
Citation: Duo, C.; Dong, P.; Gao, Q.;

Li, B.; Li, Y. MEC Computation

Offloading-Based Learning Strategy

in Ultra-Dense Networks. Information

2022, 13, 271. https://doi.org/

10.3390/info13060271

Academic Editors: Theofilos

Chrysikos and Lorenzo Mucchi

Received: 1 April 2022

Accepted: 9 May 2022

Published: 25 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

MEC Computation Offloading-Based Learning Strategy in
Ultra-Dense Networks
Chunhong Duo 1,2,*, Peng Dong 1 , Qize Gao 1, Baogang Li 3,4 and Yongqian Li 3,4

1 Department of Computer, North China Electric Power University, Baoding 071003, China;
dongpeng9624@163.com (P.D.); gaoqize@ncepu.edu.cn (Q.G.)

2 Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education,
Baoding 071003, China

3 Department of Electronic and Communication Engineering, North China Electric Power University,
Baoding 071003, China; baogangli@ncepu.edu.cn (B.L.); 52151708@ncepu.edu.cn (Y.L.)

4 Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University,
Baoding 071003, China

* Correspondence: duochunhong@163.com

Abstract: Mobile edge computing (MEC) has the potential to realize intensive applications in 5G
networks. Through migrating intensive tasks to edge servers, MEC can expand the computing
power of wireless networks. Fifth generation networks need to meet service requirements, such
as wide coverage, high capacity, low latency and low power consumption. Therefore, the network
architecture of MEC combined with ultra-dense networks (UDNs) will become a typical model in the
future. This paper designs a MEC architecture in a UDN, which is our research background. First,
the system model is established in the UDN, and the optimization problems is proposed. Second,
the action classification (AC) algorithm is utilized to filter the effective action in Q-learning. Then,
the optimal computation offloading strategy and resource allocation scheme are obtained using
a deep reinforcement learning-based AC algorithm, which is known as the DQN-AC algorithm.
Finally, the simulation experiments show that the proposed DQN-AC algorithm can effectively
reduce the system weighted cost compared with the full local computation algorithm, full offloading
computation algorithm and Q-learning algorithm.

Keywords: mobile edge computing; ultra-dense network; computation offloading; deep reinforce-
ment learning

1. Introduction

In recent years, with the vigorous development of mobile internet and pervasive
computation, the number of mobile users has increased rapidly, and an increasing number
of users select compute-intensive applications [1]. At present, 5G networks are rising to
support the massive connections between humans, machines and various services. The
rapid development of new application fields, such as interactive games, augmented reality,
virtual reality, driverless cars and smart grid, in 5G networks requires stronger computing
power and higher energy efficiency [2]. For users, they pose higher requirements for
indicators, such as computation latency, energy consumption and the number of equipment
connections [3]. Mobile user devices (MUDs), such as mobile phones, laptops and tablets,
have limited battery power and computing capacity. It is difficult for MUDs to meet these
requirements, and they may not be able to process a large number of applications in a short
time. More importantly, due to their limited battery power, it has become an obstacle for
MUDs to provide higher requirements. Similarly, they cannot meet the needs of ultra-low
delay, ultra-low energy consumption and high reliability in 5G scenarios [4].

To solve this problem, a feasible solution is to offload these compute-intensive tasks to
the remote centralized cloud, which provides computing power and storage resources [5].

Information 2022, 13, 271. https://doi.org/10.3390/info13060271 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13060271
https://doi.org/10.3390/info13060271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3226-5594
https://doi.org/10.3390/info13060271
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13060271?type=check_update&version=2

Information 2022, 13, 271 2 of 15

The task of uploading to the cloud requires more computation time, which leads to a
longer delay. Mobile edge computing (MEC) deploys computing and storage resources at
the edge of mobile networks, and provides service environments and cloud computing
capabilities for MUDs with ultra-low latency and high bandwidth [6]. As one of the key
technologies in MEC, computation offloading sends all or some of the computing tasks
to MEC servers through a wireless channel, to solve the deficiencies of MUDs in resource
storage, computing performance and energy efficiency [7].

Ultra-dense network (UDN) technology achieves a hundredfold increase in system
capacity in local hot spots [8]. Through deploying more low-power small base stations
in UDNs, space multiplexing is improved, and end-to-end transmission delay is reduced.
UDNs can also reduce the pressure of large-scale mobile connections, thus improving the
overall performance of the network [9]. At present, the UDN is becoming an effective
solution to improve data traffic by up to 1000 times and user experience rate by up to 10 to
100 times in 5G networks [10], and UDNs combined with MEC network architecture will
become a typical model of wireless networks [11].

In a MEC architecture-based UDN, MUDs are covered by multiple small base stations,
and they can access multiple MEC servers at the same time. MEC servers have different
resources and transmission environments, which leads to the problem of resource com-
petition and MEC server selection [12]. Therefore, it is of great significance to select the
offloading MEC server and allocate computing resources to meet the service requirements.

This paper studies the problems of MEC computation offloading and resource alloca-
tion in the UDN scenario. Considering the impact of computing resource and task delay
constraints on system performance, the joint optimization of computation offloading and
resource allocation is analyzed and discussed. The main contributions are as follows:

(1) A MEC architecture-based UDN is designed, and a task weighted cost model based
on execution delay and energy consumption is established. The task offloading and
resource allocation are combined into an NP-hard optimization problem.

(2) An action classification (AC) algorithm is developed to select the most suitable edge
server, which can reduce the possible values of offloading decisions and improve
learning efficiency.

(3) A deep Q network-based AC algorithm (DQN-AC) is proposed to solve the task
offloading and resource allocation problems. First, according to the execution delay
and computing resource constraints, the AC algorithm is adopted to select effective
actions. Then, the DQN algorithm is used to solve the optimization problem, and
the optimal task offloading and resource allocation scheme is obtained through finite
iterations.

The remainder of this paper is organized as follows. We review the related work in
Section 2. Section 3 describes the system model and problem formulation. In Section 4, the
proposed DQN learning strategy with action classification is described in detail. Section 5
presents extensive simulation experiments and results to evaluate the performance of the
DQN-AC. Finally, Section 6 concludes this paper.

2. Related Work

Researchers have proposed some computation offloading and resource allocation
schemes for different optimization objectives. In general, relevant research has been carried
out with three goals: to reduce execution delay, to reduce energy consumption and to reduce
the total cost of weighed time delay and energy consumption. To reduce execution delay,
in Ref. [13], the problem of mobile user equipment performing offloading calculations in
computing tasks is studied, and the Markov process method is adopted to deal with the
problem. Online task offloading methods aiming at optimizing delay are proposed. In
Ref. [14], the low complexity online algorithm optimized by Lyapunov is used to solve the
offloading decision problem. In Ref. [15], an online computation offloading mechanism is
designed to minimize the average expected execution delay of tasks under the constraint of
average energy consumption in the moving edge computing system. In [16], how to quickly

Information 2022, 13, 271 3 of 15

solve the problem of task offloading decisions and resource allocation joint optimization
in channel coherence time is studied, and an online offloading algorithm based on deep
reinforcement learning is proposed. Simulation results show that the three algorithms can
effectively reduce the execution delay. In Ref. [17], the application scenarios of the Internet
of Things is studied, and execution latency is reduced by reasonably allocating computing
resources for computing tasks, and a complete polynomial-time approximation scheme
is proposed. In Ref. [18], the offloading calculation problem of delay sensitivity of the
Internet of Things is studied, and an iterative heuristic algorithm is proposed to dynamically
allocate resources. In Ref. [19], computing offloading and resource allocation are addressed
in multiple mobile user systems. In Ref. [20], the application of MEC technology in regional
distribution networks is considered, and an asynchronous dominant participant-critic
algorithm is proposed.

The above literature all focuses offloading decisions to reduce time delay. However,
the battery capacity of MUDs is low, which may influence the offloading policy. Researchers
continue to explore and study offloading decisions to minimize energy consumption. In
Ref. [21], a D2D-assisted MEC system is considered to improve equipment energy efficiency.
In Ref. [22], the computation offloading problem of a MEC system based on a cooperative
multi-carrier relay is studied, and an efficient energy consumption optimization algorithm
is proposed. In Ref. [23], the computing offloading problem of moving edge computing in
the scenario of the Internet of Vehicles is studied, and a game algorithm based on a deep Q
network is proposed. Additionally, deep reinforcement learning is adopted to minimize
the energy consumption of MEC systems. In Ref. [24], the joint optimization of computing
offloading and resource allocation in multi-user dynamic MEC systems is studied, and a
dual depth Q network algorithm is proposed to minimize the energy consumption of MEC
systems. In Ref. [25], the computational offloading of IoT devices in a dynamic MEC system
composed of multiple edge servers is studied, and an end-to-end deep reinforcement
learning method is proposed.

There are also many studies on how to develop computation offloading strategies that
balance execution delay and energy consumption. In Ref. [26], the offloading scheduling
problem of multiple independent tasks in the MEC system is studied, and a low complexity
suboptimal algorithm with alternating minimization is proposed. In Ref. [27], computing
offloading and resource allocation in multi-user and multi-task scenarios are addressed.
In Ref. [28], the computation offloading problem of multi-user MEC systems is studied,
and [28,29] take the combined time delay and the weighted sum cost of energy consumption
as the optimization objectives. The offloading strategy based on the deep reinforcement
learning algorithm is utilized. In Ref. [30], the MEC network for the intelligent Internet
of Things is considered, and the offloading decision is automatically learned by the DQN
algorithm to optimize the system performance. Task offloading and cache integration are
described as a nonlinear problem in Ref. [31], which is solved by the Q-learning and DQN
algorithms. An optimization framework of wireless MEC resource allocation based on
reinforcement learning was proposed in Ref. [32], and Q-learning and DQN algorithms
were, respectively, used in simulation experiments. In contrast to the single-channel MEC
system in Ref. [32], multi-user and multi-channel MEC systems are designed in Ref. [33].

A comparative analysis of the previous work is illustrated in Table 1. In general, most
of these works focused on the offloading problem in MEC. In this paper, we focus on a
MEC scenario in a UDN, where heterogeneous computational tasks with random arrivals
require scheduling to different edge servers with varying delay constraints, and propose
an improved DQN-AC algorithm to optimize the long-term utility of the whole system.

Information 2022, 13, 271 4 of 15

Table 1. The comparative analysis of different work (“+”: involved; “−”: not involved).

Ref.

Constraints Infrastructure

Method
Time Delay Energy

Consumption
Multiple

Users
Multiple Edge

Servers
Cloud
Server

[15] + + + + − lyapunov optimization

[16] + + + − − deep Reinforcement learning

[18] + − + + + iterative heuristic

[21] + + + − − iterative algorithm

[22] + + − − − convex approximation

[24] − + + − − double deep Q network

[25] − + + + + deep Reinforcement Learning

[27] + + + − + semidefinite relaxation approach

[29] + + + − − exact line search algorithm

[30] + + + + − deep reinforcement learning

this paper + + + + − deep reinforcement learning

3. Problem Formulation

The major abbreviations and symbols used in this paper are defined in Tables 2 and 3,
respectively.

Table 2. List of abbreviations.

Abbreviation Description

MEC Mobile Edge Computing
UDN Ultra-Dense Network
MUD Mobile User Device
DRL Deep Reinforcement Learning
DQN Deep Q Network
AC Action Classification
DQN-AC Deep Q Network with Action Classification
FLC Full Local Computation
FOC Full Offloading Computation

Table 3. Symbol definitions.

Symbol Definition

N the set of all MUDs
S the set of all MEC servers
an,s whether MUD n chooses MEC server s for computation offloading
rn,s the data transmission rate of MUD n accessing to MEC server s
W the wireless channel bandwidth
pn,s the transmission power
gn,s the channel gain
Ad the antenna gain
fc the carrier frequency
ln,s the distance between MUD n and MEC server s
ξ the path loss exponent
σ2 the white Gaussian noise
Rn the intensive task of MUD n
Bn the data size of task Rn
Dn the total number of CPU cycles required for completing the task

Information 2022, 13, 271 5 of 15

Table 3. Cont.

Symbol Definition

Tmax
n the maximum delay for computing task Rn

Tl
n, Te

n,s local or edge execution delay
El

n, Te
n,s local or edge energy consumption

Cl
n, Ce

n,s the weighted cost of local computing or edge computing
f l
n the local computing power of MUD n

zn energy consumption density
θ1, θ2 the weight parameters of execution delay and energy consumption

3.1. System Model

As shown in Figure 1, the system model under the UDN scenario consists of multiple
small base stations and multiple MUDs. Each small base station is equipped with a MEC
server, named a MEC small base station. All MEC small base stations cover their service
areas in an overlapping manner. The set of all MUDs and MEC servers is defined as
N = {1, 2, . . . , N} and S = {1, 2, . . . , S}. In the UDN scenario, it is assumed that each
MUD has a compute-intensive task, and all computing tasks can be offloaded to one MEC
server through the wireless channel. Due to the ultra-dense coverage of small base stations,
MUDs will be in the service areas of multiple small base stations. To achieve the minimum
system cost, small base stations communicate with each other to determine who performs
the computing tasks, and then transmit it to the corresponding MEC server for processing.

Information 2022, 13, x FOR PEER REVIEW 6 of 19

max
nT

the maximum delay for computing task nR

n
lT , ,

e
n sT

local or edge execution delay

l
nE , ,

e
n sT

local or edge energy consumption

l
nC , ,

e
n sC

the weighted cost of local computing or edge computing

l
nf

the local computing power of MUD n

nz energy consumption density

1 , 2
the weight parameters of execution delay and energy consumption

3.1. System Model

As shown in Figure 1, the system model under the UDN scenario consists of multiple

small base stations and multiple MUDs. Each small base station is equipped with a MEC

server, named a MEC small base station. All MEC small base stations cover their service

areas in an overlapping manner. The set of all MUDs and MEC servers is defined as

{1,2,..., }NΝ and {1,2,..., }SS . In the UDN scenario, it is assumed that each MUD has a

compute‐intensive task, and all computing tasks can be offloaded to one MEC server

through the wireless channel. Due to the ultra‐dense coverage of small base stations,

MUDs will be in the service areas of multiple small base stations. To achieve the minimum

system cost, small base stations communicate with each other to determine who performs

the computing tasks, and then transmit it to the corresponding MEC server for processing.

Figure 1. The system model under ultra‐dense network scenario.

3.2. Communication Model

The offloading decision variable is defined as , 0,1n sa , indicating whether MUD

n chooses the MEC server s for computation offloading. If the MUD n chooses to
offload, the data transmission rate of access to the MEC server s can be expressed as:

, ,
, 2 2

, ,1, 1,

log (1)n s n s
n s n S N

j s j sk k s j j n

p g
r a W

p g

 (1)

where ,
1

{0,1}
S

n n s
s

a a

 ; W is the wireless channel bandwidth; ,n sp represents

the transmission power of the MUD n for uploading data; 2 is white Gaussian

Figure 1. The system model under ultra-dense network scenario.

3.2. Communication Model

The offloading decision variable is defined as an,s ∈ {0, 1}, indicating whether MUD n
chooses the MEC server s for computation offloading. If the MUD n chooses to offload, the
data transmission rate of access to the MEC server s can be expressed as:

rn,s = anW log2(1 +
pn,sgn,s

σ2 + ∑S
k=1,k 6=s ∑N

j=1,j 6=n pj,sgj,s
) (1)

where an =
S
∑

s=1
an,s = {0, 1}; W is the wireless channel bandwidth; pn,s represents the

transmission power of the MUD n for uploading data; σ2 is white Gaussian noise during
data transmission; and gn,s is the channel gain in the wireless channel, which is expressed
by (2).

gn,s = Ad(
3 · 108

4π fcln,s
)

ξ

(2)

where Ad denotes the antenna gain, fc denotes the carrier frequency, and ln,s is the distance
between MUD n and MEC server s and ξ is the path loss exponent [16].

Information 2022, 13, 271 6 of 15

3.3. Computation Model

Assume the intensive task of MUD n is Rn = {Bn, Dn,Tmax
n }, where Bn is the data size,

Dn is the total number of CPU cycles required for completing the task, and Tmax
n indicates

the maximum delay for computing task Rn; that is, the task latency of each MUD cannot
exceed Tmax

n . The task can be executed using a local computing model or edge computing
model, which are introduced in the following sections.

3.3.1. The Local Computing Model

If the MUD n chooses to perform Rn locally, the cost includes local execution delay
Tl

n and energy consumption El
n. f l

n is defined as the local computing power of the MUD n,
which is expressed by the CPU cycles per second.

The local execution delay is:

Tl
n =

Dn

f l
n

(3)

The local energy consumption is:

El
n = zn(f l

n)
2
Dn (4)

In the above equation, zn is energy consumption density, and specific values can be
obtained according to [34]. The parameter gaps of zn between different equipment kinds
are very small. The weighted cost of local computing is:

Cl
n = θ1Tl

n + θ2El
n (5)

where 0 ≤ θ1, θ2 ≤ 1 represent the weight parameters of execution delay and energy
consumption, respectively.

3.3.2. The Local Computing Model

The MUD n chooses to perform the task through a MEC small base station. The whole
execution process includes three parts: First, the MUD n needs to upload data to the small
base station s, then from the small base station to the MEC server. Second, the MEC server
allocates certain computing resources to perform the task. Finally, the MEC server returns
the result to the MUD n.

According to the above process, the first part is the transmission delay, which is
expressed as:

Tu
n,s =

Bn

rn,s
(6)

The energy consumption corresponding to the first part is:

Eu
n,s = pn,sTu

n,s =
pn,sBn

rn,s
(7)

The second part is the processing delay of the MEC server. fn,s is the computing re-
sources allocated by the MEC server s for MUD n. The processing delay can be expressed as:

Tc
n,s =

Dn

fn,s
(8)

The MUD n waits while the MEC server performs the task. The idle power of the
mobile user’s device in this state is set to Pw

n ; then, the energy consumption during this
period is:

Ew
n,s = Pw

n Tc
n,s =

Pw
n Dn

fn,s
(9)

For the last part, according to [35], the return rate of the wireless network is generally
much higher than that of the offloaded data, and the execution result is much smaller

Information 2022, 13, 271 7 of 15

than that of the input data. The execution delay and energy consumption are, therefore,
generally ignored. The execution delay and energy consumption are, respectively:

Te
n,s = Tu

n,s + Tc
n,s =

Bn

rn,s
+

Dn

fn,s
(10)

Ee
n,s = Ee

n,s + Ew
n,s =

pn,sBn

rn,s
+

Pw
n Dn

fn,s
(11)

In sum, the weighted cost of edge computing is:

Ce
n,s = θ1Te

n,s + θ2Ee
n,s (12)

According to Equations (2)–(11), the weighted cost of all users can be obtained; namely,
the system objective function is:

Call =
N

∑
n=1
{(1−∑s∈S an,s)Cl

n+∑s∈S an,sCe
n,s} (13)

3.4. Problem Formulation

To minimize the total system cost, it is necessary to find the best offloading decision
and resource allocation scheme. The problem is described as follows:

minCall
(A, f)

(A, f) = min
(A, f)

N
∑

n=1
{(1−∑s∈S an,s)Cl

n+∑s∈S an,sCe
n,s}

s.t. C1 : an,s ∈ {0, 1}, ∀n ∈ N, ∀s ∈ S
C2 : ∑

s∈S
an,s ≤ 1, ∀s ∈ S

C3 : Tl
n, Te

n,s ≤ Tmax
n , ∀n ∈ N, ∀s ∈ S

C4 : fn,s ≥ 0, ∀n ∈ N, ∀s ∈ S

C5 :
S
∑

s=1
fn,s ≤ f max

s , ∀s ∈ S

(14)

In Equation (14), A = {a1, a2, . . . , aN} is the offloading decision vector, and f =
{ f1, f2, . . . , fN} is the resource allocation vector. C1 and C2 indicate that each MUD performs
the task only by local computing or by edge computing, respectively. C3 means neither
local computing delay nor edge computing delay can exceed the maximum tolerance delay
Tmax

n . C4 and C5 indicate that the computing resources allocated to MUDs are non-negative,
and the total allocated resources cannot exceed f max

s .
The reasons that the optimization function is difficult to solve directly are as fol-

lows: Equation (14) is a mixed integer nonlinear programming problem. The existence
of binary variables makes them nonconvex functions, which cannot be solved via the
conventional solution of convex optimization. At the same time, the complexity of the
optimization function is too high. If the two optimization variables (A = {a1, a2, . . . , aN}
and f = { f1, f2, . . . , fN}) are binary variables, the complexity of the original optimization
problem is O (N2).

4. Proposed Method

Based on the above problem model, DRL was adopted to solve the problem. On
the one hand, reinforcement learning allows agents to obtain rewards in the process of
interaction with the environment in a “trial and error” manner to guide behavior and
improve decision making, which is suitable for the joint optimization of offloading decision
and resource allocation in this model. On the other hand, deep learning can avoid the
storage difficulties caused by excessive state space and action space. In this paper, we
utilized the deep Q network (DQN), which is a typical DRL algorithm, to solve the problem.
Combined with the problem model, the three elements of DQN are defined in detail:

Information 2022, 13, 271 8 of 15

state, action and reward. Then, an action classification (AC) algorithm was proposed to
filter effective execution actions, which partially improved the DQN, named the DQN-
AC algorithm. The offloading decision and resource allocation scheme-based DQN-AC
algorithm was proposed to minimize the objective function.

4.1. The Definition of State, Action and Reward

DQN is made up of a deep neural network and value-based Q-learning algorithm. Q
is Q(S, a), which represents the expectation that action a can be selected under the state S at
a certain moment. The environment responds to the agent’s actions with a reward R(S, a).

The system state S consists of two parts S = (X, Y). X = Call represents the system
cost. Y = {y1, y2, . . . , yS} indicates the idle resource on each MEC server. We can obtain ys
from (15).

ys = f max
s −

N

∑
n=1

fn,s, s ∈ S (15)

The system action is defined as a = {a1, a2, . . . , aN , f1, f2, . . . , fN}, which combines
the offloading decision vector A = {a1, a2, . . . , aN} and the resource allocation vector
f = { f1, f2, . . . , fN}. The reward function is set to R(S, a) which is expressed by (16).

R(S, a) =
Xlocal − X(S, a)

Xlocal
(16)

The larger the R(S, a), the smaller the X(S, a) in the current state.

4.2. Action Classification Algorithm

According to the constraint conditions C4 and C5, the AC algorithm was added to the
action selection part of the DQN algorithm to filter effective actions and improve learning
efficiency. The process of AC algorithm is described in Algorithm 1:

Algorithm 1 AC algorithm

input st, at
output bool //reasonable judgment of Boolean value by action
initialization bool = False
if an,s = 0 // UM chooses to perform calculations locally

if Tl
n ≤ Tn

max // whether local computing latency constraints are met
bool = True // action allows execution
else:

an,s = 1
if an,s = 1 //offloading computation

if s = j // select the j-th MEC for offloading computation
if Te

n,s > Tn
max

bool = False

elif Te
n,s ≤ Tmax

n and
N
∑

n=1
fn,s > Fs:

bool = False
else

s! = j //select new MEC small base station
else

if Te
n,s ≤ Tmax

n and
N
∑

n=1
fn,s ≤ Fs:

bool = True
end if

4.3. DQN-AC Algorithm

The main aim of Q-learning is to build a Q-table of states and actions, and select the
action that can obtain the maximum reward according to the Q value. Q-learning needs to

Information 2022, 13, 271 9 of 15

calculate each state–action group and store its corresponding Q value in the table. A deep
neural network was introduced to solve the dimension disaster problem of Q-learning. The
state and action were taken as the input of the neural network, and then the Q value was
obtained after the analysis of the neural network. Then, the AC algorithm was combined
with the DQN algorithm. When meeting the execution delay and resource constraints, at
was performed. Otherwise, the action was selected based on the greedy policy. The specific
implementation process is described in Algorithm 2:

Algorithm 2 DQN-AC algorithm

initialize replay memory D to capacity N
initialize Q, θ, Q′, θ′

for episode = 1, M do
initialize sequence s1 = {x1} and preprocessed φ1 = φ(x1)
for t = 1, T do

if rand() > ε then
at = rand(a);

else
at = argmax

a∈A
Q(φ(st), a|θ)

end if
if AC(st, at) then //filtering actions using AF algorithm

st+1 = st, at, xt+1;
φt+1 = φ(st+1);
store transition (φt, at, rt, φt+1) in D

if t ≡ 0modK then
sample random minibatch of transitions (φj, aj, rj, φj+1) from D

set yj =

{
rj for terminal φj+1
rj + γmax

a′∈A
Q′(φj+1, a′ | θ′) for non-terminal φj+1

perform a gradient descent step on ∆θ = (yj −Q(φj, aj|θ))2

update θ = θ + ∆θ

end if
update the network weight every C steps: θ′ = θ

end for
end for

4.4. The Performance Evaluation of DQN-AC

The computational complexity analysis of the DQN-AC was evaluated as follows.
There are S MEC servers and N MUDs. The total caching capacity of all MEC servers is

F =
S
∑

s=1
f max
s , and the total size of all intensive tasks in MUDs is B =

N
∑

n=1
Bn. The number of

computation offloading strategies for N MUDs and resource allocation decision for S MEC
servers are 2N and 2S, respectively. Thus, the complexity of the exhaustive search for the
optimal solution is O(2N+SNB+S), which is an extremely difficult task. For the proposed
DQN-AC algorithm, the computational complexity is O(N · S · F · B). Consequently, the
proposed algorithm holds lower computational complexity than the exhaustive search.
Additionally, if there exists one more states in the final policy, the proposed algorithm will
keep updating until the state does not change, which clearly shows that the policy is not
the final one. Therefore, the proposed algorithm is stable.

5. Experimental Results and Analysis

This paper evaluated the performance of the proposed DQN-AC algorithm through
the Python platform, compared with the full local computation (FLC) algorithm, which
indicates that all users select local computing; the full offloading computation (FOC)
algorithm, which indicates that all users choose edge computing; and the Q-learning
algorithm. Assume that 20 MEC small base stations cover an area of 300 m2, and there are
60 MUDs in the area. The size of the computing task for each user is randomly distributed

Information 2022, 13, 271 10 of 15

between 300 and 500, the number of computing resources required by each user is randomly
distributed between 900 and 1100, and the computing resource of the MEC server is evenly
allocated to each user. Detailed simulation parameters are shown in Table 4.

Table 4. The system simulation parameters.

Parameter Description Parameter Value Domain

wireless channel bandwidth W 10 MHz

thermal noise of wireless environment system σ2 −100 dBm

the path fading factor ξ 3

the antenna gain Ad 4

the carrier frequency fc 915 MHz

UMD transmission power pn,s 100 mw

UMD idle power Pw
n 10 mw

the size of input data Bn 300 Kb–500 Kb

MEC computing capability f max
s 20 GHz/s

UMD computing ability f l
n 1 GHz/s

number of computing resources Dn 900 hz–1100 hz

maximum tolerance delay Tmax
n 3 × 10−3 s

weight θ1, θ2 0.5, 0.5

Figure 2 shows the relationship between the system weighted cost and the number
of MUDs with 20 MEC small base stations. As the number of MUDs increased, all curves
showed an upward trend. For the same number, the DQN-AC algorithm had the minimum
system weighted cost. When the number of MUDs was less than 20, the system weighted
costs of the other three algorithms were similar, except for the FLC algorithm. In this
case, the computation resources of the MEC servers were sufficient, and the users were
more inclined to conduct edge computing. With the further increase in the number of
MUDs, which was close to 80, there was not much difference between the FOC and Q-
learning algorithms, but there was a big gap between the two algorithms and the DQN-AC
algorithm. When the number of MUDs was larger than 80, the gap between the FOC and
Q-learning algorithms gradually increased. However, the performance of the DQN-AC
was still stable and had the best effect. This is because edge computing users compete
with each other for the limited resources in MEC servers. In the FOC algorithm, all users
chose to compute the task in the MEC server, which led to the rapid increase in the system
weighted cost. The DQN-AC algorithm made full use of local terminal resources, reduced
competition among users and allocated computing resources reasonably.

Figure 3 shows the curve of system weighted cost with the number of MEC small base
stations for 30 MUDs. The curve of FLC algorithm was almost unchanged because the task
was executed in a local terminal, which has nothing to do with MEC small base stations.
When the number of MEC small base stations was small, there was a small gap between
the FOC, Q-learning and DQN-AC algorithms. This is because there were few options for
offloading. As the number of MEC small base stations increased, the FOC, Q-learning and
DQN-AC algorithms all showed a downward trend. They had a greater chance to select the
best MEC small base station for offloading, so the system weighted costs were gradually
reduced. However, when the number of MEC small base stations was approximately over
30, the curves of these three algorithms converged gradually, because when the number
of MEC small base stations reaches a certain amount, the optimal MEC small base station
they choose will not change anymore. It can be seen from the figure that the curve of the
DQN-AC algorithm was always at the bottom, and could achieve the best effect.

Information 2022, 13, 271 11 of 15
Information 2022, 13, x FOR PEER REVIEW 14 of 19

Figure 2. The impact of the number of mobile user devices on system weighted cost.

Figure 3 shows the curve of system weighted cost with the number of MEC small

base stations for 30 MUDs. The curve of FLC algorithm was almost unchanged because

the task was executed in a local terminal, which has nothing to do with MEC small base

stations. When the number of MEC small base stations was small, there was a small gap

between the FOC, Q‐learning and DQN‐AC algorithms. This is because there were few

options for offloading. As the number of MEC small base stations increased, the FOC, Q‐

learning and DQN‐AC algorithms all showed a downward trend. They had a greater

chance to select the best MEC small base station for offloading, so the system weighted

costs were gradually reduced. However, when the number of MEC small base stations

was approximately over 30, the curves of these three algorithms converged gradually,

because when the number of MEC small base stations reaches a certain amount, the opti‐

mal MEC small base station they choose will not change anymore. It can be seen from the

figure that the curve of the DQN‐AC algorithm was always at the bottom, and could

achieve the best effect.

Figure 3. The impact of the number of MEC small base stations on system weighted cost.

Figure 4 shows a diagram of the system weighted cost versus the capacity of the MEC

server for 50 MUDs and 20 MEC small base stations (assume that the capacity of all base

Figure 2. The impact of the number of mobile user devices on system weighted cost.

Information 2022, 13, x FOR PEER REVIEW 14 of 19

Figure 2. The impact of the number of mobile user devices on system weighted cost.

Figure 3 shows the curve of system weighted cost with the number of MEC small

base stations for 30 MUDs. The curve of FLC algorithm was almost unchanged because

the task was executed in a local terminal, which has nothing to do with MEC small base

stations. When the number of MEC small base stations was small, there was a small gap

between the FOC, Q‐learning and DQN‐AC algorithms. This is because there were few

options for offloading. As the number of MEC small base stations increased, the FOC, Q‐

learning and DQN‐AC algorithms all showed a downward trend. They had a greater

chance to select the best MEC small base station for offloading, so the system weighted

costs were gradually reduced. However, when the number of MEC small base stations

was approximately over 30, the curves of these three algorithms converged gradually,

because when the number of MEC small base stations reaches a certain amount, the opti‐

mal MEC small base station they choose will not change anymore. It can be seen from the

figure that the curve of the DQN‐AC algorithm was always at the bottom, and could

achieve the best effect.

Figure 3. The impact of the number of MEC small base stations on system weighted cost.

Figure 4 shows a diagram of the system weighted cost versus the capacity of the MEC

server for 50 MUDs and 20 MEC small base stations (assume that the capacity of all base

Figure 3. The impact of the number of MEC small base stations on system weighted cost.

Figure 4 shows a diagram of the system weighted cost versus the capacity of the MEC
server for 50 MUDs and 20 MEC small base stations (assume that the capacity of all base
stations is the same). With the increase in the capacity of the MEC server, the curves of the
other three algorithms showed a downward trend, except the FLC algorithm. The curve of
the FLC algorithm was almost unchanged, because the capacity of the MEC server did not
affect the local computing process. While for edge computing, users could allocate enough
resources as the capacity increased, thus reducing delay and energy consumption, it can
be seen that the DQN-AC algorithm had the best effect. The changing trend of the curve
shows that it is not easy to complete offloading computation when the capacity of MEC
server is small. However, when computing resources were sufficient, the system weighted
costs changed slightly, which is because there were extra resources unused by Q-learning.

Information 2022, 13, 271 12 of 15

Information 2022, 13, x FOR PEER REVIEW 15 of 19

stations is the same). With the increase in the capacity of the MEC server, the curves of the

other three algorithms showed a downward trend, except the FLC algorithm. The curve

of the FLC algorithm was almost unchanged, because the capacity of the MEC server did

not affect the local computing process. While for edge computing, users could allocate

enough resources as the capacity increased, thus reducing delay and energy consumption,

it can be seen that the DQN‐AC algorithm had the best effect. The changing trend of the

curve shows that it is not easy to complete offloading computation when the capacity of

MEC server is small. However, when computing resources were sufficient, the system

weighted costs changed slightly, which is because there were extra resources unused by

Q‐learning.

Figure 4. The impact of MEC server capacity on system weighted cost.

As shown in Figures 5 and 6, all four methods showed an upward trend as the hori‐

zontal axis increased. The larger amount of data/CPU cycles required more time to trans‐

mit, which also increased the energy consumption. With the increase in input data/CPU

cycles, the gap between the FLC algorithm and the other three algorithms became larger.

The system weighted cost was always higher than those of the Q‐learning and DQN‐AC

algorithms. It is difficult to complete complex tasks using local computing, which results

in the continuous increase in the system weighted cost. It can be seen that the DQN‐AC

algorithm had the best effect and the slowest rise compared with the other three algo‐

rithms.

Figure 4. The impact of MEC server capacity on system weighted cost.

As shown in Figures 5 and 6, all four methods showed an upward trend as the
horizontal axis increased. The larger amount of data/CPU cycles required more time
to transmit, which also increased the energy consumption. With the increase in input
data/CPU cycles, the gap between the FLC algorithm and the other three algorithms
became larger. The system weighted cost was always higher than those of the Q-learning
and DQN-AC algorithms. It is difficult to complete complex tasks using local computing,
which results in the continuous increase in the system weighted cost. It can be seen that
the DQN-AC algorithm had the best effect and the slowest rise compared with the other
three algorithms.

Information 2022, 13, x FOR PEER REVIEW 16 of 19

Figure 5. The impact of data size of task on system weighted cost.

Figure 6. The impact of CPU cycles of task on system weighted cost.

6. Conclusions

In this article, we first designed a MEC architecture based on a UDN; then estab‐

lished a system weighted cost based on execution delay and energy consumption; and

finally proposed an offloading decision and resource allocation scheme‐based DQN‐AC,

which can balance the near optimal system utility and computational complexity. The

simulation results validate the effectiveness of the DQN‐AC and demonstrate that the

DQN‐AC outperforms the FLC, FOC and Q‐learning algorithms.

In our future work, with the rapid development of code decomposition and parallel

computing, we will consider more complicated scenarios, such as partial offloading, band‐

width fluctuation and server failure. Moreover, our future work will further investigate

the problem of offloading security in wireless networks.

Figure 5. The impact of data size of task on system weighted cost.

Information 2022, 13, 271 13 of 15

Information 2022, 13, x FOR PEER REVIEW 16 of 19

Figure 5. The impact of data size of task on system weighted cost.

Figure 6. The impact of CPU cycles of task on system weighted cost.

6. Conclusions

In this article, we first designed a MEC architecture based on a UDN; then estab‐

lished a system weighted cost based on execution delay and energy consumption; and

finally proposed an offloading decision and resource allocation scheme‐based DQN‐AC,

which can balance the near optimal system utility and computational complexity. The

simulation results validate the effectiveness of the DQN‐AC and demonstrate that the

DQN‐AC outperforms the FLC, FOC and Q‐learning algorithms.

In our future work, with the rapid development of code decomposition and parallel

computing, we will consider more complicated scenarios, such as partial offloading, band‐

width fluctuation and server failure. Moreover, our future work will further investigate

the problem of offloading security in wireless networks.

Figure 6. The impact of CPU cycles of task on system weighted cost.

6. Conclusions

In this article, we first designed a MEC architecture based on a UDN; then established
a system weighted cost based on execution delay and energy consumption; and finally
proposed an offloading decision and resource allocation scheme-based DQN-AC, which
can balance the near optimal system utility and computational complexity. The simulation
results validate the effectiveness of the DQN-AC and demonstrate that the DQN-AC
outperforms the FLC, FOC and Q-learning algorithms.

In our future work, with the rapid development of code decomposition and parallel
computing, we will consider more complicated scenarios, such as partial offloading, band-
width fluctuation and server failure. Moreover, our future work will further investigate the
problem of offloading security in wireless networks.

Author Contributions: Conceptualization, C.D. and P.D.; methodology, P.D. and Q.G.; validation, B.L.
and Q.G.; formal analysis, C.D. and Q.G.; investigation, B.L.; data curation, P.D.; writing—original
draft preparation, P.D.; writing—review and editing, C.D. and Q.G.; visualization, B.L.; supervision,
Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 61775057 and 61971190), the Key Project of Science and Technology Research in Higher
Education of Hebei Province (grant number ZD2021406) and the Fundamental Research Funds for
the Central Universities (grants number 2021MS086).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no conflict of interest or any personal cir-
cumstances that may be perceived as inappropriately influencing the representation or interpretation
of reported research results.

Information 2022, 13, 271 14 of 15

References
1. Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge

Computing: Architectures, Applications and Technical Aspects. IEEE Commun. Surv. Tutor. 2021, 23, 1160–1192. [CrossRef]
2. Shakarami, A.; Ghobaei-Arani, M.; Shahidinejad, A. A survey on the computation offloading approaches in mobile edge

computing: A machine learning-based perspective. Comput. Netw. 2020, 182, 107496. [CrossRef]
3. Kherani, A.A.; Shukla, G.; Sanadhya, S.; Vasudev, N.; Ahmed, M.; Patel, A.S.; Mehrotra, R.; Lall, B.; Saran, H.; Vutukuru, M.; et al.

Development of MEC system for indigenous 5G Test Bed. In Proceedings of the 2021 International Conference on Communication
Systems & NETworks (COMSNETS), Bangalore, India, 5–9 January 2021; pp. 131–133.

4. Wang, X.; Ning, Z.; Guo, L.; Guo, S.; Gao, X.; Wang, G. Online Learning for Distributed Computation Offloading in Wireless
Powered Mobile Edge Computing Networks. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1841–1855. [CrossRef]

5. Yue, S.; Ren, J.; Qiao, N.; Zhang, Y.; Jiang, H.; Zhang, Y.; Yang, Y. TODG: Distributed Task Offloading With Delay Guarantees for
Edge Computing. IEEE Trans. Parallel Distrib. Syst. 2022, 33, 1650–1665. [CrossRef]

6. Cui, M.; Fei, Y.; Liu, Y. A Survey on Secure Deployment of Mobile Services in Edge Computing. Secur. Commun. Netw. 2021, 2021,
8846239. [CrossRef]

7. Shakarami, A.; Ghobaei-Arani, M.; Masdari, M.; Hosseinzadeh, M. A Survey on the Computation Offloading Approaches in
Mobile Edge/Cloud Computing Environment: A Stochastic-based Perspective. Grid. Comput. 2020, 18, 639–671. [CrossRef]

8. Wang, S.; Xu, J.; Zhang, N.; Liu, Y. A Survey on Service Migration in Mobile Edge Computing. IEEE Access. 2018, 6, 23511–23528.
[CrossRef]

9. Kamel, M.; Hamouda, W.; Youssef, A. Ultra-Dense Networks: A Survey. IEEE Commun. Surv. Tutor. 2017, 18, 2522–2545.
[CrossRef]

10. Teng, Y.; Liu, M.; Yu, F.R.; Leung, V.C.; Song, M.; Zhang, Y. Resource Allocation for Ultra-Dense Networks: A Survey, Some
Research Issues and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 2134–2168. [CrossRef]

11. Adedoyin, M.A.; Falowo, O.E. Combination of Ultra-Dense Networks and Other 5G Enabling Technologies: A Survey. IEEE
Access. 2020, 8, 22893–22932. [CrossRef]

12. Guo, H.; Lv, J.; Liu, J. Smart Resource Configuration and Task Offloading with Ultra-Dense Edge Computing. In Proceedings of
the 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona,
Spain, 21–23 October 2019.

13. Liu, J.; Mao, Y.; Zhang, J.; Letaief, K.B. Delay-Optimal Computation Task Scheduling for Mobile-Edge Computing Systems. In
Proceedings of the 2016 IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, 10 July 2016; pp. 1451–
1455.

14. Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Stochastic Joint Radio and Computational Resource Management for Multi-User
Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]

15. Guo, K.; Gao, R.; Xia, W.; Quek, T.Q. Online Learning based Computation Offloading in MEC Systems with Communication and
Computation. IEEE Trans. Commun. 2020, 69, 1147–1162. [CrossRef]

16. Huang, L.; Bi, S.; Zhang, Y. Deep Reinforcement Learning for Online Offloading in Wireless Powered Mobile-Edge Computing
Networks. IEEE Trans. Mobile Comput. 2020, 19, 2581–2593. [CrossRef]

17. Yu, R.; Xue, G.; Zhang, X. Application Provisioning in FOG Computing-enabled Internet-of-Things: A Network Perspective. In
Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018;
pp. 783–791.

18. Ning, Z.; Dong, P.; Kong, X.; Xia, F. A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled
Internet of Things. IEEE Internet Things 2019, 6, 4804–4814. [CrossRef]

19. Cheng, B.; Zhang, Z.; Liu, D. Dynamic Computation Offloading Based on Deep Reinforcement Learning. In Proceedings of the
2019 12th EAI International Conference on Mobile Multimedia Communications, Weihai, China, 29–30 June 2019.

20. Xu, S.; Liao, B.; Yang, C.; Guo, S.; Hu, B.; Zhao, J.; Jin, L. Deep reinforcement learning assisted edge-terminal collaborative
offloading algorithm of blockchain computing tasks for energy Internet. Int. J. Elec. Power 2021, 131, 107022. [CrossRef]

21. Zhou, J.; Zhang, X.; Wang, W.; Zhang, Y. Energy-Efficient Collaborative Task Offloading in D2D-assisted Mobile Edge Computing
Networks. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco,
15–18 April 2019.

22. Hu, D.; Huang, G.; Tang, D.; Zhao, S.; Zheng, H. Joint Task Offloading and Computation in Cooperative Multicarrier Relaying
Based Mobile Edge Computing Systems. IEEE Internet Things 2021, 8, 11487–11502. [CrossRef]

23. Zhang, H.; Liu, X.; Jing, K.; Liu, K.; He, X. Research on offloading Strategy based on NOMA-MEC in Internet of Vehicles. Electron.
Inf. Technol. 2021, 43, 1072–1079.

24. Zhou, H.; Jiang, K.; Liu, X.; Li, X.; Leung, V.C. Deep Reinforcement learning for energy-efficient computation offloading in mobile
edge computing. IEEE Internet Things 2021, 9, 1517–1530. [CrossRef]

25. Ale, L.; Zhang, N.; Fang, X.; Chen, X.; Wu, S.; Li, L. Delay-aware and Energy-Efficient Computation Offloading in Mobile Edge
Computing Using Deep Reinforcement Learning. IEEE Trans. Cogn. Commun. 2021, 7, 881–892. [CrossRef]

26. Mao, Y.; Zhang, J.; Letaief, K.B. Joint Task Offloading Scheduling and Transmit Power Allocation for Mobile-Edge Computing
Systems. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA,
USA, 19–22 March 2017.

http://doi.org/10.1109/COMST.2021.3061981
http://doi.org/10.1016/j.comnet.2020.107496
http://doi.org/10.1109/TPDS.2021.3129618
http://doi.org/10.1109/TPDS.2021.3123535
http://doi.org/10.1155/2021/8846239
http://doi.org/10.1007/s10723-020-09530-2
http://doi.org/10.1109/ACCESS.2018.2828102
http://doi.org/10.1109/COMST.2016.2571730
http://doi.org/10.1109/COMST.2018.2867268
http://doi.org/10.1109/ACCESS.2020.2969980
http://doi.org/10.1109/TWC.2017.2717986
http://doi.org/10.1109/TCOMM.2020.3038875
http://doi.org/10.1109/TMC.2019.2928811
http://doi.org/10.1109/JIOT.2018.2868616
http://doi.org/10.1016/j.ijepes.2021.107022
http://doi.org/10.1109/JIOT.2021.3051234
http://doi.org/10.1109/JIOT.2021.3091142
http://doi.org/10.1109/TCCN.2021.3066619

Information 2022, 13, 271 15 of 15

27. Zhang, G.; Zhang, S.; Zhang, W.; Shen, Z.; Wang, L. Joint Service Caching, Computation Offloading and Resource Allocation in
Mobile Edge Computing Systems. IEEE Trans. Wirel. Commun. 2021, 20, 5288–5300. [CrossRef]

28. Zhang, Z.; Fu, Y.; Cheng, G.; Lan, X.; Chen, Q. Secure Offloading Design in Multi-user Mobile-Edge Computing Systems. In
Proceedings of the 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), Chengdu, China,
23–26 April 2021; pp. 695–703.

29. Lan, X.; Cai, L.; Chen, Q. Execution Latency and Energy Consumption Tradeoff in Mobile-Edge Computing Systems. In
Proceedings of the 2019 IEEE/CIC International Conference on Communications in China (ICCC), Changchun, China, 11–13
August 2019; pp. 123–128.

30. Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep Reinforcement Learning Based Mobile Edge Computing for Intelligent Internet of Things.
Phys. Commun.-Amst. 2020, 43, 101184. [CrossRef]

31. Elgendy, I.A.; Zhang, W.Z.; He, H.; Gupta, B.B.; El-Latif, A.; Ahmed, A. Joint computation offloading and task caching for
multi-user and multi-task MEC systems: Reinforcement learning-based algorithms. Wire. Netwo. 2021, 27, 2023–2038. [CrossRef]

32. Ji, L.; Hui, G.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April
2018.

33. Nath, S.; Li, Y.; Wu, J.; Fan, P. Multi-user Multi-channel Computation Offloading and Resource Allocation for Mobile Edge
Computing. In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020.

34. Wen, Y.; Zhang, W.; Luo, H. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud
clones. In Proceedings of the 2012 Proceedings IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2716–2720.

35. Wang, C.; Yu, F.R.; Liang, C.; Chen, Q.; Tang, L. Joint Computation Offloading and Interference Management in Wireless Cellular
Networks with Mobile Edge Computing. IEEE Trans. Veh. Technol. 2017, 66, 7432–7445. [CrossRef]

http://doi.org/10.1109/TWC.2021.3066650
http://doi.org/10.1016/j.phycom.2020.101184
http://doi.org/10.1007/s11276-021-02554-w
http://doi.org/10.1109/TVT.2017.2672701

	Introduction
	Related Work
	Problem Formulation
	System Model
	Communication Model
	Computation Model
	The Local Computing Model
	The Local Computing Model

	Problem Formulation

	Proposed Method
	The Definition of State, Action and Reward
	Action Classification Algorithm
	DQN-AC Algorithm
	The Performance Evaluation of DQN-AC

	Experimental Results and Analysis
	Conclusions
	References

