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Abstract: Composing the representation of a sentence from the tokens that it comprises is difficult,
because such a representation needs to account for how the words present relate to each other. The
Transformer architecture does this by iteratively changing token representations with respect to one
another. This has the drawback of requiring computation that grows quadratically with respect to
the number of tokens. Furthermore, the scalar attention mechanism used by Transformers requires
multiple sets of parameters to operate over different features. The present paper proposes a lighter
algorithm for sentence representation with complexity linear in sequence length. This algorithm
begins with a presumably erroneous value of a context vector and adjusts this value with respect to the
tokens at hand. In order to achieve this, representations of words are built combining their symbolic
embedding with a positional encoding into single vectors. The algorithm then iteratively weighs and
aggregates these vectors using a second-order attention mechanism, which allows different feature
pairs to interact with each other separately. Our models report strong results in several well-known
text classification tasks.

Keywords: natural language processing; neural networks; attention mechanism; representation learning

1. Introduction

The representation of natural language utterances is a central issue of the application
of machine learning techniques to natural language. Indeed, natural language occurrences
are difficult to represent using the mathematical objects on which algorithms may operate.
Manually constructed symbolic representations tend to “leak”, to be unable to capture
edge cases, leading to the favoring of learned representations [1,2]. However, it is difficult
to learn compact, efficient representations. Language is very sparse: not only does a vast
array of local patterns exist, but they will often combine in very few and variable ways.
This is not an issue of the granularity of fragmentation. For example, one could choose
to break up sentences into characters rather than words. In doing so, the vocabulary of
base tokens is greatly reduced in number but data grow sparser. More importantly, larger
patterns remain difficult to sanction. That is, whether one opts to break sentences up into
characters or words, words will still exist, and only a select few combinations thereof will
be conceivable, fewer still will be observed.

As such, it is difficult to establish ways in which to construct suitable utterance rep-
resentations from base components. Some, such as bag-of-words representations will
opt to be deliberately simplified and eliminate the need for the learning of this construc-
tion. Other, more complex ones, such as topic models, will allow for some learning of
utterance representations but require dedicated learning objectives. In contrast, through
backpropagation, neural network approaches allow the learning of complex procedures
for constructing utterance representations while still allowing for variety in downstream
training objectives. Regardless, while the exact parametrization of these operations is to be
inferred from the data, there is still considerable structure to provide. That is, the operations
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in the neural network and their composition need to be specified. Some aspects of this
structure are somewhat imposed by practical issues, such as the ability to handle variable
length data. Other, more deliberate choices are informed by prior beliefs about language.
For example, tree-structured recursive neural networks are predicated on the notion that
complex sentences are recursively constructed from their parts [3,4].

As mentioned, language is sparse and combinatorially difficult: even in highly syn-
thetic languages, combinations of words will carry some semantic sense that the words
themselves do not carry. This can be broadly construed as an issue of context: parts of
utterances need to be put into the context of the whole in order to be understood.

Contextualization is fundamentally difficult because it is a circular problem. One
cannot recompose a whole by putting its parts in the context of said whole without already
knowing what the whole is. One potential solution to this is to iteratively adjust the context
against which the parts are compared. That is, to begin with a presumably erroneous
value of the context representation and adjust this value with respect to the tokens at hand.
This is what Transformer encoders [5] do: First, the tokens in a sequence are compared
against each other by the self-attention mechanism [6]. This consists of having each token
attend over all tokens in the sentence, with a parametric attention function producing a
scalar weighting of the importance of each token with respect to the attender. Then, a new
representation for each token is produced through this weighting. The process is then
repeated a set number of times, as shown in Figure 1. In doing so, the word representations
produced by this encoder are put into the context of the whole. Transformers have achieved
much success in various Natural Language Processing (NLP) tasks [7–10], ranging from
sentiment analysis to question-answering and natural language inference [11].

Transformer Contextualizer

Figure 1. The Transformer encoder updates the representations of tokens with respect to each other
over a set number of steps by letting each token attend over all tokens in the sequence. This amounts
to a distributed representation of the context. The proposed approach updates a single context vector
which attends over the tokens at hand.

Nonetheless, the self-attention mechanism on which Transformers are built has two
chief disadvantages. Firstly, because all word pairs are evaluated, the complexity is
quadratic with respect to the length of the utterance. Secondly, the weighting provided
by the self-attention mechanism is based on bilinear forms, mapping each pair of word
vectors to a single scalar. As such, Transformers require multiple sets of self-attention pa-
rameters, called heads, so that separate heads might focus on different features of the word
vectors. To address these issues, we propose a new architecture—the Contextualizer—based
on iteratively adjusting a context vector using a second-order attention mechanism. Its
computational complexity grows linearly with respect to the sequence length, as opposed
to quadratically.
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This article is organized as follows. Section 2 introduces the proposed approach.
Section 4 describes experiments conducted in a few well-known document classification
tasks and the results obtained. Finally, Section 5 concludes this article.

2. Contextualizer

The proposed encoder utilizes the approach illustrated in Figure 1. It proceeds as
follows: Over a set number of steps, token representations are matched to the context
representation to produce a contextualized representation. These representations are then
aggregated into a new context representation, and the process begins anew. The present
section details how these computations are carried out in a general-purpose setting.

Let w1, . . . , wn be a sequence of tokens forming a document of length n, indexed by
i = 1, . . . , n. Before the contextualization steps, each token is mapped to a single real
vector combining information about its identity and position in the sequence. The former is
provided by a symbol embedding (e.g., pretrained word vectors) of dimension m, e(wi) ∈ Rm.
The latter is based on a positional encoding inspired by Maupomé et al. [12]. This positional
encoding is as follows: given a vector of parameters, s ∈ Rm, the jth component of the
encoding for position i, p(i), is given by:

p(i)j =
exp (isj)

∑n
i′=1 exp (i′sj)

.

Multiplicative constants amplify or dampen the peak of a softmax application. By
applying the softmax across tokens in the sequence, the parameter vector s allows the
model to modulate certain positions for different components of p. Combining these two
aspects, the token and its position, the vector representation of token wi is:

xi = e(wi) ∗ p(i).

where ∗ denotes the Hadamard product.
Next, there are K contextualization steps, indexed by k = 1, . . . , K. Each of these

steps will produce a new context vector, ck. The default context used at the first step of
contextualization, c(0), can be set to a constant or a learned parameter, for example. This
context vector will contextualize the tokens, which will then be aggregated into a new
context. An attention mechanism provides the contextualizing function called at every
iteration. Using any of the various attention mechanisms in the literature, contextualizing
each token would amount to producing a scalar weight, αi, for each token depending on its
content and that of the attender (the context vector in our case). The contextualization of
token xi at step k with respect to the previous context, c(k−1), would then be

(c(k−1), xi) 7→ α
(k)
i xi.

However, the use of scalar attention weights requires that each component in the
operands interacts only with its homolog, collapsing all information to a single number.
One must therefore compute several of these interactions with different sets of parameters—
called attention heads—so that each of these may focus on different features. This is
particularly important when using distributed token representations, where each compo-
nent might carry a different semantic sense. As such, Transformers contain several attention
heads. In contrast, to have the weight of each token be a vector, αi, rather than a scalar, αi,
would let each component of the token representation have a separate salience with respect
to the current context:

(c(k−1), xi) 7→ α
(k)
i ∗ xi, (1)

This is illustrated in Figure 2.
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Multi-Head Attention

Second-Order Attention

Figure 2. Scalar attention requires the use of different sets of attention parameters—heads—to
attend to different features of the tokens being aggregated; vector attention allows features to be
weighted independently.

Such a mechanism would eliminate the need for several heads, as each feature of each
token can interact with each feature of the context by a different parameter. However, a
second-order attention weighting would require parametrization by a tensor of degree
three (3), which would take the parameter count of the model to O (m3), as both the input
and the context vectors are of dimension m. For token representations of even modest size,
this would result in a computationally intensive model. Moreover, if the transformation to
be learned does not require a full-rank degree-three tensor, such a parametrization would
ostensibly be prone to overfitting because of its excess capacity. Instead, a tensor of rank
(not to be confused with the degree or order of a tensor, the rank of a tensor is analogous to
the rank of a matrix) u can be used, with u becoming a hyperparameter, see [13–15]. Using
this approach, the attention vector for token xi would be computed as:

α
(k)
i = W(k)(U(k)xi ∗V(k)c(k−1)) + b(k),

where U(k), V(k) ∈ Ru×m and W(k) ∈ Rm×u are the matrices of parameters for the kth
contextualization step, and b(k) is the corresponding bias vector.

The newly computed attention vectors serve to update the context vector. This update
z(k), is then obtained by adding the contextualized token vectors together, followed by
layer normalization [16]:

z̃(k) =
n

∑
i=1

α
(k)
i ∗ xi

z(k) = LayerNorm(z̃(k))

The update is then applied to the context vector to obtain the new value for the
context vector:

c(k) = c(k−1) + z(k)

As mentioned, this process is repeated over a set number of steps, allowing information
from different sets of tokens to inform the context. The final context vector, c(K), then
contains 3a fixed-size summary of the sequence of tokens at hand.

By reducing sequences of arbitrary length to fixed-size encodings, the proposed
approach could potentially squash some information, whereas Transformers encode their
input into a sequence of vectors. In return, the number of comparisons in one iteration of the
Contextualizer algorithm grows linearly with respect to the number of tokens, as opposed
to quadratically for the Transformer. Table 1 presents the computational complexities
of these two algorithms as well as recurrent and convolutional layers. In addition, as
illustrated by Figure 1, the Transformer has the drawback of losing sight of the original
representation of the tokens, whereas the Contextualizer does not.
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Table 1. Complexities of common layers used in NLP; l designates the kernel size, h, the number
of attention heads, n, m and u, designate the length of the sequence, the dimension of the word
representations and the multiplicative dimension, respectively. For Transformers and Contextualizers,
the complexity is for a single contextualization step.

Layer Complexity

Recurrent O (nm2)
Convolutional O (lnm2)
Transformer encoder O (hn2m)
Contextualizer O (num)

3. Related Work

The computational complexity of Transformers makes them unwieldy for long se-
quences. As such, there have been several efforts to simplify the computation of full
token-to-token self-attention to a lighter, more computationally efficient version.

For example, self-attention can be limited to local neighborhoods [17]. That is, instead
of comparing tokens attend to each other throughout the sequence, tokens can be restrained
to attending over a local portion of the sequence. This approach can be complemented by
having sliding-window neighborhoods [18,19]. It can also be combined with causal masking:
allowing tokens to attend only over preceding tokens. In doing so, segments can be chained
recursively, allowing deeper contextualization levels to receive information from earlier
segments [20].

More sophisticated, dynamic approaches can rely on inferred neighborhoods. Rather
than determining neighbors by position, tokens can be bucketed by locality-sensitive
hashing [21] or clustering [22]. Alternatively, neighborhoods can be determined by the
syntax tree of the utterance at hand [23].

Yet another approach is to replace softmax self-attention with a lighter variant. For
example, by replacing the exponential kernel implicit to softmax self-attention by a poly-
nomial kernel, key–value products can be shared across queries, reducing computational
complexity [24]. In the same vein, softmax self-attention can be approximated via random
feature maps, thus reducing the dimension of the attention space as a function of sequence
length rather than eliminating token pairs [25].

4. Experiments and Results
4.1. Exploratory Experiments

We began with experiments on the well-known Rotten Tomatoes dataset (MR) [26]
(available at https://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.home.html,
accessed on 15 May 2022). It consists of 11 k English-language sentences from film reviews
classed as either positive or negative in equal proportions. The documents are fairly short,
with 95% of them being 45 words long or shorter.

The first experiments sought to compare the test set classification accuracy and compu-
tation time of Transformer and Contextualizer models of comparable sizes. These parameter
counts were chosen to be relatively small in accordance with the limited size of the dataset.
For each architecture, four models of 0.5, 1, 1.5 and 2 million parameters were trained and
tested. These counts excluded the initial token embedding layer. Following the Transformer
approaches [7,10,27], the documents were tokenized into word-piece tokens [28,29]. The
hyperparameters of the models were set following Vaswani et al. [5] while adjusting for
the smaller model size. The dimension of the embedding space, m, was set to 128. The
number of contextualization steps (the number of encoding layers in the Transformer)
was set to five for all models. The number of attention heads for Transformers was set to
four. Hence, the variable adjusted to increase the parameter count of the models was the
dimension of the attention space for Transformers and the rank of the tensor decomposition,
u, for Contextualizers.

https://www.cs.cornell.edu/home/llee/papers/pang-lee-stars.home.html
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Models were trained on a Intel Core i7-7700 machine with 32 GiB of memory over
10 epochs with batches of 32 examples using the Adam [30] optimizer, with a learning
rate of 1× 10−4. The best model on a 10% validation set over the 10 epochs was selected
for testing.

Results are presented in Table 2. As shown, both architectures show comparable results
across model sizes. As expected, computation time is much greater for
Transformer networks.

We then proceeded with experiments measuring the effect on performance of the
nature of the default context. All Contextualizer models shared the same configurations
except the default context, which was set to be either a constant, c(0) = 1, a vector of learned
parameters, c(0) = cd or a random vector redrawn for every document from a uniform
distribution, c(0) ∼ U (−1, 1). We hypothesized that using a random default context would
make the network more robust by reducing dependence on prior beliefs and therefore
mitigating overfitting. For the same reasons, one could expect a learned default context to
be more likely to overfit than a constant one.

Table 3 summarizes the results. As one might expect, a random starting context vector
hurts performance when contextualization is performed but once. The models are quick to
adjust, as all choices of default context seem to arrive at very similar final accuracies.

Table 2. Test accuracy (%) on the MR task and computation time (ms/batch) for Transformer and
Contextualizer models of similar sizes. The parameter counts exclude word-piece embeddings. The
batch size is 32.

Contextualizer Transformer
Parameter

Count Accuracy Time Accuracy Time

0.5 M 73.5 57 72.4 118
1.0 M 74.3 96 74.9 164
1.5 M 73.4 120 73.0 223
2.0 M 74.0 151 74.7 265

Table 3. Test accuracy (%) on the MR task for different default context strategies

K
c(0) 1 5

1 73.1 71.2
cd 73.5 72.2

U (−1, 1) 57.9 72.4

4.2. Further Results

We continue with experiments in binary document classification on other well-known
English-language datasets in order to compare the performance of the proposed approach
to the Transformer-based Universal Sentence Encoder architectures (USE) [8]. The Subjec-
tivity dataset (available at https://www.cs.cornell.edu/people/pabo/movie-review-data/,
accessed on 15 May 2022) (SUBJ) [31] comprises 10 k sentences around films classed as
subjective or objective, released in June 2004. Annotation is automatic based on whether the
sentence is a synopsis (objective) or an appreciation (subjective). The Customer Reviews
dataset (CR) (available at http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
accessed on 15 May 2022), introduced by Hu and Liu [32], comprises 3775 reviews of
electronic products. These reviews were extracted from Amazon and CNET and manually
annotated. They are equally divided between positive and negative sentiment. Finally,
the Multi-Perspective Question Answering dataset (available at https://mpqa.cs.pitt.edu/
corpora/mpqa_corpus/ accessed on 15 May 2022) (MPQA) [33] deals again in sentiment
polarity, containing 10,606 k phrases from press articles.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar
https://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
https://mpqa.cs.pitt.edu/corpora/mpqa_corpus/
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Test accuracy on several benchmark text classification tasks of our Contextualizer
models compared to the Universal Sentence Encoders (USE) [8], Transformer-based (T) and
Deep-Averaging-Network-based (D) is shown in Table 4. The results of these experiments
demonstrate that the Contextualizer architecture can perform competitively, even with
small models and relatively small datasets.

Table 4. Test accuracy (%) on several benchmark text classification tasks of our Contextualizer
models compared to the Universal Sentence Encoder architectures (USE), Transformer-based (T) and
Deep-Averaging-Network-based (D).

Model MR CR SUBJ MPQA

Contextualizer 76.6 79.0 91.2 85.3
USE (T) 81.4 87.4 93.9 87.0
USE (D) 74.5 81.0 92.7 85.4

5. Conclusions

We proposed an algorithm for constructing sentence representations based on the
notion of iteratively adjusting a central context vector. This algorithm was closely related
to the encoder part of the Transformer algorithm. One key difference was the use of the
proposed second-order attention mechanism, replacing multiple attention heads.

Another important difference was the computational complexity, which was linear
in sequence length. Transformer models have been the driving force behind the expan-
sive use and development of large models such as BERT [7], RoBERTa [27], GPT-3 [10],
Electra [9], among others, which are extensively trained by adapted language-modeling
tasks. The reduced complexity of the Contextualizer model would be of use both in terms
of pretraining and in terms of wielding these large models in downstream tasks. This is
important given how the computational cost of these large models can further the economi-
cal divide between low- and high-resource laboratories and companies [34]. Additionally,
this computational demand also incurs a significant environmental impact [35]. Therefore,
lighter-computation approaches could help mitigate these concerns.

Yet, as seen in Section 4, the Contextualizer achieved results comparable to those of
a Transformer when controlling for model size. Our approach was also able to achieve
competitive results in benchmark document classification tasks even with low parameter
counts. Furthermore, our results suggested the approach was robust to different choices of
the number of contextualization steps and default contexts. Further work will be conducted
in this direction, as well as in formally characterizing the conditions that stabilize the
context vector as the number of contextualization steps increases.
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