (1 + ρ)(1 − ρ) = 1 − ρ2. From the above, we can see that
the correlation coefficients deviating from 0 will cause |C| to approach 0, which makes
the values of C−1 explode. In the training phase, this signal structure will increase the
prediction error of the model.

The processing steps of the NCO algorithm are as follows:
(1) Clustering all input variables into subsets of highly correlated variables by a

hierarchical method.
(2) Calculating optimal allocations for each of these subsets of highly correlated

variables separately.
(3) Calculating optimal allocations for each of the variables in all subsets of highly

correlated variables.
(4) Calculating the dot product of the intra-cluster allocations (step 2) and the inter-

cluster allocations (step 3) to obtain the final optimal allocation.
The flow chart of the NCO is shown in Figure 2.

2.3. NCO–double-layer DIFF_RF–OPFYTHON Model

A second problem remains in the NCO–normal_DIFF_RF–OPFYTHON.
(ii) It is unable to identify unknown attacks. When unknown attack traffic appears

in the detected network traffic, the unknown attack traffic will be classified into the most
similar known attack traffic by the OPFYTHON module.

For problem (ii), in this section, we improve the model structure based on the above
work. Finally, we propose the NCO–double-layer DIFF_RF–OPFYTHON method. It
adds a layer of anomaly_DIFF_RF module to the NCO–normal_DIFF_RF–OPFYTHON
model. During the training phase, anomaly_DIFF_RF only fits the known attack traffic
among all the network traffic. In the testing phase, it is judged whether the detected
network traffic is known attack traffic. The anomaly_DIFF_RF module can only determine

Information 2022, 13, 322 7 of 16

whether the detected network traffic is a known attack, which means that it can only
classify the detected network traffic into two categories: belonging or not belonging to
known attacks. That is to say, the anomaly_DIFF_RF module will classify both normal
network traffic and known attack traffic as not unknown attack traffic. However, before
the anomaly_DIFF_RF module, the normal_DIFF_RF module will classify the detected
network traffic as belonging or not belonging to normal network traffic. By establishing
the double-layer DIFF_RF module, consisting of the normal_DIFF_RF module and the
anomaly_DIFF_RF module, the detected network traffic is divided into three categories:
normal traffic, known attacks, and unknown attacks.

Information 2022, 13, x FOR PEER REVIEW 7 of 16

The set of all
Input variables

Highly-correlated
variable subset A

A1, A2, , An
W1

A1
W11

A2
W12

An
W1n

A1
W11*W1

A1
W11*W1

A1
W11*W1

Highly-correlated
variable subset B

B1, B2, , Bn
W2

Highly-correlated
variable subset N

N1, N2, , Nn
Wn

B1
W21

B2
W22

Bn
W2n

B1
W21*W2

B1
W22*W2

B1
W2n*W2

N1
Wn1

N2
Wn2

Nn
Wnn

N1
Wn1*Wn

N1
Wn1*Wn

N1
Wn1*Wn

...

...

... ...

... ...

Step 3: Calculating inter-cluster

 allocations W11, , Wnn.

Step 1: Clustering to Highly-correlated
 variable subset A, B, , N.

Step 2: Calculating intra-cluster

 allocations w1, w2, , wn.

Step 4: Calculating dot-product (*)
 of step2 and step3.

Figure 2. The flow chart of the NCO.

2.3. NCO–double-layer DIFF_RF–OPFYTHON Model

A second problem remains in the NCO–normal_DIFF_RF–OPFYTHON.

(ii) It is unable to identify unknown attacks. When unknown attack traffic appears in

the detected network traffic, the unknown attack traffic will be classified into the most

similar known attack traffic by the OPFYTHON module.

For problem (ii), in this section, we improve the model structure based on the above

work. Finally, we propose the NCO–double-layer DIFF_RF–OPFYTHON method. It adds

a layer of anomaly_DIFF_RF module to the NCO–normal_DIFF_RF–OPFYTHON model.

During the training phase, anomaly_DIFF_RF only fits the known attack traffic among all

the network traffic. In the testing phase, it is judged whether the detected network traffic

is known attack traffic. The anomaly_DIFF_RF module can only determine whether the

detected network traffic is a known attack, which means that it can only classify the de-

tected network traffic into two categories: belonging or not belonging to known attacks.

That is to say, the anomaly_DIFF_RF module will classify both normal network traffic and

known attack traffic as not unknown attack traffic. However, before the anom-

aly_DIFF_RF module, the normal_DIFF_RF module will classify the detected network

traffic as belonging or not belonging to normal network traffic. By establishing the double-

layer DIFF_RF module, consisting of the normal_DIFF_RF module and the anom-

aly_DIFF_RF module, the detected network traffic is divided into three categories: normal

traffic, known attacks, and unknown attacks.

The flow of the double-layer DIFF_RF module is shown in Figure 3.

mormal

unknown
attacks

All traffic

Normal_ DIFF_RF

（Is it normal traffic?）

Anomaly_DIFF_RF

（Is it Known attack?）

yes yes

no

mormal

known
attacks

not mormal
traffic

known
attacks

unknown
attacks

known
attacks

unknown
attacks

Figure 3. The flow of the double-layer DIFF_RF model.

After the above step-by-step improvement, the final NCO–double-layer DIFF_RF–

OPFYTHON model solves the following three problems.

(i) Imbalanced training samples caused by excessive normal network traffic.

(ii) Low accuracy caused by DIFF_RF module.

(iii) Inability to identify unknown attacks.

Figure 2. The flow chart of the NCO.

The flow of the double-layer DIFF_RF module is shown in Figure 3.

Information 2022, 13, x FOR PEER REVIEW 7 of 16

The set of all
Input variables

Highly-correlated
variable subset A

A1, A2, , An
W1

A1
W11

A2
W12

An
W1n

A1
W11*W1

A1
W11*W1

A1
W11*W1

Highly-correlated
variable subset B

B1, B2, , Bn
W2

Highly-correlated
variable subset N

N1, N2, , Nn
Wn

B1
W21

B2
W22

Bn
W2n

B1
W21*W2

B1
W22*W2

B1
W2n*W2

N1
Wn1

N2
Wn2

Nn
Wnn

N1
Wn1*Wn

N1
Wn1*Wn

N1
Wn1*Wn

...

...

... ...

... ...

Step 3: Calculating inter-cluster

 allocations W11, , Wnn.

Step 1: Clustering to Highly-correlated
 variable subset A, B, , N.

Step 2: Calculating intra-cluster

 allocations w1, w2, , wn.

Step 4: Calculating dot-product (*)
 of step2 and step3.

Figure 2. The flow chart of the NCO.

2.3. NCO–double-layer DIFF_RF–OPFYTHON Model

A second problem remains in the NCO–normal_DIFF_RF–OPFYTHON.

(ii) It is unable to identify unknown attacks. When unknown attack traffic appears in

the detected network traffic, the unknown attack traffic will be classified into the most

similar known attack traffic by the OPFYTHON module.

For problem (ii), in this section, we improve the model structure based on the above

work. Finally, we propose the NCO–double-layer DIFF_RF–OPFYTHON method. It adds

a layer of anomaly_DIFF_RF module to the NCO–normal_DIFF_RF–OPFYTHON model.

During the training phase, anomaly_DIFF_RF only fits the known attack traffic among all

the network traffic. In the testing phase, it is judged whether the detected network traffic

is known attack traffic. The anomaly_DIFF_RF module can only determine whether the

detected network traffic is a known attack, which means that it can only classify the de-

tected network traffic into two categories: belonging or not belonging to known attacks.

That is to say, the anomaly_DIFF_RF module will classify both normal network traffic and

known attack traffic as not unknown attack traffic. However, before the anom-

aly_DIFF_RF module, the normal_DIFF_RF module will classify the detected network

traffic as belonging or not belonging to normal network traffic. By establishing the double-

layer DIFF_RF module, consisting of the normal_DIFF_RF module and the anom-

aly_DIFF_RF module, the detected network traffic is divided into three categories: normal

traffic, known attacks, and unknown attacks.

The flow of the double-layer DIFF_RF module is shown in Figure 3.

mormal

unknown
attacks

All traffic

Normal_ DIFF_RF

（Is it normal traffic?）

Anomaly_DIFF_RF

（Is it Known attack?）

yes yes

no

mormal

known
attacks

not mormal
traffic

known
attacks

unknown
attacks

known
attacks

unknown
attacks

Figure 3. The flow of the double-layer DIFF_RF model.

After the above step-by-step improvement, the final NCO–double-layer DIFF_RF–

OPFYTHON model solves the following three problems.

(i) Imbalanced training samples caused by excessive normal network traffic.

(ii) Low accuracy caused by DIFF_RF module.

(iii) Inability to identify unknown attacks.

Figure 3. The flow of the double-layer DIFF_RF model.

After the above step-by-step improvement, the final NCO–double-layer DIFF_RF–
OPFYTHON model solves the following three problems.

(i) Imbalanced training samples caused by excessive normal network traffic.
(ii) Low accuracy caused by DIFF_RF module.
(iii) Inability to identify unknown attacks.
The complete detection process of the final NCO–double-layer DIFF_RF–OPFYTHON

model is shown in Figure 4.

Information 2022, 13, 322 8 of 16

Information 2022, 13, x FOR PEER REVIEW 8 of 16

The complete detection process of the final NCO–double-layer DIFF_RF–

OPFYTHON model is shown in Figure 4.

Normalized the data

All traffic (normal, know attacks, unknow attacks)

Is it normal
traffic?

Is it known attack
traffic?

no
Normal_
DIFF_RF

Anomaly_
DIFF_RF

classify
Known attacks

output
type of attack

output
"normal traffic"

OPFYTHON

yes

yes

end

output
"Unknow attack"

no

pass isolationtake
countermeasures

Figure 4. Detection process of the final model.

3. Results

3.1. Dataset Description

The dataset used in this paper is the network traffic in the real ICS collected by

Wireshark. The dataset contains 92,272 network traffic data points, including 57,693 nor-

mal network traffic data points and 34,579 attack traffic data points. There are five cate-

gories of attacks in the 34,579 attack traffic data points. In order to improve the quality of

the dataset, we preprocessed the above original dataset by deleting data with missing val-

ues, randomly extracting data to reduce the amount of data, etc. The data distribution of

the preprocessed valid dataset used in this paper is shown in Table 1.

Table 1. The data distribution of the preprocessed valid dataset.

Category Label Count Imbalance

Natural 0 30,000 1

Arp 1 2000 15

DDoS 2 2000 15

Socket 3 2000 15

Nmap 4 2000 15

Scapy 5 500 60

Category is the category of traffic, including natural traffic and five kinds of attack

traffic; Label is the class label; Count is the statistical quantity of each category; and Im-

balance is the imbalance coefficient (the ratio of large sample class to small sample class)

[23].

In order to test the detection ability of unknown attacks, we regard 500 groups of

scapy attacks as unknown attacks, and they do not participate in the training phase. Labels

0–4 in the dataset are divided into the training set and the testing set according to the ratio

Figure 4. Detection process of the final model.

3. Results
3.1. Dataset Description

The dataset used in this paper is the network traffic in the real ICS collected by
Wireshark. The dataset contains 92,272 network traffic data points, including 57,693 normal
network traffic data points and 34,579 attack traffic data points. There are five categories of
attacks in the 34,579 attack traffic data points. In order to improve the quality of the dataset,
we preprocessed the above original dataset by deleting data with missing values, randomly
extracting data to reduce the amount of data, etc. The data distribution of the preprocessed
valid dataset used in this paper is shown in Table 1.

Table 1. The data distribution of the preprocessed valid dataset.

Category Label Count Imbalance

Natural 0 30,000 1
Arp 1 2000 15

DDoS 2 2000 15
Socket 3 2000 15
Nmap 4 2000 15
Scapy 5 500 60

Category is the category of traffic, including natural traffic and five kinds of attack
traffic; Label is the class label; Count is the statistical quantity of each category; and
Imbalance is the imbalance coefficient (the ratio of large sample class to small sample
class) [23].

In order to test the detection ability of unknown attacks, we regard 500 groups of
scapy attacks as unknown attacks, and they do not participate in the training phase. Labels

Information 2022, 13, 322 9 of 16

0–4 in the dataset are divided into the training set and the testing set according to the ratio
of 2:1. Label 5 in the dataset is added to the testing set. The training set mentioned above is
used to train the NCO–double-layer DIFF_RF–OPFYTHON model, and the testing set is
used to test the reliability of the model.

3.2. Evaluation Metrics

The most significant indicator that quantitatively evaluates the performance of the
proposed architectures is the (Accuracy, Acc) metric, defined as follows [24]:

Acc =
TP + TN

TP + TN + FP + FN
(11)

where True Positives (TP) indicate the number of anomaly measurements that are identified
as anomaly, False Positives (FP) denote the number of normal records that are identified as
anomaly, True Negatives (TN) correspond to the number of normal records that are identi-
fied as normal, and False Negatives (FN) denote the number of anomaly measurements
that are characterized as normal. The confusion matrix [25] is shown in Table 2.

Table 2. Confusion matrix.

True False

Positive TP FP
Negative FN TN

Additionally, we selected the False Positive Rate (FPR) and False Negative Rate (FNR)
as evaluation metrics to determine the degree of separability among the different categories
since it measures the classification performance of positive and negative. FNR and FPR
scores close to 0 indicate highly robust models that can determine the different classes.
Moreover, we exploit the Precision, Recall, and F1-score metrics defined as follows [26]:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, F1− score =
2TP

2TP + FP + FN
(12)

A high score on the Precision metric indicates a lower False Positive Rate, i.e., achieving
less fault-free data that were incorrectly marked as faulty. On the other hand, a high score
on the Recall metric demonstrates low ratio of False Negatives, and thus prevents false
event detection. F1-score provides the harmonic mean of Precision and Recall by capturing
these two measures in a single metric. Finally, in order to test the classification ability of
different attacks, including known and unknown attacks, we use the Detection Rate (DR)
as another evaluation metric for model evaluation. DR reflects the ability of the model to
classify abnormal samples, which is defined as follows [27]:

DR =
TP

TP + FN
(13)

3.3. Experimental Results

In the following paragraphs, we demonstrate the evaluation results obtained using the
proposed formulations: (i) NCO–normal_DIFF–OPFYTHON for some situations without
unknown attacks, and (ii) NCO–double-layer DIFF_RF–OPFYTHON for some situations
with unknown attacks. Regarding the dataset split, we follow a 66.7–33.3% split ratio for
both architectures, considering 66.7% of our dataset for the training phase, and 33.3% for
the testing phase. Since we are dealing with real-world data that are highly incomplete, we
preprocess the raw data to ensure the validity of the dataset.

As mentioned in Section 2.1.1, the DIFF_RF algorithm needs to set two threshold
parameters as hyper-parameters for the NCO–double-layer DIFF_RF–OPFYTHON model.
Appropriate parameters can make the model perform better. Therefore, in Figure 5, we

Information 2022, 13, 322 10 of 16

show the Acc and DR_unknown of the NCO–double-layer DIFF_RF–OPFYTHON model
under different threshold parameters. It is worth mentioning that the DIFF_RF module
classifies the network traffic by calculating the score and comparing it with the threshold
parameter, and since the score calculated by the DIFF_RF module is normalized to [−1,0],
the value of the threshold parameter is set to [−1,0].

Figure 5. Acc and DR_unknown under different threshold parameters. (a) Acc under different
threshold parameters. (b) DR_unknown under different threshold parameters.

In Figure 5a, the x-axis represents the threshold parameter of the normal_DIFF_RF
module, the y-axis represents the threshold parameter of the anomaly_DIFF_RF module,
and the z-axis represents the accuracy of the model on the testing sets, which includes
known attacks and unknown attack traffic. The darker the color of the column, the higher
the accuracy of the model, and the red column is the column with the highest accuracy. As
we can see, when the threshold parameter of the normal_DIFF_RF module is −0.6 and the
threshold parameter of the anomaly_DIFF_RF module is −0.7, the model has the highest
classification accuracy on the testing set, including known attacks and unknown attacks,
and the accuracy reaches 98.7%. Under the same parameters, the detection rate of unknown
attacks (in this experiment, we use 500 groups of scapy attacks as unknown attack traffic)
reaches 97.8%.

In Figure 5b, the x-axis and y-axis are the same as the Figure 5a, and the z-axis
represents the detection rate of unknown attacks. The darker the color of the column, the
higher the detection rate of unknown attack of the model, and the red column is the column
with the highest detection rate of unknown attack. When the threshold parameter of the
normal_DIFF_RF module is −0.8, and the threshold parameter of the anomaly_DIFF_RF
module is −0.6, the model has the highest detection rate for unknown attacks, which
reaches 98.21%. Under the same parameters, the accuracy of the model reaches 98.39%.

Although the highest accuracy reaches 98.7% and the highest detection rate of un-
known attacks reaches 98.21%, we can find that the threshold parameters of both are
different, which means that the accuracy and the detection rate of unknown attacks can-
not be optimal under the same threshold parameters. In engineering applications, it is
necessary to make flexible choices according to the actual situation.

Figure 6 shows the results of OPFYTHON, normal_DIFF_RF–OPFYTHON, NCO–
normal_DIFF_RF–OPFYTHON, and NCO–double-layer DIFF_RF–OPFYTHON on the
dataset we used in this paper. Since only the NCO–double-layer DIFF_RF–OPFYTHON

Information 2022, 13, 322 11 of 16

model can detect unknown attacks, in order to ensure the fairness of the experimental
process, the testing set of the experiment shown in Figure 6 eliminates the unknown attacks.

Information 2022, 13, x FOR PEER REVIEW 11 of 16

dataset we used in this paper. Since only the NCO–double-layer DIFF_RF–OPFYTHON

model can detect unknown attacks, in order to ensure the fairness of the experimental

process, the testing set of the experiment shown in Figure 6 eliminates the unknown at-

tacks.

Figure 6. The results of the four models on experimental dataset l.

Figure 6 shows six evaluation metrics for different intrusion detection methods, and

the content in brackets after the evaluation metrics is the start and end of the axis scale.

Figure 6 shows that of the four intrusion detection methods, the NCO–normal_DIFF_RF–

OPFYTHON model has the best performance in detecting known attacks. The final model

NCO–double-layer DIFF_RF–OPFYTHON has an extra layer of anomaly_DIFF_RF mod-

ule compared to normal_NCO–DIFF_RF–OPFYTHON. The anomaly_DIFF_RF module

cannot achieve 100% accuracy, resulting in the accuracy and other evaluation metrics of

NCO–double-layer DIFF_RF–OPFYTHON being inferior to normal_NCO–DIFF_RF–

OPFYTHON. In other words, the NCO–double-layer DIFF_RF–OPFYTHON model sacri-

fices part of its performance to achieve the detection of unknown attacks. Another point

to address in Figure 6 is that the OPF model has the best performance on the FNR evalu-

ation metrics, because the OPF model is a misuse-based intrusion detection model. In con-

trast, others are mixed misuse- and anomaly-based models.

The high correlation between the input variables will affect the training effect of the

model. A heatmap of the correlation coefficients of input variables [28] is shown in Figure

7. In the heatmap, the correlation coefficient of each two input variables is in the corre-

sponding position, and the darker the color of A, the stronger the correlation between the

two input variables. We can see that the correlation coefficients of some input variables

exceed 0.7, which will have adverse effects on modeling [29]. However, the NCO module

solves the problem of high correlation between the input variables by optimizing the sig-

nal structure of the input variables. As mentioned in Section 2.2, it clusters all input vari-

ables into subsets of highly correlated variables, and calculates the optimal allocations for

each intra-cluster and inter-cluster. At last, it calculates the dot product of the intra-cluster

allocations and the inter-cluster allocations to obtain the final optimal allocation.

Figure 6. The results of the four models on experimental dataset l.

Figure 6 shows six evaluation metrics for different intrusion detection methods, and
the content in brackets after the evaluation metrics is the start and end of the axis scale.
Figure 6 shows that of the four intrusion detection methods, the NCO–normal_DIFF_RF–
OPFYTHON model has the best performance in detecting known attacks. The final model
NCO–double-layer DIFF_RF–OPFYTHON has an extra layer of anomaly_DIFF_RF module
compared to normal_NCO–DIFF_RF–OPFYTHON. The anomaly_DIFF_RF module cannot
achieve 100% accuracy, resulting in the accuracy and other evaluation metrics of NCO–
double-layer DIFF_RF–OPFYTHON being inferior to normal_NCO–DIFF_RF–OPFYTHON.
In other words, the NCO–double-layer DIFF_RF–OPFYTHON model sacrifices part of its
performance to achieve the detection of unknown attacks. Another point to address in
Figure 6 is that the OPF model has the best performance on the FNR evaluation metrics,
because the OPF model is a misuse-based intrusion detection model. In contrast, others are
mixed misuse- and anomaly-based models.

The high correlation between the input variables will affect the training effect of
the model. A heatmap of the correlation coefficients of input variables [28] is shown in
Figure 7. In the heatmap, the correlation coefficient of each two input variables is in the
corresponding position, and the darker the color of A, the stronger the correlation between
the two input variables. We can see that the correlation coefficients of some input variables
exceed 0.7, which will have adverse effects on modeling [29]. However, the NCO module
solves the problem of high correlation between the input variables by optimizing the signal
structure of the input variables. As mentioned in Section 2.2, it clusters all input variables
into subsets of highly correlated variables, and calculates the optimal allocations for each
intra-cluster and inter-cluster. At last, it calculates the dot product of the intra-cluster
allocations and the inter-cluster allocations to obtain the final optimal allocation.

In order to verify the superiority of the method we proposed, Table 3 shows the com-
parison results between the intrusion detection method we proposed and other traditional
intrusion detection methods [30–33]. The conventional machine learning algorithm is
supervised learning and cannot detect unknown attacks. In order to ensure the fairness of
the experimental process, the testing set in Table 3 eliminates the unknown attacks.

Based on Table 3, the NCO–normal_DIFF_RF–OPF model is significantly better than
other conventional intrusion detection models in different evaluation metrics, especially in
the detection rate of various attacks. The performance of the NCO–double-layer DIFF_RF–

Information 2022, 13, 322 12 of 16

OPFYTHON model is slightly lower than NCO–normal_DIFF_RF–OPFYTHON, but it can
detect unknown attacks.

Information 2022, 13, x FOR PEER REVIEW 12 of 16

Figure 7. The heatmap of the correlation coefficients of input variables.

In order to verify the superiority of the method we proposed, Table 3 shows the com-

parison results between the intrusion detection method we proposed and other traditional

intrusion detection methods [30–33]. The conventional machine learning algorithm is su-

pervised learning and cannot detect unknown attacks. In order to ensure the fairness of

the experimental process, the testing set in Table 3 eliminates the unknown attacks.

Table 3. The results of the method we proposed and traditional methods.

 Acc Pr Rec F1 Fpr Fnr
Dr-

Arp

Dr-

DDOS

Dr-

Socket

Dr-

Nmap

Dr-

Unknown

Random Forset 92.21 91.17 99.93 95.35 36.30 0.06 97.60 99.10 8.20 44.80 no

Decision Tree 90.74 99.85 98.59 99.22 15.50 1.41 99.80 0 98.40 46.80 no

SVM 93.44 95.27 99.84 97.50 18.60 0.16 99.80 98.50 51.80 26.20 no

XGboost 93.63 96.77 98.60 97.68 12.35 1.40 99.80 99.30 98.40 1.60 no

NCO–normal_DIFF–OPF 98.68 99.82 98.55 99.18 4.50 1.40 99.80 100 99.00 91.80 no

NCO–double-layer DIFF–OPF 98.13 99.95 98.87 99.40 3.20 1.13 97.40 99.80 97.00 86.20 98.21

Based on Table 3, the NCO–normal_DIFF_RF–OPF model is significantly better than

other conventional intrusion detection models in different evaluation metrics, especially

in the detection rate of various attacks. The performance of the NCO–double-layer

DIFF_RF–OPFYTHON model is slightly lower than NCO–normal_DIFF_RF–

OPFYTHON, but it can detect unknown attacks.

Figure 7. The heatmap of the correlation coefficients of input variables.

Table 3. The results of the method we proposed and traditional methods.

Acc Pr Rec F1 Fpr Fnr Dr-
Arp

Dr-
DDOS

Dr-
Socket

Dr-
Nmap

Dr-
Unknown

Random Forset 92.21 91.17 99.93 95.35 36.30 0.06 97.60 99.10 8.20 44.80 no
Decision Tree 90.74 99.85 98.59 99.22 15.50 1.41 99.80 0 98.40 46.80 no

SVM 93.44 95.27 99.84 97.50 18.60 0.16 99.80 98.50 51.80 26.20 no
XGboost 93.63 96.77 98.60 97.68 12.35 1.40 99.80 99.30 98.40 1.60 no

NCO–normal_DIFF–OPF 98.68 99.82 98.55 99.18 4.50 1.40 99.80 100 99.00 91.80 no
NCO–double-layer

DIFF–OPF 98.13 99.95 98.87 99.40 3.20 1.13 97.40 99.80 97.00 86.20 98.21

Figure 8 shows the different evaluation metrics of the NCO–double-layer DIFF_RF–
OPFYTHON model on datasets of different sizes.

Information 2022, 13, 322 13 of 16

Information 2022, 13, x FOR PEER REVIEW 13 of 16

Figure 8 shows the different evaluation metrics of the NCO–double-layer DIFF_RF–

OPFYTHON model on datasets of different sizes.

Figure 8. The performance of final model on datasets of different sizes.

Figure 8 shows seven evaluation metrics of the model we proposed on datasets of

different sizes, including 10%, 25%, 50%, 75% and 100%. In Figure 8, we can see that the

dataset size of 10% outperforms 25% and 50% on some evaluation metrics. There is a ran-

dom function in the double-layer DIFF_RF module, which has a random effect on the ex-

perimental results. When the size of the datasets is too tiny, this random phenomenon will

be more obvious. However, with the increase in the size of the datasets, although this

random phenomenon also exists, it will have less of an impact on the experimental results.

This resembles a coin toss experiment—maybe the distribution of the results of ten exper-

iments will be uneven, but with the increase in the number of experiments, the distribu-

tion of experimental results will stabilize to 50%.

With the increase in the size of the datasets, the evaluation metrics of the NCO–dou-

ble-layer DIFF_RF–OPFYTHON model are also improving, which is reasonable in the real

world. When the size of the datasets is increased from 10% to 75%, the accuracy, FPR, F1,

and Precision of the model are significantly improved. However, we can see that when

the size of the datasets is about 75%, the evaluation metrics of the model are only slightly

less than 100%, which means that the training cost of the model can be reduced by appro-

priately reducing the size of the datasets when the model does not require the ultimate

detection accuracy.

In order to verify the reliability of the intrusion detection method we proposed, the

method is also applied to other public datasets, including the University of Mississippi

natural gas pipeline datasets [34] and CIC-IDS-2017 datasets [35]. In the experiments on

the pipeline dataset, we set the NMRI attacks as unknown attacks to test the detection rate

of the unknown attacks. The NMRI attacks only participate in the testing phase and do

not participate in any training phase. In the experiments on the CIC-IDS-2017 dataset, we

set the bot attacks as unknown attacks to test the detection rate of the unknown attacks.

The bot attacks only participate in the testing phase and do not participate in any training

Figure 8. The performance of final model on datasets of different sizes.

Figure 8 shows seven evaluation metrics of the model we proposed on datasets of
different sizes, including 10%, 25%, 50%, 75% and 100%. In Figure 8, we can see that the
dataset size of 10% outperforms 25% and 50% on some evaluation metrics. There is a
random function in the double-layer DIFF_RF module, which has a random effect on the
experimental results. When the size of the datasets is too tiny, this random phenomenon
will be more obvious. However, with the increase in the size of the datasets, although
this random phenomenon also exists, it will have less of an impact on the experimental
results. This resembles a coin toss experiment—maybe the distribution of the results of
ten experiments will be uneven, but with the increase in the number of experiments, the
distribution of experimental results will stabilize to 50%.

With the increase in the size of the datasets, the evaluation metrics of the NCO–double-
layer DIFF_RF–OPFYTHON model are also improving, which is reasonable in the real
world. When the size of the datasets is increased from 10% to 75%, the accuracy, FPR,
F1, and Precision of the model are significantly improved. However, we can see that
when the size of the datasets is about 75%, the evaluation metrics of the model are only
slightly less than 100%, which means that the training cost of the model can be reduced
by appropriately reducing the size of the datasets when the model does not require the
ultimate detection accuracy.

In order to verify the reliability of the intrusion detection method we proposed, the
method is also applied to other public datasets, including the University of Mississippi
natural gas pipeline datasets [34] and CIC-IDS-2017 datasets [35]. In the experiments on
the pipeline dataset, we set the NMRI attacks as unknown attacks to test the detection rate
of the unknown attacks. The NMRI attacks only participate in the testing phase and do not
participate in any training phase. In the experiments on the CIC-IDS-2017 dataset, we set
the bot attacks as unknown attacks to test the detection rate of the unknown attacks. The
bot attacks only participate in the testing phase and do not participate in any training phase.
Table 4 shows the results of our proposed ICS intrusion detection method on pipeline
datasets, CIC-IDS-2017 datasets, and the datasets used in this paper.

Information 2022, 13, 322 14 of 16

Table 4. The results of the three datasets.

Acc Pr Rec F1 Fpr Fnr Dr_Known 1 Dr_Unknown

Gas pipeline 97.97 99.32 97.52 98.41 1.18 2.48 99.80 97.87
CIC-IDS-2017 96.82 99.19 95.18 97.14 0.99 4.82 98.36 99.40

This paper 98.13 99.95 98.87 99.40 3.20 1.13 95.10 98.21
1 The unknown attacks set by pipeline and CIC-IDS-2017 are NMRI and bot, respectively.

According to Table 4, the intrusion detection method we proposed has considerable
evaluation metrics on different datasets. The method can efficiently identify known attacks
that exist in the training set and unknown attacks that do not exist in the training set.

4. Conclusions

In this study, we examined the performance of efficient and robust intrusion detection
methods based on machine learning, namely, NCO–double-layer DIFF_RF–OPFYTHON,
for the challenging problem of imbalanced training samples and the inability to detect
unknown attacks. The method was trained on its own dataset and two public datasets and
simulates scenarios of unknown attacks by making particular partitions of the datasets.
The proposed intrusion detection method presents high-quality results regarding the
classification accuracy, the function of detecting unknown attacks, and the evaluation
metrics compared to state-of-the-art intrusion detection methods. The superiority of the
proposed intrusion detection method is evidenced in the fact that it presents high detection
accuracy, resolves the imbalance of training samples in the real world, and resolves the
problem that the intrusion detection method based on supervised learning cannot detect
unknown attacks. The accuracy and the detection rate of unknown attacks of the method
reach 98.7% and 98.21%, respectively, which is a satisfactory experimental result.

In terms of future work, there are a few directions worth exploring. In this paper, for
example, the basis classifier modules are shallow machine learning algorithms. This can be
improved by using a more powerful neural network architecture. In addition, in this study,
all the detected unknown attacks are marked as one category. In future work, the unknown
attacks can be clustered and analyzed to further classify the detected unknown attacks. It
is worth pointing out that the number of unknown attacks is only a small fraction after all,
so it is difficult to further classify unknown attacks by cluster analysis. Since training a
more powerful neural network requires a lot of data, it is important to explore how to train
a new model when the number of samples belonging to this class is limited.

Author Contributions: Conceptualization, methodology, validation, writing, software, Y.C.; con-
ceptualization, Y.C., X.Z. and K.J.; supervision, funding acquisition, review, Y.C., L.Z. and Z.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: CIC-IDS-2017 datasets are available at https://www.unb.ca/cic/
datasets/ids-2017.html (accessed on 3 June 2022). University of Mississippi natural gas pipeline
datasets are available at https://sites.google.com/a/uah.edu/tom-my-morris-uah/ics-data-sets
(accessed on 3 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hu, Y.; Yang, A.; Li, H.; Sun, Y.; Sun, L. A survey of intrusion detection on industrial control systems. Int. J. Distrib. Sens. Netw.

2018, 14, 1550147718794615. [CrossRef]
2. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019,

9, 4396. [CrossRef]

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://sites.google.com/a/uah.edu/tom-my-morris-uah/ics-data-sets
http://doi.org/10.1177/1550147718794615
http://doi.org/10.3390/app9204396

Information 2022, 13, 322 15 of 16

3. Thabtah, F.; Hammoud, S.; Kamalov, F.; Gonsalves, A. Data imbalance in classification: Experimental evaluation. Inf. Sci. 2020,
513, 429–441. [CrossRef]

4. Yang, Z.; Liu, X.D.; Li, T. A systematic literature review of methods and datasets for anomaly-based network intrusion detection.
Comput. Secur. 2022, 116, 102675. [CrossRef]

5. Shah, S.A.R.; Issac, B. Performance comparison of intrusion detection systems and application of machine learning to Snort
system. Future Gener. Comput. Syst. 2018, 80, 157–170. [CrossRef]

6. Gurina, A.; Eliseev, V.; Gurina, A.; Eliseev, V. Anomaly-Based Method for Detecting Multiple Classes of Network Attacks.
Information 2019, 10, 84. [CrossRef]

7. Hariri, S.; Kind, M.C.; Brunner, R.J. Extended Isolation Forest. IEEE Trans. Knowl. Data Eng. 2019, 33, 1479–1489. [CrossRef]
8. Niemiec, M.; Kościej, R.; Gdowski, B. Multivariable Heuristic Approach to Intrusion Detection in Network Environments. Entropy

2021, 23, 776. [CrossRef]
9. Bangui, H.; Buhnova, B. Recent Advances in Machine-Learning Driven Intrusion Detection in Transportation: Survey. Procedia

Comput. Sci. 2021, 184, 877–886. [CrossRef]
10. Kilincer, I.F.; Ertam, F.; Sengur, A. Machine learning methods for cyber security intrusion detection: Datasets and comparative

study. Comput. Netw. 2021, 188, 107840. [CrossRef]
11. Luo, H.; Shi, K.; Qiao, F.; Li, Y. Intrusion Detection Mechanism Based On Modular Neural Network. In Proceedings of the 2020

2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, 23–25 October
2020; pp. 419–423.

12. Prasath, M.K.; Perumal, B. A meta-heuristic Bayesian network classification for intrusion detection. Int. J. Netw. Manag. 2019,
29, e2047. [CrossRef]

13. Mukhopadhyay, I.; Gupta, K.S.; Sen, D.; Gupta, P. Heuristic Intrusion Detection and Prevention System. In Proceedings of the
2015 International Conference and Workshop on Computing and Communication (IEMCON), Vancouver, BC, Canada, 15–17
October 2015; pp. 1–7.

14. Azeroual, O.; Nikiforova, A. Apache Spark and MLlib-Based Intrusion Detection System or How the Big Data Technologies Can
Secure the Data. Information 2022, 13, 58. [CrossRef]

15. Muhuri, P.S.; Chatterjee, P.; Yuan, X.; Roy, K.; Esterline, A. Using a Long Short-Term Memory Recurrent Neural Network
(LSTM-RNN) to Classify Network Attacks. Information 2020, 11, 243. [CrossRef]

16. Xiao, Y.; Xiao, X. An Intrusion Detection System Based on a Simplified Residual Network. Information 2019, 10, 356. [CrossRef]
17. Zheng, D.; Hong, Z.; Wang, N.; Chen, P. An Improved LDA-Based ELM Classification for Intrusion Detection Algorithm in IoT

Application. Sensors 2020, 20, 1706. [CrossRef] [PubMed]
18. Gauthama Raman, M.R.; Somu, N.; Jagarapu, S.; Manghnani, T.; Selvam, T.; Krithivasan, K.; Shankar Sriram, V.S. An efficient

intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artif. Intell.
Rev. 2020, 53, 3255–3286. [CrossRef]

19. Wang, Z.; Cha, Y.-J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to
detect damage. Struct. Health Monit. 2021, 20, 406–425. [CrossRef]

20. Marteau, P.F. Random Partitioning Forest for Point-Wise and Collective Anomaly Detection—Application to Network Intrusion
Detection. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2157–2172. [CrossRef]

21. de Rosa, G.H.; Roder, M.; Papa, J.P. Comparative Study Between Distance Measures On Supervised Optimum-Path Forest
Classification. arXiv arXiv:2202.03854.

22. Prado, M. A Robust Estimator of the Efficient Frontier. SSRN Electron. J. 2019, 10, 2139.
23. Liu, L.; Wang, P.; Lin, J.; Liu, L. Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning.

IEEE Access 2020, 9, 7550–7563. [CrossRef]
24. Fotiadou, K.; Velivassaki, T.-H.; Voulkidis, A.; Skias, D.; Tsekeridou, S.; Zahariadis, T. Network Traffic Anomaly Detection via

Deep Learning. Information 2021, 12, 215. [CrossRef]
25. Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on

the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [CrossRef]
26. Mokhtari, S.; Abbaspour, A.; Yen, K.K.; Sargolzaei, A. A Machine Learning Approach for Anomaly Detection in Industrial Control

Systems Based on Measurement Data. Electronics 2021, 10, 407. [CrossRef]
27. Zhou, Y.L.; Xie, L.; Pan, H. Research on a PSO-H-SVM-Based Intrusion Detection Method for Industrial Robotic Arms. Appl.

Sci.-Basel 2022, 12, 2765. [CrossRef]
28. Zhao, S.; Guo, Y.; Sheng, Q.; Shyr, Y. Advanced heat map and clustering analysis using heatmap3. Biomed. Res. Int. 2014,

2014, 986048. [CrossRef]
29. Hsu, H.H.; Hsieh, C.W. Feature Selection via Correlation Coefficient Clustering. JSW 2010, 5, 1371–1377. [CrossRef]
30. Dhaliwal, S.; Nahid, A.A.; Abbas, R. Effective Intrusion Detection System Using XGBoost. Information 2018, 9, 149. [CrossRef]
31. Tao, P.Y.; Sun, Z.; Sun, Z.X. An Improved Intrusion Detection Algorithm Based on GA and SVM. IEEE Access 2018, 6, 13624–13631.

[CrossRef]
32. Panigrahi, R.; Borah, S.; Bhoi, A.K.; Ijaz, M.F.; Pramanik, M.; Kumar, Y.; Jhaveri, R.H. A Consolidated Decision Tree-Based

Intrusion Detection System for Binary and Multiclass Imbalanced Datasets. Mathematics 2021, 9, 751. [CrossRef]

http://doi.org/10.1016/j.ins.2019.11.004
http://doi.org/10.1016/j.cose.2022.102675
http://doi.org/10.1016/j.future.2017.10.016
http://doi.org/10.3390/info10030084
http://doi.org/10.1109/TKDE.2019.2947676
http://doi.org/10.3390/e23060776
http://doi.org/10.1016/j.procs.2021.04.014
http://doi.org/10.1016/j.comnet.2021.107840
http://doi.org/10.1002/nem.2047
http://doi.org/10.3390/info13020058
http://doi.org/10.3390/info11050243
http://doi.org/10.3390/info10110356
http://doi.org/10.3390/s20061706
http://www.ncbi.nlm.nih.gov/pubmed/32204314
http://doi.org/10.1007/s10462-019-09762-z
http://doi.org/10.1177/1475921720934051
http://doi.org/10.1109/TIFS.2021.3050605
http://doi.org/10.1109/ACCESS.2020.3048198
http://doi.org/10.3390/info12050215
http://doi.org/10.1016/j.patcog.2019.02.023
http://doi.org/10.3390/electronics10040407
http://doi.org/10.3390/app12062765
http://doi.org/10.1155/2014/986048
http://doi.org/10.4304/jsw.5.12.1371-1377
http://doi.org/10.3390/info9070149
http://doi.org/10.1109/ACCESS.2018.2810198
http://doi.org/10.3390/math9070751

Information 2022, 13, 322 16 of 16

33. Zhang, J.; Zulkernine, M.; Haque, A. Random-forests-based network intrusion detection systems. IEEE Trans. Syst. Man Cybern. C
Appl. Rev. 2008, 38, 649–659. [CrossRef]

34. Morris, T.H.; Thornton, Z.; Turnipseed, I. Industrial control system simulation and data logging for intrusion detection system
research. In Proceedings of the 7th Annual Southeastern Cyber Security Summit, Huntsville, AL, USA, 3–4 June 2015; pp. 3–4.

35. Shukla, A.K. Detection of anomaly intrusion utilizing self-adaptive grasshopper optimization algorithm. Neural Comput. Appl.
2021, 33, 7541–7561. [CrossRef]

http://doi.org/10.1109/TSMCC.2008.923876
http://doi.org/10.1007/s00521-020-05500-7

	Introduction
	Materials and Methods
	Normal_DIFF_RF–OPFYTHON Model
	DIFF_RF Algorithm
	OPFYTHON Algorithm

	NCO–Normal_DIFF_RF–OPFYTH Model
	NCO–double-layer DIFF_RF–OPFYTHON Model

	Results
	Dataset Description
	Evaluation Metrics
	Experimental Results

	Conclusions
	References

