
����������
�������

Citation: Lu, Y.; Chen, Q.; Poon, S.K.

A Deep Learning Approach for

Repairing Missing Activity Labels in

Event Logs for Process Mining.

Information 2022, 13, 234. https://

doi.org/10.3390/info13050234

Academic Editor: Kostas Vergidis

Received: 21 March 2022

Accepted: 30 April 2022

Published: 4 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Deep Learning Approach for Repairing Missing Activity
Labels in Event Logs for Process Mining
Yang Lu * , Qifan Chen and Simon K. Poon

School of Computer Science, The University of Sydney, Sydney, NSW 2006, Australia;
qche8411@uni.sydney.edu.au (Q.C.); simon.poon@sydney.edu.au (S.K.P.)
* Correspondence: yalu8986@uni.sydney.edu.au

Abstract: Process mining is a relatively new subject that builds a bridge between traditional process
modeling and data mining. Process discovery is one of the most critical parts of process mining,
which aims at discovering process models automatically from event logs. Like other data mining
techniques, the performance of existing process discovery algorithms can be affected when there are
missing activity labels in event logs. In this paper, we assume that the control-flow information in
event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction
model, which takes both the prefix and suffix sequences of the events with missing activity labels as
input to predict missing activity labels. Additional attributes of event logs are also utilized to improve
the performance. Our evaluation of several publicly available datasets shows that the proposed
method performed consistently better than existing methods in terms of repairing missing activity
labels in event logs.

Keywords: process mining; business process management; incomplete event logs; data quality; data
management

1. Introduction

Business process management techniques are widely applied in modern information
systems, such as financial, production, and hospital systems. Traditionally, process analysts
model business processes through knowledge gained from interviews, workshops, or doc-
uments [1]. On the one hand, modeling business processes by hand can be cost ineffective
and time consuming. On the other hand, involving human beings to model processes can
introduce unavoidable biases. Thanks to the large-scale deployment of computer systems,
enterprise data have become more accessible. Process mining, a relatively new subject, was
introduced to fill the gap between data mining and traditional process modeling. The goal
of process mining techniques is to discover process insights directly from the data collected
from target organizations [2].

One of the most critical parts of process mining is called process discovery, which aims
at discovering a business process model automatically from process data. The datasets
used to discover process models are called event logs. Each event log is a collection of
traces, and each trace is an ordered sequence of events. Each event contains an activity,
timestamp, and other attributes.

Different process discovery algorithms have been proposed in the last decade, and
some of them can guarantee the production of accurate process models under certain
circumstances [2]. However, like other data mining techniques, the analysis results are
heavily related to the quality of the input datasets [3]. Most existing process discovery
algorithms assume the event log to be complete, and they may not be able to discover
accurate process models when some data in the input event log are missing. Missing data
in event logs has been defined as one of the major data quality issues in process mining [4,5].
Several methods were proposed in the field of process mining to repair event logs with

Information 2022, 13, 234. https://doi.org/10.3390/info13050234 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13050234
https://doi.org/10.3390/info13050234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9002-8650
https://orcid.org/0000-0003-1068-6408
https://orcid.org/0000-0003-2726-9109
https://doi.org/10.3390/info13050234
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13050234?type=check_update&version=2

Information 2022, 13, 234 2 of 18

missing data [6–10]. However, none of these methods can accurately repair missing activity
labels in event logs when a large number of activity labels are missing.

In this paper, we focus on repairing the missing activity labels in event logs. Inspired
by recent research papers that successfully applied deep learning methods to predict the
next activities in ongoing traces, we propose an LSTM-based prediction model to predict
the missing activity labels. The prediction model takes both the prefix and suffix sequences
of the events with missing activity labels as input. In addition, additional attributes of
event logs are also utilized to improve the performance.

1.1. Motivating Example

Table 1 shows an example event log L1, which describes a simple airport process.
Each row is an event, which is an execution record of an activity. An event can have
multiple attributes. In the example log, each event has an activity label, a resource, and
a timestamp. The activity label describes which activity the event recorded, the resource
describes the person who performed the event, and the timestamp describes the time
when the event was recorded. The event log contains three traces, and each trace is a
sequence of events ordered by timestamps. For simplicity, we can write the event log
as L1 = {<Arrive at Airport, Check-in, Security Check, Boarding, Take off>, <Arrive at
Airport, Priority Check-in, Priority Security Check, Priority Boarding, Take off>, <Arrive at
Airport, Check-in, Security Check, Priority Boarding, Take off>}. The goal of automated
process discovery algorithms is to construct a process model that can accurately describe
the process behaviors. For example, if we apply the popular algorithm split miner [11]
on L1, we can obtain the process model as shown in Figure 1. It is easy to interpret the
process model: some passengers advance through the priority pathways when arriving
at the airport, while others advance through the normal pathways. However, passengers
with priority tickets can still advance through the normal check-in and security check first,
and only advance through the priority boarding in the end.

Assume there is another event log L2, shown in Table 2, which is the same as L1
but with missing activity labels; we can write L2 as L2 = {<Arrive at Airport, Check-in,
Security Check, Boarding, Take off>, <Arrive at Airport, Priority Check-in, Priority Security
Check, Priority Boarding, Take off>, <Arrive at Airport, _, Security Check, _, Take off>}.
When trying to discover a process model from L2, we can ignore the missing activity labels
(Figure 2) or the whole traces with missing activity labels (Figure 3). None of the process
models can accurately describe the process as shown in Figure 1. For example, in Figure 2,
passengers can pass the security check without checking in at the airport. In Figure 3,
passengers cannot reach priority boarding after a normal security check.

Table 1. An example event log L1 without missing activity labels.

Event Trace Id Activity Resource Timestamp

e1 1 Arrive at Airport Tom 1/9/2020 12:00:00
e2 1 Check in Jack 1/9/2020 12:20:00
e3 1 Security Check Thomas 1/9/2020 12:30:00
e4 1 Boarding Linda 1/9/2020 14:20:00
e5 1 Take off James 1/9/2020 15:00:00

e6 2 Arrive at Airport Alice 2/9/2020 12:10:00
e7 2 Priority Check in James 2/9/2020 12:20:00
e8 2 Priority Security Check Lucas 2/9/2020 13:30:00
e9 2 Priority Boarding Linda 2/9/2020 14:20:00
e10 2 Take off Peter 2/9/2020 15:00:00

e11 3 Arrive at Airport Steven 2/9/2020 20:00:00
e12 3 Check in Jack 2/9/2020 20:20:00
e13 3 Security Check Mark 2/9/2020 20:25:00
e14 3 Priority Boarding Linda 2/9/2020 21:00:00
e15 3 Take off Ethan 2/9/2020 21:30:00

Information 2022, 13, 234 3 of 18

Table 2. An example event log L2 with missing activity labels.

Event Trace Id Activity Resource Timestamp

e1 1 Arrive at Airport Tom 1/9/2020 12:00:00
e2 1 Check in Jack 1/9/2020 12:20:00
e3 1 Security Check Thomas 1/9/2020 12:30:00
e4 1 Boarding Linda 1/9/2020 14:20:00
e5 1 Take off James 1/9/2020 15:00:00

e6 2 Arrive at Airport Alice 2/9/2020 12:10:00
e7 2 Priority Check in James 2/9/2020 12:20:00
e8 2 Priority Security Check Lucas 2/9/2020 13:30:00
e9 2 Priority Boarding Linda 2/9/2020 14:20:00
e10 2 Take off Peter 2/9/2020 15:00:00

e11 3 Arrive at Airport Steven 2/9/2020 20:00:00
e12 3 - Jack 2/9/2020 20:20:00
e13 3 Security Check Mark 2/9/2020 20:25:00
e14 3 - Linda 2/9/2020 21:00:00
e15 3 Take off Ethan 2/9/2020 21:30:00

Check in

Arrive at Airport

Check in Security Check Boarding

Priority Check in
Priority

Security Check
Priority Boarding

Take off

Arrive at Airport

SecurityCheck Boarding

PriorityCheck in
Priority Security

Check
Priority Boarding

Take off

www.cardanit.com

Figure 1. Process model discovered from L1.

Check in

Arrive at Airport

Check in SecurityCheck Boarding

PriorityCheck in
Priority Security

Check
Priority Boarding

Take off

Arrive at Airport

Security Check Boarding

Priority Check in
Priority

Security Check
Priority Boarding

Take off

www.cardanit.com

Figure 2. Process model discovered from L2. Events with missing activity labels are removed.

Arrive at Airport

Check in Security Check Boarding

Priority Check in
Priority Security

Check
Priority Boarding

Take off

Arrive at Airport

Check in Security Check Boarding

Priority Check in
Priority Security

Check
Priority Boarding

Take off

www.cardanit.com

Figure 3. A process model discovered from L2. Traces with missing activity labels are removed.

The goal of this paper is to propose a method as a data pre-processing tool that can
accurately repair the missing activity labels. The repaired event logs can then be used by
process discovery algorithms to discover accurate process models.

1.2. Contributions of This Paper

The contributions of this paper include the following:

• To the best of our knowledge, this is the first paper applying artificial neural networks
to predict missing activity labels in event logs for process mining.

Information 2022, 13, 234 4 of 18

• An LSTM-based artificial neural network is proposed to repair missing activity labels
in event logs.

• Experiments on publicly available datasets under various settings show that our
method can accurately repair missing activity labels, even when a large proportion of
activity labels were missing in an event log.

The rest of this paper is structured as follows: Section 2 is a literature review of related
work. Section 3 introduces some preliminary concepts used in this paper. Our proposed
method is presented in Section 4. Section 5 presents the evaluation results. Finally, our
paper is concluded in Section 6.

2. Related Work
2.1. Process Discovery Algorithms

Various process discovery algorithms were proposed in the last decade. Alpha algo-
rithms were one of the earliest groups of process discovery algorithms that can construct
Petri nets automatically based on the event logs. The original version [12] of the alpha
algorithms can guarantee the discovery of certain behaviors in process models when the
input event log is noise free and can satisfy certain completeness requirements. However,
the original algorithm cannot discover accurate process models with complex behaviors.
Later research papers extended the original alpha algorithm to discover short loops [13],
invisible tasks [14,15], and non-free-choice behaviors [14,16]. Alpha algorithms produce
desirable results on noise-free data, but the performance can be heavily affected when
trying to discover process models from real-life event logs. The heuristics miners [17–19]
were proposed based on the alpha algorithms to handle noises in event logs.

A challenge for process discovery algorithms was whether the algorithm can guarantee
the production of “sound” process models [2], which is the precondition for process models
to be used for process simulation or conformance checking (i.e., a group of algorithms
to check if the given process model conforms to the input data). None of the algorithms
stated above can guarantee the production of sound process models. To solve the problem,
inductive miners [20–26] were proposed. Inductive miners always return a process notation
called process trees, which can be translated into equivalent block-structured Petri nets [20].
As a result, inductive miners can always discover sound process models. Similar to the
alpha algorithms, inductive miners were also shown to discover certain process behaviors
when the input event log is complete. Although inductive miners can guarantee the
production of sound process models, the behaviors that can be represented by process trees
are limited. Recently, the split miner [11] was proposed; it can produce sound process
models for most of the time. Instead of process trees, the split miner can discover BPMNs
directly. As a result, the split miner can discover more process behaviors.

Besides the process discovery algorithms stated above, there are also other types of
algorithms for discovering process models, such as genetic algorithms (e.g., [27,28]), the
ILP algorithm (e.g., [29]), and machine-learning-based algorithms (e.g., [30]). However,
most of these methods rely on the ordering of events within traces to discover process
models. The ordering of events within traces could be incorrect when there are missing
activity labels or events [4].

In a nutshell, there are various process discovery algorithms to choose from when
discovering process models. However, most process discovery algorithms require the event
logs to satisfy a certain degree of completeness requirements. The performance of existing
process discovery algorithms can be affected if a large number of activity labels in event
logs are missing.

2.2. Missing Data in Event Logs

There are some research papers focusing on handling missing data in event logs for
process mining. In [4,5], missing data was defined as one of the data quality issues for event
logs. In [6], researchers relied on generalized stochastic Petri nets (GSPNs) and Bayesian
network models to repair event logs with missing events. Rogge et al. [6] were the first to

Information 2022, 13, 234 5 of 18

address the missing data issue in process mining. However, when a generalized stochastic
Petri net cannot be derived from the event logs (e.g., when a large number of events are
missing), the event log may not be accurately repaired. Similar to [6], Song et al. [10] also
relied on process models to repair missing events.

In PROELR [7] and SRBA [8], researchers firstly applied trace clustering methods to
cluster “complete traces” (i.e., traces without missing activity labels). Each “incomplete
trace” (i.e., traces with missing activity labels) would then find the cluster that was closest to
it. Finally, the incomplete traces were repaired based on the features of their corresponding
trace clusters. Both [7,8] require a large amount of “complete traces” in event logs. As a
result, they cannot handle the case when most traces in event logs contain missing activity
labels. Furthermore, the performance [7,8] can drop when the event logs contain a large
number of missing activity labels.

The MIEC [9] is a multiple-imputation-based method to repair missing data in event
logs. Besides repairing missing activity labels, it can also repair all other missing attributes
in event logs. The MIEC relied on the dependency relations between event attributes. For
example, some activities may always happen on weekends or be performed by a specific
group of people. It may not be able to effectively repair event logs when such dependency
relations do not exist or the event log contains limited attribute data.

Instead of trying to repair missing data in event logs, Horita et al. [31] applied the
decision tree learning algorithm to discover the tendency of missing values in event logs.
The output of [31] is a decision tree that indicates the conditions that there is likely to have
missing data in event logs (e.g., there is an event with a missing activity label when a
certain activity happens before it).

Although a few methods were developed to repair missing data in event logs, a
method that is capable of accurately repairing a large amount of missing activity labels is
still needed in this field.

2.3. Next Activity Prediction in Event Logs

Recently, artificial neural networks were applied to predict the next events in event
logs. The goal of the next activity prediction algorithms is to predict the activity label (or
other attributes) of an event in a trace, given its prefix sequence. Different neural networks
have been proposed to make the prediction as accurate as possible. For example, Tax
et al. [32] and Camargo et al. [33] designed LSTM models for next activity prediction.
More specifically, Tax et al. [32] applied one-hot vector encoding to encode all categori-
cal variables, while Camargo et al. [33] applied embedding algorithms to obtain vector
representations of categorical variables.

To further improve the accuracy of LSTM-based models, Pasquadibisceglie et al. [34]
designed a multi-view LSTM based model that took both control-flow information (i.e., the
ordering of activities in traces) and other event log attributes (e.g., the person who per-
formed each activity) as input for next activity prediction. Lin et al. [35] implemented an
encoder–decoder structure of LSTMs to predict the next activities. In [35], a customized
layer called “modulator” was designed to assign different attributes with different weights.
Taymouri et al. [36] combined generative adversarial nets (GANs) with LSTM models to
achieve high-accuracy prediction.

Besides LSTM models, other neural network structures were also designed by re-
searchers for next-activity prediction. For example, Pasquadibisceglie et al. [37] converted
event logs into 2D representations and designed a neural network model based on a CNN.
A stacked autoencoder-based deep learning approach was designed in [38].

The methods stated above can achieve high accuracy. However, as their goal is to
predict next activities in ongoing traces, only information in the prefix can be used for
prediction. When dealing with missing activity labels in event logs, both prefix and suffix
sequences can be used.

Information 2022, 13, 234 6 of 18

3. Preliminaries
3.1. Problem Definition

In this section, we introduce some basic concepts used in this paper.

Definition 1 (Event log, Trace, Activity, Event). An event log L is a multiset of traces. A trace
t, t ∈ L, is an ordered sequence of events. Assuming A is the set of all possible activities, an event
e is an execution record of an activity a ∈ A. #n(e) denotes the value of attribute n for event e.
For example, #activity(e) refers to the activity label associated with e, and #timestamp(e) refers to the
timestamp of event e.

Definition 2 (Missing Activity Label). The activity label of event e is missing if #activity(e) = _.

For example, for event log L2 in Table 2, the activity labels of events e12 and e14
are missing.

Definition 3 (k-Prefix and k-Suffix of an Event). Suppose a trace t ∈ L where t =< e1, e2, e3, ...,
en >. Suppose i − k > 0 and i + k 6 n; the k-Prefix of event ei where ei ∈ t is the or-
dered sequence < ei−k, ei−k+1, ..., ei−1 >, and the k-Suffix of event ei is the ordered sequence
< ei+1, ei+2, ..., ei+k >. In this paper, when talking about the prefix and suffix sequences, we
refer to the activity sequences. For example, the k-Suffix of event ei refers to the ordered sequence
< #activity(ei+1), #activity(ei+2), ..., #activity(ei+k) >.

In this paper, we focus on repairing events with missing activity labels within event logs.

3.2. Long Short-Term Memory (LSTM)

The method we propose in this paper is based on LSTM [39], which is a common
artificial recurrent neural network structure in the deep learning field. LSTM networks are
especially suitable for analyzing time-series data and are resistant to the vanishing gradient
problem. As mentioned in Section 2, many LSTM-based artificial neural network structures
have been proposed by researchers recently to predict next events in ongoing traces.

The definition of an LSTM unit we applied in this paper is presented in the follow-
ing equations:

f(t)g = sigmoid(U f h(t−1) + W f x(t) + b f) (1)

i(t)g = sigmoid(Uih(t−1) + Wix(t) + bi) (2)

c̃(t) = tanh(Ugh(t−1) + Wgx(t) + bg) (3)

c(t) = f(t)g ◦ c(t−1) + i(t)g ◦ c̃(t) (4)

o(t)
g = sigmoid(Uoh(t−1) + Wox(t) + bo) (5)

h(t) = o(t)
g ◦ tanh(c(t)) (6)

∀t ∈ {1, 2, . . . , k}.

In the equations above, {U, W, b} are trainable parameters. Each LSTM unit takes
a single input vector x(t). The input vector is passed into different gates that decide how
the information will flow into and out of the cell. More specifically, Equation (1) defines
the “forget gate”, which determines which part of information from the previous cell state
to forget. Equation (2) defines the "input gate," which controls the new information to
be stored into the memory. Equations (3) and (4) define how the hidden state from the
previous LSTM unit h(t−1) and the new input x(t) are used to update the cell c(t). The
output gate defined in (5) describes how the information of the cell state c(t) is used to
update the hidden state h(t), which is passed to the next LSTM unit or subsequent neural
network layers. Finally, Equation (6) defines how the output gate is used to update the
hidden state h(t).

Information 2022, 13, 234 7 of 18

4. The Proposed Method
4.1. Data Preprocessing

The core idea of the proposed approach is to use supervised learning approaches to
predict the missing activity labels in event logs. In other words, the events without missing
activity labels are used to train the prediction model, and the prediction model is then used
to predict the missing activity labels in the event log.

Firstly, we need to split the original event log in order to obtain a training dataset,
where each sample is labeled. We divide all events in the event log into two sets. The first
set Ecomplete contains all events with activity labels, and the second set Emissing contains all
events with missing activity labels. For example, for the sample log L2 shown in Table 2,
Ecomplete = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e13, e15}, and Emissing = {e12, e14}. For each
event in Emissing and Ecomplete, we obtain the activity labels of its k− Pre f ix and k− Su f f ix.
For events in Ecomplete, we obtain a training dataset where each sample is labeled. The
training dataset is then used to train a neural network model that is used to predict the
activity labels in Emissing. Besides activity labels, other attributes of events are also included
in our proposed deep learning architecture.

For our example event log L2, Tables 3 and 4 present the two datasets constructed
from Emissing and Ecomplete when k = 3. For each event, besides its prefix and suffix activity
sequences, its resource is also preserved in the dataset. In addition, a special label “Missing”
is assigned to the missing activity labels in the prefix and suffix. Using the label “Missing”
can let the neural network model know that there is supposed to be an activity label at a
specific place. For example, suppose there is a trace < A, _, _ > with two missing activity
labels in an event log where activity C always happens two activities after activity A. If
we represent the last event’s prefix as < A, Missing >, we can easily know the trace is
< A, _, C >.

Table 3. The example dataset constructed from Ecomplete.

Event Resource Prefix_1 Prefix_2 Prefix_3 Suffix_1 Suffix_2 Suffix_3 Label
(Activity)

e1 Tom Boarding Security
Check Check in Arrive at

Airport

e2 Jack Arrive at
Airport Take off Boarding Security

Check Check in

e3 Thomas Arrive at
Airport Check in Take off Boarding Security

Check

e4 Linda Arrive at
Airport Check in Security

Check Take off Boarding

e5 James Check in Security
Check Boarding Take off

. .

e15 Ethan Missing Security
Check Missing Take off

Table 4. The example dataset constructed from Emissing.

Event Resource Prefix_1 Prefix_2 Prefix_3 Suffix_1 Suffix_2 Suffix_3 Label
(Activity)

e12 Jack Arrive at
Airport Missing Security

Check Missing _

e14 Linda Arrive at
Airport Missing Security

Check Take off _

Finally, to feed the dataset into the neural network, the categorical variables have
to be transformed into numerical values. As a result, categorical data are passed into
an embedding layer first to be transformed into a vector representation. Depending on

Information 2022, 13, 234 8 of 18

the choice of embedding methods, more work could be required to process the data.
For example, the categorical values may be required to be represented by non-negative
integers [40]. Algorithm 1 presents the steps to construct the dataset from Ecomplete. The
same steps are applied for construct the dataset from Emissing.

Algorithm 1: Constructing the Training Dataset from Ecomplete

Input: Ecomplete, k, Attributes
// k refers to the length prefix/suffix. Attributes refers to the

list of additional attributes used to repair missing activity
labels

1 DatasetComplete← []
2 for e in Ecomplete do
3 new_record← []
4 for attr in Attributes do
5 new_record.add(#attr(e))

// Add additional attributes into the dataset
6 end
7 prefix_events← getPrefix(e, k)
8 for epre f ix in prefix_events do
9 if #activity(epre f ix) is missing then

10 new_record.add("Missing")
// a special label “Missing” is assigned to the missing

activity labels in the prefix
11 else
12 new_record.add(#activity(epre f ix))
13 end
14 end
15 end
16 suffix_events← getSuffix(e, k)
17 for esu f f ix in suffix_events do
18 if #activity(esu f f ix) is missing then
19 new_record.add("Missing")

// a special label “Missing” is assigned to the missing
activity labels in the suffix

20 else
21 new_record.add(#activity(esu f f ix))
22 end
23 end
24 end
25 new_record.add(#activity(e))
26 DatasetComplete.add(new_record)
27 end

Output: DatasetComplete

4.2. The Deep Learning Architecture

The overall architecture of our proposed neural network is presented in Figure 4. The
LSTM models for the prefix and suffix sequences are established separately. The deep
learning architecture contains two LSTM models. One LSTM model handles the prefix
sequence, and the other handles the suffix sequence.

Information 2022, 13, 234 9 of 18

Prefix Suffix

Embedding Layer 1 Embedding Layer n + 1

LSTM 1 LSTM 2

Attribute 1

Embedding Layer 2

Concatenate

Attribute n

Embedding Layer n

…

Softmax Layer

Event SuffixPrefix

Figure 4. Architecture of our proposed neural network.

For example, Figure 5 shows the unfolded LSTM network for the prefix of e5 in L2. The
prefix of e5 is presented in Table 3. The LSTM network captures the temporal information
for the prefix of e5 and outputs a hidden representation h(t), which is a fixed-size vector.
When predicting next activities in ongoing traces, the vector could be passed directly into a
dense layer to make the prediction [32,33]. However, when predicting the missing activity
label of an event, we can use the temporal information from both its prefix and suffix. As
a result, another LSTM, that captures the temporal information of the suffix sequences of
events, is also included in the deep learning architecture.

LSTM LSTM LSTM
𝒉𝒉(𝒕𝒕)𝒉𝒉(𝒕𝒕 −𝟏𝟏)𝒉𝒉(𝒕𝒕 −𝟐𝟐)

Check in Security Check Boarding

Figure 5. Unfolded LSTM network for the prefix of e5, the activities are in vector representations.

Besides the temporal information of prefix and suffix sequences, the known attribute
values of the events are also used by our proposed method. As shown in Figure 4, these
attribute values are also passed into embedding layers to be transformed into vector
representations. It has to be noted that embedding layers are only needed for categori-
cal variables.

A concatenation layer is used to combine all of the vector representations we ob-
tained. The output vector of the concatenation layer contains the temporal information of
the input events’ prefix sequences and suffix sequences as well as the information of its
attribute values.

Information 2022, 13, 234 10 of 18

Finally, the output of the concatenation layer is fed into a dense layer that uses the
softmax activation function:

Softmax(xi) =
exp(xi)

∑j exp(xj)
(7)

The output of the softmax function is a vector that contains the probability of different
activity labels. The activity label with the highest probability is selected to repair the event.
To train the neural network model, the backpropagation algorithm is used to find the
optimal trainable parameters. In addition, cross-entropy is used as the loss function.

5. Evaluation

To prove that our proposed method can accurately repair missing activity labels in
event logs, a large number of experiments were conducted. Overall, we performed two
groups of experiments. The first group of experiments compared the performance of our
proposed method with existing methods to repair missing activity labels in event logs.
The second group of experiments performed further analysis to prove the effectiveness of
our method.

We implemented our approach in Python 3.7.1 based on Tensorflow 2.7.0. For the
embedding layers, we used the built-in embedding layer in Keras, which requires the
categorical variables to be transformed into non-negative integers. In all our experiments,
the prefix and suffix lengths were set to five. Zero padding was added if the length of
the prefix/suffix was shorter than five (e.g., the event is at the beginning of a trace). In
addition, only resources were used as additional attributes to repair missing activities in
the experiments of this paper. The dimensions for the embedding layers of the prefix and
suffix were set to 100, and the dimension for the embedding layer of resources was set to
16. Probabilistic dropouts of 0.2 were also applied to the outputs of the embedding layers.
Moreover, batch normalization was also added to the output vectors of the concatenation
layer. Both LSTM networks in our proposed structure contained two layers (32 neurons in
the first layers, and 16 neurons in the second layers). During the training process of the
model, the training dataset was shuffled first, and 20% of the training dataset was used
as the validation set. To minimize the loss, we used the Nadam optimizer. The maximum
number of epochs was 100 (Early stop was set to 10 epochs), the batch size was set to 32,
and the learning rate was set to 0.002.

To evaluate the performance of our method, we applied the same evaluation matrix as
found in [7–9], i.e., the success rate. It measures the proportion of missing activity labels
repaired successfully to the total number of missing activity labels. Equation (8) defines the
success rate, where m is the number of activity labels that are repaired successfully, and n
is the total number of missing activity labels.

Success Rate =
m
n

(8)

The experiments utilized several publicly available datasets. In total, our evaluation
was based on six publicly available event logs:

• The Production Process Log (https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b8
73-ee76ea412399 (accessed 31 December 2021)): An event log of a factory’s produc-
tion process.

• Hospital Billing (https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb7
41 (accessed 31 December 2021)): An event log extracted from a regional hospital’s ERP
system. It contains the processes used to bill bundled packages of medical services.

• BPI Challenge 2012 (https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-7597
6070e91f (accessed 31 December 2021)): An event log containing a loan application
process in a Dutch financial institute.

https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:76c46b83-c930-4798-a1c9-4be94dfeb741
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

Information 2022, 13, 234 11 of 18

• Sepsis Log (https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
(accessed 31 December 2021)): An event log containing processes to deal with sepsis
patients in a hospital.

• Helpdesk (https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb (ac-
cessed 31 December 2021)): An event log that describes the ticketing management
process in a software company in Italy.

• BPIC 2013 Incidents (https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa546
8b10cee (accessed 31 December 2021)): An event log of the incident management
process in Volvo IT.

The details of all used datasets are presented in Table 5. For the “Hospital Billing”
event log, we filtered out all traces with only one or two events. The “Hospital Billing” event
log was filtered in the same way as in [8]. As shown in Figure 6, we firstly randomly deleted
a number of activity labels from these event logs. Two datasets were then constructed. The
dataset constructed from Ecomplete was used to train the neural network model, and the
dataset constructed from Emissing was used to evaluate the model and calculate success rates.

Random Delete

Split

𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

(For training the model) (For evaluating the model)

Figure 6. Pre-processing publicly available datasets to evaluate our method.

Table 5. Characteristics of the used publicly available datasets.

Dataset Number of Traces Number of Events Number of Activities Number of
Resources

Production Process Log 225 4544 55 31
Hospital Billing (Filtered) 69,252 412,236 18 1105

BPI Chanllenge 2012 13,087 262,200 24 69
Sepsis Log 1050 15,214 16 26
Helpdesk 4580 21,348 14 22

BPIC 2013 Incidents 7554 65,533 13 1440

The settings based on those datasets were slightly different in different experiments,
which are explained in detail in the following subsections.

5.1. Comparing with Existing Methods

In the first group of experiments, we compared the performance of our proposed
method with [7–9]. Since all of these methods were evaluated using publicly available

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

Information 2022, 13, 234 12 of 18

datasets, we can compare our results directly with their results using the same datasets and
under the same settings.

We firstly compared our method with PROELR [7] and SRBA [8]. In [8], both methods
were evaluated using the “Hospital Billing Log” and the “BPI Challenge 2012” logs with
randomly deleted activity labels. Since both methods rely on trace clustering algorithms,
only a small portion of activity labels can be deleted. In addition, only one activity was
deleted in each trace.

Following the data preparation methods in [8], we deleted activity labels of 100,
150, 200, and 300 events from the “Hospital Billing Log” and “BPI Challenge 2012” logs,
respectively, and only one activity label was allowed to be removed from each trace. For
each number of missing activity labels, we repeated the same procedure 10 times and
reported the average. For example, when removing 100 activity labels from the “Hospital
Billing Log”, we obtained 10 different event logs with 100 missing activity labels, and the
success rate reported is the average success rate among the 10 logs.

The results for comparing our method with ROELR and SRBA are presented in Table 6
and Figure 7, where the success rates of ROELR and SRBA were referenced directly from [8].
The success rates of our methods are all above 0.99, which indicates that almost all missing
activity labels can be successfully repaired. The success rates are around 0.8 for SRBA and
0.4–0.7 for PROELR, which are lower than our method.

Next, we compared our method with the MIEC [9]. The MIEC was evaluated by
the “Production Process Log” in [9]. To obtain event logs with missing activity labels, the
different proportions of activity labels were randomly removed from the log. There were
no limits on the number of activity labels deleted in each trace.

Following [9], we deleted 15%, 20%, 25%, and 30% of the activity labels from the
"Production Process Log" to obtain event logs with missing activity labels. The evaluation
results are presented in Table 7 and Figure 7. As in the previous experiment, the results
of the MIEC were referenced from [9] directly, and all the success rates of our method are
the average of 10 repeats. Both methods can achieve high success rates when only a small
proportion of activity labels are missing in the event log. However, the performance of
the MIEC drops when the number of missing activity labels increases. The success rates
drop by around 5% when the number of missing activity labels increases by 5%, and only
78.8% of the missing activity labels can be repaired successfully when 30% of the activity
labels are removed. Compared to our method, the success rates remain stable when the
number of missing activity labels increases. Around 94% of the missing activity labels can
be repaired successfully at all different levels of missing activity labels.

Table 6. Comparison of our method with PROELR [7] and SRBA [8].

Dataset Number of Missing
Activity Labels PROELR [7] SRBA [8] Our Method

Hospital Billing

100 0.644 0.816 0.995
150 0.650 0.805 0.991
200 0.635 0.811 0.991
300 0.668 0.825 0.993

BPI Chanllenge 2012

100 0.441 0.800 0.993
150 0.463 0.790 0.996
200 0.432 0.772 0.992
300 0.438 0.760 0.994

Information 2022, 13, 234 13 of 18

Table 7. Comparison of our method with the MIEC [9].

Dataset Number of Missing Activity
Labels MIEC [9] Our Method

Production Process Log

15% (681) 0.925 0.946
20% (908) 0.876 0.938
25% (1817) 0.837 0.937
30% (1363) 0.788 0.938

100 150 200 300
Our Method 0.995 0.991 0.991 0.993
PROELR 0.441 0.463 0.432 0.438
SRBA 0.8 0.79 0.772 0.76

100 150 200 300
Our Method 0.993 0.996 0.992 0.994
PROELR 0.644 0.65 0.635 0.668
SRBA 0.816 0.805 0.811 0.825

15% 20% 25% 30%
Our Method 0.946 0.938 0.937 0.938
MIEC 0.925 0.876 0.837 0.788

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 300

Su
cc

es
s R

at
e

Number of Events with Missing Activity Labels

Hospital Billing

Our Method

PROELR

SRBA

0.4

0.5

0.6

0.7

0.8

0.9

1

100 150 200 300

Su
cc

es
s R

at
e

Number of Events with Missing Activity Labels

BPI Chanllenge 2012

Our Method

PROELR

SRBA

0.4

0.5

0.6

0.7

0.8

0.9

1

15% 20% 25% 30%

Su
cc

es
s R

at
e

Percentage of Events with Missing Activity Labels

Production Process Log

Our Method

MIEC

Figure 7. Comparison of our method with others.

5.2. Further Analysis of Our Proposed Method

To further analyze the performance of our proposed method, we evaluated our method
with more event logs and missing activity labels. Besides running the experiments on our
method, several baselines were also implemented to prove the effectiveness of our method:

• Prefix Only: A LSTM-based prediction model that predicts the missing activity label
of an event using only its prefix sequence.

• Suffix Only: A LSTM-based prediction model that predicts the missing activity label
of an event using only its suffix sequence.

• Our Method (Without Resources): Our proposed model that uses only prefix and
suffix sequences of an event to predict its missing activity label.

In total, all six event logs were used to evaluate our method in this section. For each
event log, 10%, 20%, 30%, and 40% of the activity labels were randomly deleted to create
missing activity labels. For “Hospital Billing” and “BPI Challenge 2012” logs, instead
of deleting a small number of activity labels, a large proportion of activity labels were
removed. The evaluation results are presented in Table 8 where all success rates were
averaged by 10 repeats. The success rates of our method are much higher than using only
prefix or suffix sequences to predict the missing activity labels, whether the additional
attributes (i.e., resources) are used or not. The results prove that, when repairing missing
activity labels of events, using the information from both their prefix and suffix sequences
can significantly improve the success rates.

It is also interesting to notice that, except for the production process log, although
using additional attributes (i.e., resources) can improve the success rates, applying our
method without additional attributes can also obtain high success rates. Our results indicate
that our method can be used to repair missing activity labels when additional attributes are
not available in event logs.

Figure 8 shows the success rates of our method each round separately in different
event logs when different numbers of activity labels are missing. Overall, the success rates
of our method are stable in different rounds without huge fluctuations. Although the
success rates become lower when more activity labels are missing, the drops are slight. On
average, the success rate drops by only 0.04 when the number of missing activity labels
increases from 10% to 40%. These results suggest that our method can accurately repair
event logs with a large proportion of missing activity labels.

Table 9 shows the average time for our method to repair the missing activity labels
for each event log. The time includes the time to train the prediction model and repair the
missing activity labels. All our code was run on Google Colab Pro with Nvidia Tesla P100

Information 2022, 13, 234 14 of 18

GPU. It is interesting to notice that our method takes less time when there are more missing
activity labels. The datasets for training the model become smaller when there are more
missing activity labels.

Finally, to show how different process discovery algorithms can handle the repaired
event logs, we selected the event logs the with highest success rates (Hospital Billing) and
event logs with lowest success rates (Sepsis Log) for additional experiments. We used their
original two event logs, the event logs with missing activity labels (20 event logs in total)
and the repaired event logs (20 event logs in total) to discover process models, and we used
all the discovered process models to perform conformance checking against the original
event logs. The conformance checking was based on Variants.ALIGNMENT_BASED
(fitness) and Variants.ALIGN_ETCONFORMANCE (precision) tools in the PM4PY [41]
framework. Table 10 shows the average f-scores of the discovered process models using
the inductive miner infrequent algorithm [21]. Table 11 shows the average f-scores of the
discovered process models using the split miner algorithm [11]. Default settings were
applied to all process discovery algorithms. A higher f-score indicates the discovered
process model can represent the process behaviors of the original event log more accurately.
As shown in both tables, the average f-scores for the event logs with missing activity labels
and repaired event logs drop when there are more missing activity labels. However, the
f-scores for process models of repaired event logs drop slower and remain closer to the
process models of the original event logs. The results indicate that the proposed method
can help with improving the quality of discovered process models when there are missing
activity labels in event logs.

Table 8. Further analysis of our method.

Dataset
Number of

Missing
Activity Labels

Prefix Only Suffix Only
Our Method

(Without
Resources)

Our Method

Hospital Billing

10% (41,223) 0.878± 0.002 0.885± 0.002 0.986± 0.001 0.990± 0.001
20% (82,447) 0.865± 0.003 0.880± 0.002 0.983± 0.002 0.988± 0.001
30% (123,670) 0.852± 0.002 0.875± 0.003 0.980± 0.001 0.985± 0.001
40% (164,894) 0.836± 0.002 0.868± 0.001 0.976± 0.001 0.983± 0.001

BPI Chanllenge 2012

10% (26,220) 0.828± 0.096 0.809± 0.091 0.975± 0.046 0.983± 0.002
20% (52,440) 0.823± 0.002 0.795± 0.002 0.968± 0.002 0.971± 0.002
30% (78,660) 0.802± 0.003 0.768± 0.004 0.952± 0.004 0.957± 0.003
40% (104,880) 0.778± 0.002 0.735± 0.004 0.932± 0.002 0.942± 0.002

Sepsis Log

10% (1521) 0.634± 0.020 0.588± 0.017 0.819± 0.022 0.888± 0.016
20% (3042) 0.602± 0.016 0.545± 0.013 0.763± 0.009 0.846± 0.016
30% (4564) 0.575± 0.017 0.515± 0.010 0.712± 0.017 0.812± 0.012
40% (6085) 0.547± 0.012 0.481± 0.011 0.660± 0.012 0.779± 0.012

Helpdesk

10% (2134) 0.822± 0.014 0.868± 0.009 0.937± 0.009 0.943± 0.013
20% (4269) 0.807± 0.014 0.861± 0.008 0.936± 0.007 0.941± 0.005
30% (6404) 0.795± 0.008 0.853± 0.006 0.929± 0.007 0.934± 0.003
40% (8539) 0.786± 0.005 0.847± 0.008 0.922± 0.005 0.923± 0.005

BPIC 2013 Incidents

10% (6553) 0.662± 0.009 0.712± 0.007 0.831± 0.006 0.873± 0.007
20% (13,106) 0.650± 0.007 0.703± 0.007 0.823± 0.003 0.864± 0.004
30% (19,659) 0.634± 0.005 0.690± 0.005 0.816± 0.006 0.855± 0.005
40% (26,213) 0.617± 0.008 0.679± 0.004 0.807± 0.005 0.843± 0.006

Production Process Log

10% (454) 0.481± 0.041 0.520± 0.053 0.568± 0.045 0.944± 0.014
20% (908) 0.461± 0.018 0.507± 0.034 0.546± 0.029 0.938± 0.017
30% (1363) 0.430± 0.020 0.478± 0.027 0.514± 0.020 0.936± 0.013
40% (1817) 0.416± 0.025 0.461± 0.022 0.500± 0.025 0.932± 0.010

Information 2022, 13, 234 15 of 18

Table 9. Average time used to repair each log.

Dataset Number of Missing Activity Labels Average Time Used by Our Method to Repair
Each Log

Hospital Billing
10% (41,223) 2190.91 s
20% (82,447) 1463.12 s
30% (123,670) 1217.85 s
40% (164,894) 1093.86 s

BPI Challenge 2012
10% (26,220) 1772.21 s
20% (52,440) 1109.62 s
30% (78,660) 1000.51 s
40% (104,880) 899.21 s

Sepsis Log
10% (1521) 140.69 s
20% (3042) 89.99 s
30% (4564) 75.65 s
40% (6085) 69.66 s

Helpdesk
10% (2134) 140.40 s
20% (4269) 89.33 s
30% (6404) 80.30 s
40% (8539) 72.96 s

BPIC 2013 Incidents
10% (6553) 218.59 s

20% (13,106) 170.65 s
30% (19,659) 157.66 s
40% (26,213) 150.10 s

Production Process Log
10% (454) 40.40 s
20% (908) 36.38 s

30% (1363) 32.52 s
40% (1817) 29.56 s

0.978

0.98

0.982

0.984

0.986

0.988

0.99

0.992

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

Hospital Billing

40% 30% 20% 10%

0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

BPI Challenge 2012

40% 30% 20% 10%

0.7

0.75

0.8

0.85

0.9

0.95

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

Sepsis Log

40% 30% 20% 10%

0.9

0.91

0.92

0.93

0.94

0.95

0.96

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

Helpdesk

40% 30% 20% 10%

0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

BPIC 2013 Incidents

40% 30% 20% 10%

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Su
cc

es
s R

at
e

Round

Production Process Log

40% 30% 20% 10%

Figure 8. Successful rates of our method on different datasets in different rounds.

Information 2022, 13, 234 16 of 18

Table 10. F-scores of process models discovered by the inductive miner (infrequent) from the original,
problem and repaired event logs. All conformance checking was conducted between discovered
process models and the original event logs.

Dataset Number of Missing
Activity Labels

F-Score (the Original
Log)

Average F-Score (the
Logs with Missing

Activity Labels)
Average F-Score (the

Repaired Logs)

Hospital Billing
10% (41,223) 0.75 0.67 0.74
20% (82,447) 0.75 0.59 0.71

30% (123,670) 0.75 0.57 0.71
40% (164,894) 0.75 0.55 0.70

Sepsis Log
10% (26,220) 0.77 0.62 0.72
20% (52,440) 0.77 0.61 0.68
30% (78,660) 0.77 0.59 0.66

40% (104,880) 0.77 0.58 0.65

Table 11. F-scores of process models discovered by the split miner from the original, problem and
repaired event logs. All conformance checking was conducted between discovered process models
and the original event logs.

Dataset Number of Missing
Activity Labels

F-Score (the Original
Log)

Average F-Score (the
Logs with Missing

Activity Labels)
Average F-Score (the

Repaired Logs)

Hospital Billing
10% (41,223) 0.95 0.86 0.94
20% (82,447) 0.95 0.85 0.94

30% (123,670) 0.95 0.81 0.93
40% (164,894) 0.95 0.80 0.93

Sepsis Log
10% (26,220) 0.86 0.76 0.80
20% (52,440) 0.86 0.74 0.78
30% (78,660) 0.86 0.72 0.77

40% (104,880) 0.86 0.68 0.76

6. Conclusions

In this paper, we proposed a deep learning method to repair missing activity labels
in event logs. The method was inspired by recent research papers in the field of process
mining that designed artificial neural network models to predict the next activities in
ongoing traces. Different from algorithms that predict next activities, to repair the missing
activity labels of events, our method uses both their prefix and suffix sequences. The
success rates of our method are much higher compared to existing methods in terms of
repairing missing activity labels. Additional attributes in the event log can also be utilized
to improve the success rates of our method.

Comparing with existing methods, our method can accurately repair the missing
activity labels when a large portion of activity labels are missing. In addition, a high success
rate can be achieved when only control-flow information is provided to our method, which
indicates that our method can be applied to a wide range of event logs. However, since
the proposed method uses neural networks to predict missing activity labels, there can be
higher requirements for computer hardware to execute the method. For example, a GPU
could be required to achieve good performance. In addition, the method requires many
parameters from users, which may impact the performance of the method. A future study
on how these parameters can impact the proposed method is needed.

It has to be noted that, like other methods used to repair missing activity labels in
event logs, such as those found in [7–9], we assumed that we know the exact locations of
the missing values. Although our method cannot be applied directly to event logs when the
locations of missing values are unknown, our method can be used together with anomaly
detection algorithms, such as [42]. For example, a missing event may exist between two
events when the direct succession relation between two consecutive events is identified as
an anomaly.

Future work includes the following aspects: Firstly, besides repairing activity labels,
we also plan to expand our method to repair other attributes in the event logs (e.g., resources
and timestamps). Secondly, besides resources, we also aim at evaluating our method using

Information 2022, 13, 234 17 of 18

other additional attributes. Thirdly, we plan to investigate how different parameters
settings can impact the method. Finally, we plan to investigate the feasibility of applying
our method in online settings.

Author Contributions: Conceptualization and methodology, Y.L., Q.C., S.K.P.; Development, Y.L.;
Validation, Y.L., Q.C., S.K.P.; Writing—original draft preparation: Y.L; Writing—review and editing:
Y.L., Q.C., S.K.P.; Supervision: S.K.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets used to evaluate the proposed method are publicly-available;
please refer to notes for links to access the datasets.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dumas, M.; La Rosa, M.; Mendling, J.; Reijers, H.A. Fundamentals of Business Process Management; Springer: Berlin/Heidelberg,

Germany, 2013; Volume 1.
2. Van der Aalst, W. Process Mining; Springer: Berlin/Heidelberg, Germany, 2016.
3. Cai, L.; Zhu, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Sci. J. 2015, 14, 2.

[CrossRef]
4. Suriadi, S.; Andrews, R.; ter Hofstede, A.; Wynn, M. Event log imperfection patterns for process mining: Towards a systematic

approach to cleaning event logs. Inf. Syst. 2017, 64, 132–150. [CrossRef]
5. Jagadeesh Chandra Bose, R.; Mans, R.; van der Aalst, W.M. Wanna improve process mining results?: it’s high time we consider

data quality issues seriously. BPM Rep. 2013, 1302, 127–134.
6. Rogge-Solti, A.; Mans, R.S.; van der Aalst, W.M.; Weske, M. Repairing Event Logs Using Stochastic Process Models; Universitätsverlag

Potsdam: Potsdam, Germany, 2013; Volume 78.
7. Xu, J.; Liu, J. A profile clustering based event logs repairing approach for process mining. IEEE Access 2019, 7, 17872–17881.

[CrossRef]
8. Liu, J.; Xu, J.; Zhang, R.; Reiff-Marganiec, S. A repairing missing activities approach with succession relation for event logs.

Knowl. Inf. Syst. 2021, 63, 477–495. [CrossRef]
9. Sim, S.; Bae, H.; Choi, Y. Likelihood-based multiple imputation by event chain methodology for repair of imperfect event logs

with missing data. In Proceedings of the 2019 International Conference on Process Mining (ICPM), IEEE, Aachen, Germany,
24–26 June 2019; pp. 9–16.

10. Song, W.; Xia, X.; Jacobsen, H.A.; Zhang, P.; Hu, H. Heuristic recovery of missing events in process logs. In Proceedings of the
2015 IEEE International Conference on Web Services, IEEE, New York, NY, USA, 27 June–2 July 2015; pp. 105–112.

11. Augusto, A.; Conforti, R.; Dumas, M.; La Rosa, M.; Polyvyanyy, A. Split miner: automated discovery of accurate and simple
business process models from event logs. Knowl. Inf. Syst. 2019, 59, 251–284. [CrossRef]

12. Van der Aalst, W.; Weijters, T.; Maruster, L. Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl.
Data Eng. 2004, 16, 1128–1142. [CrossRef]

13. De Medeiros, A.A.; van Dongen, B.F.; Van der Aalst, W.M.; Weijters, A. Process Mining: Extending the α-Algorithm to Mine Short
Loops; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2004.

14. Guo, Q.; Wen, L.; Wang, J.; Yan, Z.; Philip, S.Y. Mining invisible tasks in non-free-choice constructs. In Proceedings of the Interna-
tional Conference on Business Process Management, Rio de Janeiro, Brazil, 18–22 September 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 109–125.

15. Wen, L.; Wang, J.; van der Aalst, W.M.; Huang, B.; Sun, J. Mining process models with prime invisible tasks. Data Knowl. Eng.
2010, 69, 999–1021. [CrossRef]

16. Wen, L.; Van Der Aalst, W.M.; Wang, J.; Sun, J. Mining process models with non-free-choice constructs. Data Min. Knowl. Discov.
2007, 15, 145–180. [CrossRef]

17. Weijters, A.; Ribeiro, J.T.S. Flexible heuristics miner (FHM). In Proceedings of the 2011 IEEE Symposium on Computational
Intelligence and Data Mining (CIDM), IEEE, Paris, France, 11–15 April 2011; pp. 310–317.

18. Weijters, A.; van Der Aalst, W.M.; De Medeiros, A.A. Process mining with the heuristics miner-algorithm. Tech. Univ. Eindh. Tech.
Rep. WP 2006, 166, 1–34.

19. vanden Broucke, S.K.; De Weerdt, J. Fodina: a robust and flexible heuristic process discovery technique. Decis. Support Syst. 2017,
100, 109–118. [CrossRef]

http://doi.org/10.5334/dsj-2015-002
http://dx.doi.org/10.1016/j.is.2016.07.011
http://dx.doi.org/10.1109/ACCESS.2019.2894905
http://dx.doi.org/10.1007/s10115-020-01524-6
http://dx.doi.org/10.1007/s10115-018-1214-x
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.1016/j.datak.2010.06.001
http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1016/j.dss.2017.04.005

Information 2022, 13, 234 18 of 18

20. Leemans, S.J.; Fahland, D.; van der Aalst, W.M. Discovering block-structured process models from event logs-a constructive
approach. In Proceedings of the International Conference on Applications and Theory of Petri Nets and Concurrency, Milan,
Italy, 24–28 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 311–329.

21. Leemans, S.J.; Fahland, D.; van der Aalst, W.M. Discovering block-structured process models from event logs containing
infrequent behaviour. In Proceedings of the International Conference on Business Process Management, Beijing, China, 26–30
August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 66–78.

22. Leemans, S.J.; Fahland, D.; van der Aalst, W.M. Discovering block-structured process models from incomplete event logs. In
Proceedings of the International Conference on Applications and Theory of Petri Nets and Concurrency, Tunis, Tunisia, 23–27
June 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 91–110.

23. Leemans, S.J.; Fahland, D.; van der Aalst, W.M. Scalable process discovery and conformance checking. Softw. Syst. Model. 2018,
17, 599–631. [CrossRef] [PubMed]

24. Leemans, S.J.; Fahland, D.; van der Aalst, W.M. Using life cycle information in process discovery. In Proceedings of the Interna-
tional Conference on Business Process Management, Rio de Janeiro, Brazil, 18–22 September 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 204–217.

25. Leemans, M.; van der Aalst, W.M. Modeling and discovering cancelation behavior. In Proceedings of the OTM Confederated
International Conferences “On the Move to Meaningful Internet Systems”, Rhodes, Greece, 23–27 October 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 93–113.

26. Lu, Y.; Chen, Q.; Poon, S. A Novel Approach to Discover Switch Behaviours in Process Mining. In Proceedings of the International
Conference on Process Mining, Padua, Italy, 4–9 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 57–68.

27. Van der Aalst, W.M.; De Medeiros, A.A.; Weijters, A.J. Genetic process mining. In Proceedings of the International Conference on
Application and Theory of Petri Nets, Miami, FL, USA, 20–25 June 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 48–69.

28. Buijs, J.C.; van Dongen, B.F.; van der Aalst, W.M. Quality dimensions in process discovery: The importance of fitness, precision,
generalization and simplicity. Int. J. Coop. Inf. Syst. 2014, 23, 1440001. [CrossRef]

29. Van der Werf, J.M.E.; van Dongen, B.F.; Hurkens, C.A.; Serebrenik, A. Process discovery using integer linear programming. In
Proceedings of the International Conference on Applications and Theory of Petri Nets, Xi’an, China, 23–27 June 2008; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 368–387.

30. Sommers, D.; Menkovski, V.; Fahland, D. Process discovery using graph neural networks. In Proceedings of the 2021 3rd
International Conference on Process Mining (ICPM), IEEE, Eindhoven, The Netherlands, 31 October–4 November 2021; pp. 40–47.

31. Horita, H.; Kurihashi, Y.; Miyamori, N. Extraction of missing tendency using decision tree learning in business process event log.
Data 2020, 5, 82. [CrossRef]

32. Tax, N.; Verenich, I.; La Rosa, M.; Dumas, M. Predictive business process monitoring with LSTM neural networks. In Proceedings
of the International Conference on Advanced Information Systems Engineering, Essen, Germany, 12–16 June 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 477–492.

33. Camargo, M.; Dumas, M.; González-Rojas, O. Learning accurate LSTM models of business processes. In Proceedings of the
International Conference on Business Process Management, Vienna, Austria, 1–6 September 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 286–302.

34. Pasquadibisceglie, V.; Appice, A.; Castellano, G.; Malerba, D. A multi-view deep learning approach for predictive business
process monitoring. IEEE Trans. Serv. Comput. 2021. [CrossRef]

35. Lin, L.; Wen, L.; Wang, J. Mm-pred: A deep predictive model for multi-attribute event sequence. In Proceedings of the 2019
SIAM International Conference on Data Mining, SIAM, Calgary, AB, Canada, 2–4 May 2019; pp. 118–126.

36. Taymouri, F.; La Rosa, M.; Erfani, S.; Bozorgi, Z.D.; Verenich, I. Predictive business process monitoring via generative adversarial
nets: The case of next event prediction. In Proceedings of the International Conference on Business Process Management, Seville,
Spain, 13–18 September 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 237–256.

37. Pasquadibisceglie, V.; Appice, A.; Castellano, G.; Malerba, D. Using convolutional neural networks for predictive process
analytics. In Proceedings of the 2019 International Conference on Process Mining (ICPM), IEEE, Aachen, Germany, 24–26 June
2019; pp. 129–136.

38. Mehdiyev, N.; Evermann, J.; Fettke, P. A novel business process prediction model using a deep learning method. Bus. Inf. Syst.
Eng. 2020, 62, 143–157. [CrossRef]

39. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
40. Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv 2016, arXiv:1604.06737.
41. Berti, A.; Van Zelst, S. J.; van der Aalst, W. Process Mining for Python (PM4Py): Bridging the Gap Between Process- and Data

Science. arXiv 2019, arXiv:1905.06169.
42. Huo, S.; Völzer, H.; Reddy, P.; Agarwal, P.; Isahagian, V.; Muthusamy, V. Graph Autoencoders for Business Process Anomaly Detection;

Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M., Eds.; Business Process Management; Springer International Publishing:
Cham, Switzerland, 2021; pp. 417–433.

http://dx.doi.org/10.1007/s10270-016-0545-x
http://www.ncbi.nlm.nih.gov/pubmed/29706859
http://dx.doi.org/10.1142/S0218843014400012
http://dx.doi.org/10.3390/data5030082
http://dx.doi.org/10.1109/TSC.2021.3051771
http://dx.doi.org/10.1007/s12599-018-0551-3
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

	Introduction
	Motivating Example
	Contributions of This Paper

	Related Work
	Process Discovery Algorithms
	Missing Data in Event Logs
	Next Activity Prediction in Event Logs

	Preliminaries
	Problem Definition
	Long Short-Term Memory (LSTM)

	The Proposed Method
	Data Preprocessing
	The Deep Learning Architecture

	Evaluation
	Comparing with Existing Methods
	Further Analysis of Our Proposed Method

	Conclusions
	References

