
Citation: Chatzisavvas, A.;

Chatzitoulousis, P.; Ziouzios, D.;

Dasygenis, M. A Routing and

Task-Allocation Algorithm for

Robotic Groups in Warehouse

Environments. Information 2022, 13,

288. https://doi.org/10.3390/

info13060288

Academic Editors: Markos G.

Tsipouras, Alexandros T. Tzallas,

Nikolaos Giannakeas, Katerina D.

Tzimourta and Arkaitz Zubiaga

Received: 6 March 2022

Accepted: 4 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Routing and Task-Allocation Algorithm for Robotic Groups
in Warehouse Environments
Antonios Chatzisavvas * , Petros Chatzitoulousis, Dimitris Ziouzios and Minas Dasygenis

Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece;
petroshatt@gmail.com (P.C.); dziouzios@uowm.gr (D.Z.); mdasyg@ieee.org (M.D.)
* Correspondence: achatzisavvas@uowm.gr

Abstract: In recent years, the need for robotic fleets in large warehouse environments has constantly
increased. The customers require faster services concerning the delivery of their products, making
the use of systems such as robots and order-management software more than essential. Numerous
researchers have studied the problem of robot routing in a warehouse environment, aiming to suggest
an efficient model concerning the robotic fleet’s management. In this research work, a methodology
is proposed, providing feasible solutions for optimal pathfinding. A novel algorithm is proposed,
which combines Dijkstra’s and Kuhn–Munkers algorithms efficiently. The proposed system considers
the factor of energy consumption and chooses the optimal route. Moreover, the algorithm decides
when a robot must head to a charging station. Finally, a software tool to visualize the movements of
the robotic fleet and the real-time updates of the warehouse environment was developed.

Keywords: warehouse; smart-warehouse; mobile robot; visualization tool; routing algorithm;
task-allocation algorithm; group of robots; energy optimization

1. Introduction

Mobile robotics is becoming one of the most rapidly growing disciplines of scientific
research. Mobile robots can replace humans in various industries due to their precise
movements, low fatigue, and high repeatability operations. From commercial to private
use and industrial automation to non-industrial applications, robots are utilized in many
aspects of modern life. The design of robots depends on particular field requirements.
There are plenty of different types of robots that can be developed, such as mobile/ fixed,
or can be classified according to their application field: Industrial or service [1].

Service robots are increasingly being used in production contexts as well as other
settings such as industrial sites, households, and institutions. The two dominant types of
service robots are personal and professional service robots. Professional service robots, in
particular, are robots that employees utilize to complete tasks, such as mobile robots [2].

The e-commerce business is currently experiencing its most prosperous phase. Various
e-commerce enterprises have popped up, and people purchasing online has been an
increasing trend during the last decade, posing several issues across the board [3]. The
logistics business is one of them, and it is the basis and guarantee of e-commerce [4].
The logistics business will confront more severe issues as the number of online orders is
projected to grow, thus, it is critical to maintain logistical efficiency. The effectiveness of
warehouse storage and retrieval has the most significant impact on the efficiency of logistics
operations. The logistic process of e-commerce initiates when a customer places an order.
The next step is for an employee to start moving inside the warehouse to find the items and
pick them up. The picking operation is a repetitive and routine process for humans and
costs 55% of the total warehouse operating expense [5].

In modern large-volume businesses, robots are utilized to avoid the high expenses of
logistics warehouses. These warehouses are built with discrete paths that are specifically
designed for robot mobility. Utilizing these paths, mobile robots can act as a means of

Information 2022, 13, 288. https://doi.org/10.3390/info13060288 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13060288
https://doi.org/10.3390/info13060288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9826-6944
https://orcid.org/0000-0002-2180-9752
https://doi.org/10.3390/info13060288
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13060288?type=check_update&version=2

Information 2022, 13, 288 2 of 14

sorting, storing, and distributing goods inside the warehouse. The cost reduction related
to the logistics of a business is directly connected to the nature of automation. If properly
programmed, these robots can follow strict navigation orders when managing goods,
leading to highly efficient sorting, storing, and distribution processes. Thus, the routes
that the robots take on the rails within the warehouse where they are situated are essential
to the efficiency of the robots’ delivery. Furthermore, in a modern warehouse, there is
a need for more than one robot operating. In that case, the paths available to reach a
specific location become more sparse and time-related. Using the same track by more than
one robot may lead to conflicts, damage to the goods, and delays in the working process,
incurring significant cost penalties. When these robots move into a warehouse to transport
items, they run into the difficulty of having many branching pathways to choose from.
Especially when there are multiple orders where the robots have to send and receive items,
the problem of choosing the best path becomes increasingly complicated [6]. Therefore, an
efficient strategy for correctly mapping the warehouse and the path a robot follows during
the transportation process is of utmost importance.

In order to achieve the optimal result, energy consumption is a critical factor in the
development of the algorithm. Energy-efficient operation is critical because it minimizes
energy losses and transmission costs, increases the duty time of energy storage units, and
allows them to be of less cost. Mobile robots must complete their assigned tasks promptly
while utilizing the available limited energy resources. By efficiently dispersing the robot’s
energy resource, the robot’s overall lifespan can be extended. Communication and mobility
are the two most energy-intensive characteristics for energy consumption [7]. The algorithm
should take the energy factor seriously, as it will have to charge the robot before running
out of energy. The most well-known tactic is to navigate the robot to a charging station
when the battery reaches a specific limit. This process requires great precision, and in fact,
when the environment in which the robot operates changes, the algorithm must constantly
recalculate the distance and the percentage of the battery in order to be able to charge safely.
Alternatively, wireless charging is possible where the robot goes to a specific area, or there
may be rails in the main corridors from where it can wirelessly charge. This way, it is not
required to return to a specific charging point and continue its task while charging [8].

Mobile robots must navigate in an unfamiliar and dense area, ever-changing between
different warehouses, and several sensors are used to gain an overview of the surrounding
environment [9]. The navigation of mobile robots through the shortest path in a new domain
has been a fundamental problem for robot movement. Localization offers significant
benefits, but the rapid movement from one place to another, while taking into account
obstacles in the area, further complicates the issue.

The need for the optimal path for robots is perceived. The visualization of movements
of the group in space to locate and validate the exact position of the robots can play a
significant role in this direction by confirming the correctness of the movements. In this
article, we present a tool for simulating the movements made by the group of robots used
in a warehouse and different areas of interest such as obstacles, shelves, selected product
locations, refueling stations, storage stations, and charging stations. In addition, we im-
plemented an automated system pathfinding algorithm and applied it to the visualization
program in combination with a task-sharing algorithm.

Automation and robotic models have been applied to logistics for many years. How-
ever, lately, due to the rapid growth of the popularity of autonomous robots and systems,
various philosophies have been developed to optimize and maximize their performance.
At the same time, tools have been implemented to visualize the results of these models,
trying to present an efficient and user-friendly environment.

Previous work on task allocation and navigation techniques uses numerous philoso-
phies to approach the problem. Bolu et al. [10] proposed an Order Batch to Robot Task
Conversion (OBRTC) algorithm, which manages a set of actions as one action instead of
one by one. In addition, they developed an Adaptive Robot Task Selection (ARTS) method
for distributing tasks to available robots. It was based on a heuristic model that considers

Information 2022, 13, 288 3 of 14

factors such as distance and time. These methods and algorithms were executed by the
basic Warehouse Execution System (WES) and visualized in a realistic environment devel-
oped by them. Emphasis was placed on calculating paths and reducing the distance that
robots would travel.

Moreover, Xue et al. [11] propose an intelligent warehouse system with multiple robots
that solves the task allocation problem by transforming it into a transportation problem.
The dynamic factors that the methodology takes into account are task time window and
power consumption. Then, an integer programming formulation is used to assign to each
agent its restrictions, as the problem is solved by the table working method. This idea
shows an increased performance of the system, but it does not analyze the dynamic factors
of the environment. Moreover, the researchers proceed with the assumption that the energy
consumption of a robot coincides with its driving distance.

Pinkam et al. [12] suggest a model that executes two different strategies for collecting
items. Firstly, each robot is assigned to each station in an individual collection strategy. In
the collaborative method, each robot is assigned to each nearest station using Manhattan
distance, and Dijkstra’s algorithm decides its navigation. Moreover, a local search is applied
to find nearby target items. However, this model shows critical weaknesses in the swarm-
like behavior of the robots. Furthermore, the development team used the assumption that
the energy consumption of a robot is proportional to its traveled distance. Their results
showed that the collaborative behavior of the robots did not achieve the system’s reduced
energy consumption, which may be counter-intuitive.

Wei et al. [13] proposed a dynamic distribution of tasks in a more general search and
retrieval problem and presented a prediction-based approach to tackling the task division
problem in robotic systems. Both approaches are evaluated in a simulated environment,
called BW4T, and the experimental results show that both provide an effective solution to
the problem. The forecasting approach has a better performance in terms of completion
time, while their approach has satisfactory results. Although the researcher’s proposal
reduces the completion time and minimizes energy consumption, their simulations do not
include robot charging stations.

These methods may be functional and show increased efficiency in many different
levels, but they also have some weaknesses. The disadvantages can be summarized
as follows.

• The energy consumption factor usually coincides with the traveling distance of a robot,
not considering other realistic factors such as losses, inclination, etc.

• The role of the charging stations is not discussed, and it is not explained how to
maximize their performance.

• The visualization tools lack many features, both in exporting experimental results and
in situations where a warehouse user operates them.

We propose a solution that considers many different factors energy-wise, such as the
load of the cargo or further losses due to the battery or friction. Moreover, we discuss
how we can optimize the charging stations’ positions and charging procedures. Later,
visualization software is also presented, which is developed by our team and accepts a
plethora of different parameters to visualize simply and friendly the environment needed
and communicate appropriately with the warehouse’s different elements and its users.

The rest of the manuscript is structured as follows: Section 2, the research procedure
and the proposed algorithm’s implementation are discussed. In Section 3, the visualization
tool and its features are showcased. Later, Section 4 contains details of the proposed
methodology and provides our results. Finally, the final thoughts and conclusions are given
in Section 5.

2. Elements of the Smart-Warehouse Algorithm

This section describes the procedure of analyzing various routing and task-allocation
algorithms. We also explain why we concluded with the ones we use in our proposed

Information 2022, 13, 288 4 of 14

methodology later. Furthermore, some ideas around energy consumption optimization
are discussed.

2.1. Routing Algorithms

For the tests, we considered the two factors of time and energy. At first, the grid is
represented as an unweighted graph, and pathfinding algorithms in unweighted graphs
such as BFS and DFS, are implemented. The primary assumption was the fact that the
robots need the same time to move from one cell to another. Therefore, the time factor was
aligned with the length of each path that the algorithm produced. Despite the efficiency
of these two algorithms, it is concluded that they do not cover our needs as they do not
consider the factor of energy.

Moreover, the experiments continued by adding the factor of energy. We achieved
that by putting weights on each tile of the grid. These weights represented the energy
each robot needed to arrive at the specific tile. In natural environments, the energy could
represent factors like the ground’s surface or its inclination. Therefore, the solution is to
utilize the weighted graphs, on which we could run pathfinding algorithms in weighted
graphs, like Dijkstra’s and A*.

During the execution, the software checks the path compared with the available battery
of the robots. In every new execution cycle, the routing algorithm takes into consideration
obstacles like shelves or other robots. The list with the current obstacles is updated as
the other robots have changed their position too. When the arrival to its destination has
been confirmed, the path is exported in a JSON-encoded string and sent to the tool using a
TCP socket.

The weight of the package is taken into account to calculate the residual energy. In
this way, the required energy is calculated. More specifically, the entered parameters are
set to the available energy and the consumption that robots have to move from one cell to
another (1). The energy consumption is related to the weight of the robot’s load on it. The
energy cost of each operation is taken into account in order to minimize the load on each
robot’s battery. This minimizes the downtime of each robot (since recharging or battery
swapping occurs less frequently) and results in higher values of uptime for the warehouse.
The measured energy consists of four parts: (a) The energy requirements of the DC motor,
(b) the energy losses of friction, (c) the kinetic energy (which is based on the sum of the
number of straight grid tiles the robot has traversed in a straight line, and the number of
turns it has performed), and finally (d) the energy loss of the electronic devices. According
to our calculations and experiments, most of the required energy comes from the needs
of the robots to traverse the environment. The second most energy-intensive source is the
kinetic energy, then friction, and finally the loss of electronics. The equation of the energy
model is presented as [14]:

Ebattery = Edc + Ek + E f riction + Eelect (1)

where Ebattery is the energy of the battery used for the robot, Edc is the energy loss for the
DC motor, Ek is the kinetic energy losses, E f riction is the energy losses due to friction, Eelect
is the energy losses in the electronics.

2.2. Task-Allocation Algorithms

Another problem came up during the experiment runs: The task allocation between
the robots. We aimed to achieve a swarm-like behavior so collective decisions that result in
a more efficient ensemble than independent units can be made. To solve the assignment
problem, we used the Kuhn–Munkers algorithm, also known as the Hungarian algorithm, a
fundamental combinatorial optimization algorithm. Its central concept is to have x number
of agents and y number of tasks, and each agent demands a different cost to complete the
task. The problem can be represented in a matrix of the costs of the agents completing the
tasks. The Kuhn–Munkers algorithm would provide us with the minimum total cost when
applied to the matrix, assigning each task to an agent.

Information 2022, 13, 288 5 of 14

To solve the specific problem of task assignment, we also analyzed other methods such
as auction-based [11,15] algorithms that follow the idea that the entities are separated into
auctioneers and agents, and the tasks are advertised and sold in various auction rounds.
We concluded that the Kuhn–Munkers algorithm suits our problem and our warehouse
environment more.

For the explanation of the Kuhn–Munkers algorithm, an example with four workers
and four tasks is considered. Table 1 shows the cost of assigning a certain worker to a
certain task.

Table 1. Matrix with costs of each worker-task pair.

Task 1 Task 2 Task 3 Task 4

Worker 1 n11 n12 n13 n14
Worker 2 n21 n22 n23 n24
Worker 3 n31 n32 n33 n34
Worker 4 n41 n42 n43 n44

Step 1: Subtract row minima.
Step 2: Subtract column minima.
Step 3: Cover all zeros with a minimum number of lines. Cover all zeros in the resulting
matrix using a minimum number of horizontal and vertical lines. If n lines are required, an
optimal assignment exists among the zeros. The algorithm stops. If less than n lines are
required, continue with Step 4.
Step 4: Create additional zeros. Find the smallest element that is not covered by a line
in Step 3. Subtract it from all uncovered elements, and add it to all elements that are
covered twice.

2.3. Energy Consumption Optimization

During the experiments, we focused on techniques that could minimize the energy
consumption of the group during its runs. At first, the concept remained simple, as the
robots used the charging stations inside the warehouse to charge their batteries when-
ever they could not complete a route. However, it was observed that the position of the
charging stations does not always suit the problem, as they spend significant time during
their re-route to reach them. Later, we considered placing charging stations in tiles with
more traffic, such as the center of the warehouse or near the shelves. This showed an
improvement in the system’s efficiency, both time-wise and energy-wise. We were able to
test these two techniques regarding the position of the charging stations and compare the
group’s performance.

Even though it has not been implemented, we also propose a different model on a
theoretical level. Affected mainly by the problem of electric chargers on the transport
network, we adopted the model of wireless charging for our warehouse. The specific
environment allows us to use a simplified version of this solution compared to those used
in transport networks. It is characterized mainly by static elements (shelves, walls, stations,
etc.) and by less density of them. The works of different researchers were taken into
account: [16] Present TeleWatt, a charging infrastructure over public lightning systems,
and [17] use buses as mobile energy disseminators to dynamically wireless charge other
electric vehicles that are part of the transport network. For our case, we thought of using
static elements of the warehouse such as shelves or specific lanes of the grid, similar to the
case of lighting systems used in traffic environments, or adding dynamic elements such
as larger robots that could act as chargers next to the group, like the charging buses. It is
important to mention that these dynamic techniques do not have to stand by themselves,
but they can also be used combined with the currently implemented concept of stationary
charging stations.

Our simulations have shown an increased efficiency in the swarm’s performance as
the robots rarely run out of energy anymore or execute unnecessary routes. On the other

Information 2022, 13, 288 6 of 14

hand, this new concept requires additional costs and infrastructure, which we consider a
significant downside. This is the main reason we have not managed to implement this at
our warehouse yet.

3. Visualization Software

Visualization software has been developed to represent the movements of robotics
systems that routing algorithms export. Data are sent to the visualization tool using a TCP
(Transmission Control Protocol), which offers the ability to create a peer-to-peer connection
using the socket descriptor to identify the connection uniquely. The development of the
tool is based on Python, combining the PyGame library with graphic design.

The main entities that are visualized are:

• Shelf: Shelves are divided into cells, and each cell can store a product. There is the
capability to separate the shelves into groups and the representation of each group
will be done with a different color.

• Product: The product entities represent the load that robots handle. The products can
be picked by the robots at the replenishment station and placed in a shelf’s cell or
collected from a shelf by the robots and deposited at the delivery station. The products
can also be categorized in groups using colors.

• Robot: Moving at the warehouse environment, the robots are the entities that execute
specific actions. They handle products and head to the three stations: Replenishment,
delivery, or charging, depending on the actions they receive from the central system.
On each robot, the battery level is displayed at a specific time using a colored box
(green, orange, red).

• Replenishment Station (R.S.): The station that provides the products for the robots
to collect and distribute to the shelves. We can have multiple replenishment stations
represented with different colors (e.g., we can have different R.S. based on the type of
products they provide). The cells that each R.S. occupies will be defined by their size.

• Delivery Station (D.S.): The station where the robots place the products. They share
the same characteristics with the replenishment stations as there can be many of them,
each occupying many cells.

• Charging Station (C.S.): When the indicator shows a low battery level, robots head to
the charging stations to recharge it. Each C.S. can be compatible with every robot on
the map or with specific ones. In the second case, the robot’s color is shown on the
charging station.

• Movement Path: The tool visualizes the paths so the user can see each robot’s move-
ment in the warehouse. Each robot executes a routing algorithm, which exports a path
for the emulator. The color of the path matches its robot’s color.

The software receives JSON encoded type of data as input which contain the informa-
tion surrounding each emulation. The communication of the routing algorithms with our
visualization tool is also done using JSON. The tool operates as the server, and the clients
use the predefined port to connect and send either data updating the environment of the
warehouse or new movement paths that resulted from the algorithms they executed. This
method allows the update of the environment in real-time and without terminating each
emulation (Figure 1).

Firstly, an initialization file is necessary. This file always includes the basic parameters
of the grid (width, height, tile size). We also developed a tool that exports maps in JSON
encoded data for our tests, considering actual warehouse layouts we have collected. The
tool opens a window with the initial environment when the configuration values are
given. Then, the program waits for new file inputs that provide data on entities that
the user wants to import into the grid. A JSON with a true end flag is needed for the
program’s termination.

Information 2022, 13, 288 7 of 14

Information 2022, 13, 288 7 of 14

they executed. This method allows the update of the environment in real-time and
without terminating each emulation (Figure 1).

Firstly, an initialization file is necessary. This file always includes the basic
parameters of the grid (width, height, tile size). We also developed a tool that exports
maps in JSON encoded data for our tests, considering actual warehouse layouts we have
collected. The tool opens a window with the initial environment when the configuration
values are given. Then, the program waits for new file inputs that provide data on entities
that the user wants to import into the grid. A JSON with a true end flag is needed for the
program’s termination.

Our tool also has the capability to collect statistics, including the whole simulation
that resulted from the JSON provided to it. An important statistic feature is the display of
a heatmap that highlights the cells of the grid used more by the robots during the
simulation. The development of this heatmap was done using Seaborn, which is a Python
data visualization library based on matplotlib. Furthermore, the software exports a text
file (Figure 2) that contains information like current time and date, current timestamp,
robot count, and movement count on the grid. During the program’s execution from the
terminal, command-line arguments can be used as parameters, something that allows the
user to set the program in a specific mode (no-graphics mode, no-heatmap mode, multi-
client mode, etc.). The execution functions are the display of the graphical environment or
image storage, the display of the execution in steps and the communication ports of the
TCP socket.

Figure 1. Basic map with every entity.

Figure 2. Statistics exported by the visualizing tool.

Heatmap is an essential visual aid to the warehouse operator because highly intense
areas indicate congested corridors and signal a more suitable product reallocation, if
feasible, for better balance. Figure 3 shows the collection of data surrounding the positions

Figure 1. Basic map with every entity.

Our tool also has the capability to collect statistics, including the whole simulation
that resulted from the JSON provided to it. An important statistic feature is the display
of a heatmap that highlights the cells of the grid used more by the robots during the
simulation. The development of this heatmap was done using Seaborn, which is a Python
data visualization library based on matplotlib. Furthermore, the software exports a text file
(Figure 2) that contains information like current time and date, current timestamp, robot
count, and movement count on the grid. During the program’s execution from the terminal,
command-line arguments can be used as parameters, something that allows the user to set
the program in a specific mode (no-graphics mode, no-heatmap mode, multi-client mode,
etc.). The execution functions are the display of the graphical environment or image storage,
the display of the execution in steps and the communication ports of the TCP socket.

Information 2022, 13, 288 7 of 14

they executed. This method allows the update of the environment in real-time and
without terminating each emulation (Figure 1).

Firstly, an initialization file is necessary. This file always includes the basic
parameters of the grid (width, height, tile size). We also developed a tool that exports
maps in JSON encoded data for our tests, considering actual warehouse layouts we have
collected. The tool opens a window with the initial environment when the configuration
values are given. Then, the program waits for new file inputs that provide data on entities
that the user wants to import into the grid. A JSON with a true end flag is needed for the
program’s termination.

Our tool also has the capability to collect statistics, including the whole simulation
that resulted from the JSON provided to it. An important statistic feature is the display of
a heatmap that highlights the cells of the grid used more by the robots during the
simulation. The development of this heatmap was done using Seaborn, which is a Python
data visualization library based on matplotlib. Furthermore, the software exports a text
file (Figure 2) that contains information like current time and date, current timestamp,
robot count, and movement count on the grid. During the program’s execution from the
terminal, command-line arguments can be used as parameters, something that allows the
user to set the program in a specific mode (no-graphics mode, no-heatmap mode, multi-
client mode, etc.). The execution functions are the display of the graphical environment or
image storage, the display of the execution in steps and the communication ports of the
TCP socket.

Figure 1. Basic map with every entity.

Figure 2. Statistics exported by the visualizing tool.

Heatmap is an essential visual aid to the warehouse operator because highly intense
areas indicate congested corridors and signal a more suitable product reallocation, if
feasible, for better balance. Figure 3 shows the collection of data surrounding the positions

Figure 2. Statistics exported by the visualizing tool.

Heatmap is an essential visual aid to the warehouse operator because highly intense
areas indicate congested corridors and signal a more suitable product reallocation, if
feasible, for better balance. Figure 3 shows the collection of data surrounding the positions
of the group during our emulation. The cells that the robots visit more often are highlighted
at the tiles where the color is more intense. Since the various warehouse products are stored
based on the category to which they belong, we can draw some conclusions. In case (a), we
can see that orders were made from many different items, resulting in the robots moving to
a large part of the warehouse to serve the orders. In case (b), there is increased traffic in a
specific warehouse area. This can be interpreted as ordering products containing products
of similar categories.

Information 2022, 13, 288 8 of 14

Information 2022, 13, 288 8 of 14

of the group during our emulation. The cells that the robots visit more often are
highlighted at the tiles where the color is more intense. Since the various warehouse
products are stored based on the category to which they belong, we can draw some
conclusions. In case (a), we can see that orders were made from many different items,
resulting in the robots moving to a large part of the warehouse to serve the orders. In case
(b), there is increased traffic in a specific warehouse area. This can be interpreted as
ordering products containing products of similar categories.

Figure 3. Heatmap of two different simulations. Case (a) shows orders that provide a different _ of
items. In case (b) there is an increased traffic at a specific area of the warehouse.

4. Methodology and Results
In the first step, the two main pathfinding algorithms (Dijkstra and A*) are tested on

a weighted 40 × 40 grid with a random number of six robots and six tasks. Each algorithm
is executed for every robot-task pair on our grid. Table 2 presents the results with the costs
for A*.

Table 2. A*’s cost results for emulation with six robots and six tasks. The optimal pairs are
highlighted with bold.

 T1 T2 T3 T4 T5 T6
r1 501 301 661 903 966 1070
r2 1103 389 472 127 319 794
r3 795 369 522 1258 782 823
r4 951 515 478 317 197 556
r5 1054 487 755 1606 609 562
r6 556 739 658 695 208 625

We also considered the time each algorithm needed to complete the pathfinding
process. For our tests, both algorithms were executed 100 times for each robot-task pair.
Figure 4 shows the recorded times.

Therefore, it is understood that A* may be more stable and faster in overall
performance time wise, as we can see in Figure 4. However, this advantage is insignificant
compared to Dijkstra’s more efficient pathfinding capabilities. From the examples we
have provided, the total cost of the path that Dijkstra produced is 794, compared to A*’s
cost of 2.245.

Figure 3. Heatmap of two different simulations. Case (a) shows orders that provide a different of
items. In case (b) there is an increased traffic at a specific area of the warehouse.

4. Methodology and Results

In the first step, the two main pathfinding algorithms (Dijkstra and A*) are tested on a
weighted 40 × 40 grid with a random number of six robots and six tasks. Each algorithm is
executed for every robot-task pair on our grid. Table 2 presents the results with the costs
for A*.

Table 2. A*’s cost results for emulation with six robots and six tasks. The optimal pairs are highlighted
with bold.

T1 T2 T3 T4 T5 T6

r1 501 301 661 903 966 1070
r2 1103 389 472 127 319 794
r3 795 369 522 1258 782 823
r4 951 515 478 317 197 556
r5 1054 487 755 1606 609 562
r6 556 739 658 695 208 625

We also considered the time each algorithm needed to complete the pathfinding
process. For our tests, both algorithms were executed 100 times for each robot-task pair.
Figure 4 shows the recorded times.

Information 2022, 13, 288 9 of 14

Figure 4. Running time for Dijkstra (a) and A* (b) for robot-task pairs.

Thus, our implementation proposes a model that combines Dijkstra’s pathfinding
algorithm with the Kuhn–Munkers algorithm. The main steps of the process are:
1. Our emulation has m number of robots that must execute n number of tasks. The

positions of these entities are stored in a table.
2. The cost of every robot-task pair is calculated using Dijkstra’s algorithm.
3. Each distance is stored in an m*n matrix.
4. The Kuhn–Munkers algorithm is executed on this matrix. Each task is assigned to a

robot in the most optimal way.
5. If a path is not feasible energy-wise, the match is discarded, the nearest charging

station of the robot is assigned to the robot, and Step 4 is executed on the same matrix
without the robot that must charge.

6. Dijkstra’s path result for each robot-task is sent to our visualization tool in a JSON-
encoded type.

7. The values of the position table are updated with the new ones.
8. New tasks are generated, and the algorithm repeats until no other tasks are

generated.
These steps are converted into the novel Routing, and Task Allocation (RATA)

algorithm proposed, as shown in Algorithm 1.
Furthermore, in Figure 5, a flow chart showcases the total procedure of the

methodology to help visualize the different steps and explain the connection between
them.

Algorithm 1. Routing and Task Allocation (RATA)
1. function RATA(Robots, Tasks, Grid):
2. while Tasks is not empty:
3. for each robot r in Robots:
4. for each task t in Tasks:
5. matrix[r, t], path[r, t] Dijkstra(r, t)
6. create tuple set matches
7. do
8. not_feasible false
9. matches Hungarian(matrix)
10. for each r, t in matches:
11. if matches[r, t] not feasible:
12. remove r from matches, matrix
13. path[r, t] FindNearestStation®
14. not_feasible True
15. while not_feasible

Figure 4. Running time for Dijkstra (a) and A* (b) for robot-task pairs.

Information 2022, 13, 288 9 of 14

Therefore, it is understood that A* may be more stable and faster in overall perfor-
mance time wise, as we can see in Figure 4. However, this advantage is insignificant
compared to Dijkstra’s more efficient pathfinding capabilities. From the examples we
have provided, the total cost of the path that Dijkstra produced is 794, compared to
A*’s cost of 2.245.

Thus, our implementation proposes a model that combines Dijkstra’s pathfinding
algorithm with the Kuhn–Munkers algorithm. The main steps of the process are:

1. Our emulation has m number of robots that must execute n number of tasks. The
positions of these entities are stored in a table.

2. The cost of every robot-task pair is calculated using Dijkstra’s algorithm.
3. Each distance is stored in an m*n matrix.
4. The Kuhn–Munkers algorithm is executed on this matrix. Each task is assigned to a

robot in the most optimal way.
5. If a path is not feasible energy-wise, the match is discarded, the nearest charging

station of the robot is assigned to the robot, and Step 4 is executed on the same matrix
without the robot that must charge.

6. Dijkstra’s path result for each robot-task is sent to our visualization tool in a JSON-
encoded type.

7. The values of the position table are updated with the new ones.
8. New tasks are generated, and the algorithm repeats until no other tasks are generated.

These steps are converted into the novel Routing, and Task Allocation (RATA) algo-
rithm proposed, as shown in Algorithm 1.

Algorithm 1: Routing and Task Allocation (RATA)

1. function RATA(Robots, Tasks, Grid):
2. while Tasks is not empty:
3. for each robot r in Robots:
4. for each task t in Tasks:
5. matrix[r, t], path[r, t]← Dijkstra(r, t)
6. create tuple set matches
7. do
8. not_feasible← false
9. matches← Hungarian(matrix)
10. for each r, t in matches:
11. if matches[r, t] not feasible:
12. remove r from matches, matrix
13. path[r, t]← FindNearestStation®

14. not_feasible← True
15. while not_feasible
16. for each r, t in path:
17. Visualize(path[r, t])
18. Robots[r]← Task[t]
19. Tasks[t]← GenerateNewTasks()

Furthermore, in Figure 5, a flow chart showcases the total procedure of the methodol-
ogy to help visualize the different steps and explain the connection between them.

More specifically, our model is tested in a system with six robots with the same battery
and six tasks in a 40 × 40 warehouse grid. The first two repeats of the main steps are
analyzed in the following paragraphs. The initial state of the grid is shown in Figure 6, and
the position tables for robots and tasks are shown in Table 3.

After having computed each pair’s path cost, they were stored in Table 4 which shows
the results of Dijkstra’s algorithm. When the matrix became full, the Kuhn–Munkers
algorithm was executed on it. Its results are highlighted on the matrix in bold.

Information 2022, 13, 288 10 of 14

Information 2022, 13, 288 10 of 14

16. for each r, t in path:
17. Visualize(path[r, t])
18. Robots[r] Task[t]
19. Tasks[t] GenerateNewTasks()

Figure 5. Overall flow chart of the methodology.

More specifically, our model is tested in a system with six robots with the same
battery and six tasks in a 40 × 40 warehouse grid. The first two repeats of the main steps
are analyzed in the following paragraphs. The initial state of the grid is shown in Figure
6, and the position tables for robots and tasks are shown in Table 3.

Table 3. Position table with each position represented by a (x,y) tuple.

Robot Position Task Position
r1 (8,1) T1 (7,13)
r2 (13,40) T2 (14,25)
r3 (18,1) T3 (17,25)
r4 (23,40) T4 (19,37)
r5 (28,1) T5 (27,28)
r6 (33,40) T6 (29,18)

Figure 5. Overall flow chart of the methodology.

Information 2022, 13, 288 11 of 14

Figure 6. Initial state of the grid.

After having computed each pair’s path cost, they were stored in Table 4 which
shows the results of Dijkstra’s algorithm. When the matrix became full, the Kuhn–
Munkers algorithm was executed on it. Its results are highlighted on the matrix in bold.

Table 4. Dijkstra’s cost results for emulation with six robots and six tasks. The bold numbers indicate
the selected task for each robot.

 T1 T2 T3 T4 T5 T6
r1 130 264 257 374 343 275
r2 255 126 149 101 201 262
r3 177 240 213 319 259 191
r4 323 195 162 68 128 189
r5 224 284 250 334 202 133
r6 373 283 234 179 124 180

The six paths that resulted from the assignment were sent to the visualization
software, as shown in Figure 7.

Figure 6. Initial state of the grid.

Information 2022, 13, 288 11 of 14

Table 3. Position table with each position represented by a (x,y) tuple.

Robot Position Task Position

r1 (8,1) T1 (7,13)
r2 (13,40) T2 (14,25)
r3 (18,1) T3 (17,25)
r4 (23,40) T4 (19,37)
r5 (28,1) T5 (27,28)
r6 (33,40) T6 (29,18)

Table 4. Dijkstra’s cost results for emulation with six robots and six tasks. The bold numbers indicate
the selected task for each robot.

T1 T2 T3 T4 T5 T6

r1 130 264 257 374 343 275
r2 255 126 149 101 201 262
r3 177 240 213 319 259 191
r4 323 195 162 68 128 189
r5 224 284 250 334 202 133
r6 373 283 234 179 124 180

The six paths that resulted from the assignment were sent to the visualization software,
as shown in Figure 7.

Information 2022, 13, 288 12 of 14

Figure 7. Map after the first step of our method was executed.

Table 5 shows the final positions of the robots, and Table 6 shows the costs from new
robot positions. Furthermore, Figure 8 depicts the environment after the execution of the
last step. As we can see, the paths may cover one another. However, in reality, there are
no robot collisions as we calculate each path at different executing cycles, considering that
a robot could be an obstacle for other robots.

To sum up, the proposed methodology is shown in Figure 9 as a multi-client system
with a server that receives the data, executes the procedure steps, and returns the client’s
images as output.

Table 5. Updated position table after the final step was executed.

Robot Position Task Position
r1 (7,13) ST1 (2,10)
r2 (14,25) ST2 (2,11)
r3 (17,25) ST3 (2,12)
r4 (19,37) ST4 (39,29)
r5 (29,18) ST5 (39,30)
r6 (27,28) ST6 (39,31)

Table 6. New matrix showing the optimal pairs with bold, from new robot positions to delivery
station tasks.

 ST1 ST2 ST3 ST4 ST5 ST6
r1 54 56 58 350 339 351
r2 201 191 189 270 257 269
r3 208 198 196 233 220 232
r4 285 274 272 229 216 228
r5 232 234 236 141 143 155
r6 288 290 289 109 96 108

Figure 7. Map after the first step of our method was executed.

Table 5 shows the final positions of the robots, and Table 6 shows the costs from new
robot positions. Furthermore, Figure 8 depicts the environment after the execution of the
last step. As we can see, the paths may cover one another. However, in reality, there are no
robot collisions as we calculate each path at different executing cycles, considering that a
robot could be an obstacle for other robots.

Information 2022, 13, 288 12 of 14

Table 5. Updated position table after the final step was executed.

Robot Position Task Position

r1 (7,13) ST1 (2,10)
r2 (14,25) ST2 (2,11)
r3 (17,25) ST3 (2,12)
r4 (19,37) ST4 (39,29)
r5 (29,18) ST5 (39,30)
r6 (27,28) ST6 (39,31)

Table 6. New matrix showing the optimal pairs with bold, from new robot positions to delivery
station tasks.

ST1 ST2 ST3 ST4 ST5 ST6

r1 54 56 58 350 339 351
r2 201 191 189 270 257 269
r3 208 198 196 233 220 232
r4 285 274 272 229 216 228
r5 232 234 236 141 143 155
r6 288 290 289 109 96 108

Information 2022, 13, 288 13 of 14

Figure 8. Map after the second step of our method was executed.

Figure 9. Total procedure of the methodology.

5. Conclusions and Future Work
This article deals with the increasing need for robotic fleets inside warehouse

environments and presents ideas that improve efficiency in a smart-warehouse
environment. Various pathfinding and task-allocation algorithms are studied, and our
research elaborates more on Dijkstra’s and Kuhn–Munkers algorithms. The proposed
model contains a hybrid combination of these two algorithms. This model plans to
provide robots with fast and intelligent navigation inside the warehouse’s map and
efficiently complete every task requested. Furthermore, our team developed a
visualization software that accepts JSON encoded data from the preceding method and
provides a user-friendly visualization of the warehouse’s map.

The experiments that we conducted using the simulated warehouse environment
were positive. However, due to the nature of our experimental setup and the
implementation of our algorithm, we could not accurately measure the scalability of the
system. More specifically, we have not yet simulated more complex environments,
consisting of hundreds of robots and possibly thousands of simultaneously running tasks.
Therefore, we cannot yet present metrics and numbers regarding our algorithm’s
performance in these complex yet important environments.

Figure 8. Map after the second step of our method was executed.

To sum up, the proposed methodology is shown in Figure 9 as a multi-client system
with a server that receives the data, executes the procedure steps, and returns the client’s
images as output.

Information 2022, 13, 288 13 of 14

Information 2022, 13, 288 13 of 14

Figure 8. Map after the second step of our method was executed.

Figure 9. Total procedure of the methodology.

5. Conclusions and Future Work
This article deals with the increasing need for robotic fleets inside warehouse

environments and presents ideas that improve efficiency in a smart-warehouse
environment. Various pathfinding and task-allocation algorithms are studied, and our
research elaborates more on Dijkstra’s and Kuhn–Munkers algorithms. The proposed
model contains a hybrid combination of these two algorithms. This model plans to
provide robots with fast and intelligent navigation inside the warehouse’s map and
efficiently complete every task requested. Furthermore, our team developed a
visualization software that accepts JSON encoded data from the preceding method and
provides a user-friendly visualization of the warehouse’s map.

The experiments that we conducted using the simulated warehouse environment
were positive. However, due to the nature of our experimental setup and the
implementation of our algorithm, we could not accurately measure the scalability of the
system. More specifically, we have not yet simulated more complex environments,
consisting of hundreds of robots and possibly thousands of simultaneously running tasks.
Therefore, we cannot yet present metrics and numbers regarding our algorithm’s
performance in these complex yet important environments.

Figure 9. Total procedure of the methodology.

5. Conclusions and Future Work

This article deals with the increasing need for robotic fleets inside warehouse envi-
ronments and presents ideas that improve efficiency in a smart-warehouse environment.
Various pathfinding and task-allocation algorithms are studied, and our research elaborates
more on Dijkstra’s and Kuhn–Munkers algorithms. The proposed model contains a hybrid
combination of these two algorithms. This model plans to provide robots with fast and
intelligent navigation inside the warehouse’s map and efficiently complete every task
requested. Furthermore, our team developed a visualization software that accepts JSON
encoded data from the preceding method and provides a user-friendly visualization of the
warehouse’s map.

The experiments that we conducted using the simulated warehouse environment were
positive. However, due to the nature of our experimental setup and the implementation
of our algorithm, we could not accurately measure the scalability of the system. More
specifically, we have not yet simulated more complex environments, consisting of hundreds
of robots and possibly thousands of simultaneously running tasks. Therefore, we cannot
yet present metrics and numbers regarding our algorithm’s performance in these complex
yet important environments.

Although this work gives significant insight into how a warehouse and its entities
operate, there are always open areas for more research. In future work, our routing and
task-allocation algorithms can be developed and proposed, allowing us to cover the needs
we specifically want. Moreover, another idea is to predict possible future tasks, and not
with a linear method like this study’s philosophy. Finally, the research team aims to expand
its interests to the field of wireless charging and how this technology can be used in a
smart-warehouse system.

Author Contributions: Methodology, A.C.; software, A.C. and P.C.; formal analysis, A.C.; inves-
tigation, P.C.; resources, M.D.; writing—original draft preparation, A.C., P.C. and D.Z.; writing—
review and editing, A.C., P.C. and D.Z.; visualization, P.C.; supervision, M.D.; project administra-
tion, A.C.; funding acquisition, M.D. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ben-Ari, M.; Mondada, F. Elements of Robotics; Springer: Berlin/Heidelberg, Germany, 2017.
2. Belanche, D.; Casaló, L.V.; Flavián, C.; Schepers, J. Service Robot Implementation: A Theoretical Framework and Research

Agenda. Serv. Ind. J. 2020, 40, 203–225. [CrossRef]
3. Bogue, R. Growth in E-Commerce Boosts Innovation in the Warehouse Robot Market. Ind. Robot. 2016, 43, 583–587. [CrossRef]

http://doi.org/10.1080/02642069.2019.1672666
http://doi.org/10.1108/IR-07-2016-0194

Information 2022, 13, 288 14 of 14

4. Zhou, L.; Liu, J.; Fan, X.; Zhu, D.; Wu, P.; Cao, N. Design of V-Type Warehouse Layout and Picking Path Model Based on Internet
of Things. IEEE Access 2019, 7, 58419–58428. [CrossRef]

5. de Koster, R.; Le-Duc, T.; Jan Roodbergen, K.; Koster, D. Design and Control of Warehouse Order Picking: A Literature Review.
Eur. J. Oper. Res. 2007, 182, 481–501. [CrossRef]

6. Lavalle, S.M. Planning Algorithms; Cambridge University Press: Cambridge, UK, 2006.
7. Grünewald, M.; Rückert, U.; Schindelhauer, C.; Volbert, K. Directed Power-Variable Infrared Ommunication for the Mini Robot

Khepera. In Proceedings of the 2nd International Conference on Autonomous Minirobots for Research and Edutainment, Brisbane,
Australia, 18–20 February 2003.

8. Wang, J.; Hu, M.; Cai, C.; Lin, Z.; Li, L.; Fang, Z. Optimization Design of Wireless Charging System for Autonomous Robots Based
on Magnetic Resonance Coupling. AIP Adv. 2018, 8, 055004. [CrossRef]

9. Sifa, R.; Bauckhage, C.; Drachen, A. The Playtime Principle: Large-Scale Cross-Games Interest Modeling. In Proceedings of the
IEEE Conference on Computatonal Intelligence and Games, CIG, Dortmund, Germany, 26–29 August 2014.

10. Bolu, A.; Korcak, O. Adaptive Task Planning for Multi-Robot Smart Warehouse. IEEE Access 2021, 9, 27346–27358. [CrossRef]
11. Xue, F.; Tang, H.; Su, Q.; Li, T. Task Allocation of Intelligent Warehouse Picking System Based on Multi-Robot Coalition. KSII Trans.

Internet Inf. Syst. 2019, 13, 3566–3582. [CrossRef]
12. Pinkam, N.; Bonnet, F.; Chong, N.Y. Robot Collaboration in Warehouse. In Proceedings of the International Conference on Control,

Automation and Systems, Gyeongju, Korea, 16–19 October 2016; pp. 269–272.
13. Wei, C.; Hindriks, K.V.; Jonker, C.M. Dynamic Task Allocation for Multi-Robot Search and Retrieval Tasks. Appl. Intell. 2016, 45,

383–401. [CrossRef]
14. Stefek, A.; van Pham, T.; Krivanek, V.; Pham, K.L. Energy Comparison of Controllers Used for a Differential Drive Wheeled

Mobile Robot. IEEE Access 2020, 8, 170915–170927. [CrossRef]
15. Berggren, M.; Vester, S.; Villadsen, J. LNAI 7217—Implementing a Multi-Agent System in Python with an Auction-Based Agree-

ment Approach. In International Workshop on Programming Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2011.
16. Alberto, M.; Ruiz, A. An Innovative System for Electrical Vehicular Charging in Urban Zone: Conception, Dimensioning, and

Performance Evaluation. Doctoral Dissertation, Télécom ParisTech, Palaiseau, France, 2015.
17. Kosmanos, D.; Maglaras, L.A.; Mavrovouniotis, M.; Moschoyiannis, S.; Argyriou, A.; Maglaras, A.; Janicke, H. Route Optimization

of Electric Vehicles Based on Dynamic Wireless Charging. IEEE Access 2018, 6, 42551–42565. [CrossRef]

http://doi.org/10.1109/ACCESS.2019.2913144
http://doi.org/10.1016/j.ejor.2006.07.009
http://doi.org/10.1063/1.5030445
http://doi.org/10.1109/ACCESS.2021.3058190
http://doi.org/10.3837/tiis.2019.07.013
http://doi.org/10.1007/s10489-016-0771-5
http://doi.org/10.1109/ACCESS.2020.3023345
http://doi.org/10.1109/ACCESS.2018.2847765

	Introduction
	Elements of the Smart-Warehouse Algorithm
	Routing Algorithms
	Task-Allocation Algorithms
	Energy Consumption Optimization

	Visualization Software
	Methodology and Results
	Conclusions and Future Work
	References

