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Abstract: Knowledge graph (KG) helps to improve the accuracy, diversity, and interpretability of a
recommender systems. KG has been applied in recommendation systems, exploiting graph neural
networks (GNNs), but most existing recommendation models based on GNNs ignore the influence of
node types and the loss of information during aggregation. In this paper, we propose a new model,
named A Multi-Granular Aggregation-Enhanced Knowledge Graph Representation for Recommendation
(MAKR), that relieves the sparsity of the network and overcomes the limitation of information loss
of the traditional GNN recommendation model. Specifically, we propose a new graph, named the
Improved Collaborative Knowledge Graph (ICKG), that integrates user–item interaction and a knowledge
graph into a huge heterogeneous network, divides the nodes in the heterogeneous network into three
categories—users, items, and entities, and connects the edges according to the similarity between
the users and items so as to enhance the high-order connectivity of the graph. In addition, we
used attention mechanisms, the factorization machine (FM), and transformer (Trm) algorithms to
aggregate messages from multi-granularity and different types to improve the representation ability
of the model. The empirical results of three public benchmarks showed that MAKR outperformed
state-of-the-art methods such as Neural FM, RippleNet, and KGAT.

Keywords: knowledge graph; graph neural network; recommender system

1. Introduction

With the rapid development of internet technology and the exponential growth of
information resources on the network, users are facing the problem of information overload,
and it is difficult to quickly retrieve the content in which they are interested [1]. As an
effective method to alleviate the problem of information overload, recommender systems
learn users’ interest preferences and recommend personalized content by analyzing users’
features, historical behavior data, and item features to help users retrieve the content they
may be interested in [2].

Traditional recommendation methods are divided into three types: content-based
recommendation, collaborative filtering (CF) recommendation, and hybrid recommen-
dation [3]. Content-based recommendation mines other items with similar content as
recommendations according to the items that users have selected or rated [4]. The collabo-
rative filtering algorithm mines similar users or items by calculating the similarity between
users or items and recommends items of interest to users [5]. The main idea of the hybrid
recommendation algorithm is to combine the above recommendation methods to make
full use of the information of users and items [6]. At present, the recommender system
based on CF has been widely used, because it can effectively capture users’ preferences
and is easy to implement. However, due to the exponential growth of network resources
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and users, CF-based recommendation has encountered challenges such as data sparsity
and cold start [7].

To solve these problems, many studies have introduced side information, such as
social networks [8], item attributes [9], and image information [10], into the recommender
systems. Knowledge graph, an effective and commonly used type of side information,
is able to alleviate data sparsity and cold starts, which are difficult and vital problems
in recommender systems. Knowledge graph is a heterogeneous semantic network that
is composed of nodes and edges. The nodes represent entities, and the edges represent
various relationships between the entities. Knowledge graph has three obvious advantages:
accuracy, diversity, and interpretability [11]. They introduce more semantic relationships
that can accurately find deep-seated user interests, and they integrate a variety of different
relationship types to ensure the diversity of recommendation results. Knowledge graph is
an explicitly structured network. Information is transmitted according to the structure of
the network, and all recommendation results are traceable. Therefore, knowledge graph can
effectively alleviate the sparsity and cold start problems faced by traditional collaborative
filtering systems in recommender systems and improve the recommendation effect to a
certain extent.

The existing recommender systems based on knowledge apply knowledge graphs in
three ways: embedding-based methods, path-based methods, and unified methods [12].
Based on the embedding method, firstly, the knowledge graph embedding method is used
for pre-training in the KG to obtain the entity embedding representation in the KG, and then
the entity embedding representation is used as the item embedding representation in the
recommendation. CKE [10] learns the item embedding representation through TransR [13]
with the participation of the KG. DKN [14] regards entity embedding and text embedding
as different channels and generates new embedding representation through TransD [15].
However, the knowledge graph embedding algorithm is usually more suitable for graph
applications, such as link prediction, rather than recommendation [16]; thus, the learning
entity embedding representation is not intuitive and effective in representing the relation-
ship between items. The path-based approach explores various connection modes between
items in the KG to provide additional guidance for recommendation. A meta-graph-based
recommendation KPRN [17] regards KGs as heterogeneous information networks and
extracts the potential features based on meta-paths to represent the connectivity between
users and items, along with different types of relationship paths. Path-based methods use
KGs more naturally and intuitively, but they rely heavily on manually designed meta-paths.
Based on the propagation method, the propagation is performed iteratively on the whole
KG to find the recommended side information. RippleNet [18] has made great progress
in KG-based recommendations. It regards the user’s historical interest as the seed set in
the KG and then iteratively expands the user’s interest along the KG link to find its lay-
ered potential interest in candidate items. KGCNs [19] use graph convolutional networks
(GCNs) [20] to obtain item-embedding representation through their neighbors in the KG,
which shows that neighbor information can effectively improve the accuracy of recommen-
dation tasks. However, both methods ignore the contribution of collaborative information
to the user and item representation, resulting in insufficient embedded representations of
the user and item.

To sum up, combining knowledge graphs with GNN-based models for recommen-
dation presents two challenges: (1) The existing recommendation algorithms based on
knowledge graphs often ignore the contribution of high-order collaborative information to
the representations of users and items, resulting in an insufficient embedded representation
of the users and items. Therefore, we investigated how to consider both user commodity
interaction behavior and the KG, enhance the high-order connectivity of the graph, and
better model the embedded representation of users and items to improve the recommenda-
tion performance. (2) The previous traditional aggregation methods, such as mean pooling,
maximum pooling, and matrix multiplication, may cause heterogeneous messages to offset
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each other and introduce information loss. Therefore, we investigated how to construct a
new aggregation method to improve the expression ability of the model.

To address the above problems, we propose a multi-granular information aggregation
recommendation (MAKR) model to enhance the collaborative information and knowledge
graph information. Figure 1 shows the model framework. Firstly, the model pre-trains the
node embedding in the graph based on the DeepWalk model to obtain the preliminary
node embedding [21]. The model introduces first-order collaborative information and
high-order collaborative information and uses attention mechanisms [22], FM [23], and
transformer [24] to extract important information from different dimensions to obtain
enhanced collaborative information, which is used to fully learn the influence between
the categories and all nodes. Then, the edges are connected according to the similarities
of the user–user and item–item, and the graph is enhanced. This method can effectively
reduce the sparsity of the graph and enhance the representation of the user portrait and
commodity features. Finally, the enhanced collaboration information and knowledge graph
information are combined through the aggregator to obtain the final representation of users
and items. The main contributions of this paper are summarized as follows:

Figure 1. The whole framework of the proposed MAKR model.

We propose a novel information aggregator on the GNN model that jointly considers
type-aware attention, fine granular transformer, and coarse granular FM aggregators,
greatly improving the representation ability of the model.

1. The graph is enhanced to relieve sparsity. The edge is connected according to the sim-
ilarity threshold between the user–user and item–item in the graph, which combines
user–item interaction and item attributes. The strategy can better model user portraits
and item features;

2. We propose a new model, MAKR, based on the GNN in a knowledge graph for
recommendation tasks. Furthermore, we conducted experiments on three top-N
recommender data sets with different settings that indicate that MAKR obtained a
state-of-the-art position in the top-N recommendation.

The rest of the paper is organized as follows. First, Section 2 introduces the related
works from three aspects: knowledge graphs, graph neural networks, and GNN-based
recommender systems. Section 3 introduces our method in detail, which includes graph
construction, the three main parts of our models, and optimization. Next, we describe the
three data sets, baseline models, evaluation metrics, and experimental settings in detail in
Section 4. Section 5 shows the overall test performance of our models and baseline models
and reports the experimental results in detail. Finally, we summarize this research and
discuss the prospects for future research in Section 6.
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2. Related Work
2.1. Graph Neural Network

Traditional neural networks, such as CNN and RNN, cannot directly process the
graph structure data. The nodes in the graph must be transformed into the sequence form
acceptable to CNN and RNN. However, this will lose the structure’s information in the
graph and the computing resources cannot be borne.

A graph neural network is a deep neural network based on graph structure data that
can fully learn the characteristics and patterns of graph structure data so as to complete the
next tasks: node classification, link prediction, inner product scoring, and recommendation.
DeepWalk [21] uses the random walk method to learn the representation of nodes in the
graph structure for the first time. A graph revolution network (GCN) [20] uses convolution
to carry out classification tasks, which can be divided into two types: spectral based
and spatial based. GraphSAGE [25] optimizes GCN by sampling neighbors with nodes
as the center so that it can be trained in large-scale graph data. Moreover, GraphSAGE
can perform inductive learning and learn nodes that have not been seen before. Graph
attention network (GAT) [26] adds an attention mechanism to GraphSAGE. The importance
of neighbors is measured in the process of neighbor aggregation.

2.2. Knowledge Graph

Knowledge graph originates from the semantic web, which is a special heterogeneous
map that contains rich semantic information and structural information. Knowledge graph
is represented in the form of triples, including head nodes, tail nodes, and edges connecting
the two nodes. The head node and tail node represent the entities in the objective world,
and the edge represents the relationship between the two entities. Since Google put forward
the concept of the knowledge graph in 2012, researchers have explored knowledge graphs
from various angles. In particular, major companies have built many large knowledge
graphs at an early stage, such as Freebase [27], DBpedia [28], Yago [29], and Nell [30], and
have made many successful applications. Nowadays, knowledge graph plays an important
role in question-and-answer systems, intelligent customer service, information retrieval,
recommender systems, and other fields.

Different from the ordinary graph structure, the edges of knowledge graphs have
practical meaning, and the types of edges between each pair of nodes may be different.
N. Kipf pioneered the use of GCN for multi-relational graphs, such as knowledge graphs,
while all previous graph neural network models can only model graphs with a single
relationship [31]. In order to deal with different relationships in the knowledge graph, the
relationship-aware subgraph aggregator divides the graph into multiple subgraphs, and
the subgraph contains only one relationship type. Each subgraph has an aggregator, which
extracts the information of the subgraph to produce a context representation containing
relational information. KGCN [19] and KGAT [32] optimize the neighborhood graph into a
weighted graph in the knowledge graph. These weights capture rich semantic information
about the relationship between the different nodes. At the same time, the interpretability of
the depth recommender system is improved by weighting the contributions of different
nodes near the target node.

2.3. Traditional Recommender System

Recommendation system can effectively solve the problem of information overload.
Generally speaking, recommendation methods are divided into three kinds: content-based
recommendation, collaborative filtering (CF) recommendation and hybrid recommendation.

Content-based recommendation system attempts to recommend items similar to those
a given user has liked in the past [33]. Nguyen considered that background data are
significant to recommender systems; they employed DBpedia and Freebase to evaluate the
fitness for content-based recommendation tasks in the music domain [34]. The premise
for content-based recommendation system to give a good recommendation is that the
information in the content is enough to distinguish users’ interest in the items. The
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content-based recommendation system will not work if the information in the content
is insufficient [35].

CF assumes that users may be interested in items selected by people who share
similar interaction records. To implement CF-based recommendation, interaction data
from multiple users and items are required, which further forms the user-item interaction
matrix [12]. Collaborative filtering methods are divided into user-based methods and
item-based methods. In fact, similarity calculation is the common point of user-based
methods and item-based methods, but the similarity calculation method is different. The
former is inferred from the preference of user history, and the latter is based on the attribute
feature information of the item itself.

The traditional method is difficult to learn the high-order structure information in
the data, while the graph neural network GNN uses the message passing mechanism to
integrate the neighbor information, so that the node can obtain the high-order neighbor
information. Therefore, GNN has been widely used in recommendation systems in recent
years, and it has become the most advanced method. MHCN [36] uses GCN to spread
information on the constructed hypergraph to obtain high-order relations. DiffNet [37]
uses different weights on GNN to measure the importance of different friends in social
networking, which has achieved good results.

2.4. GNN-Based Recommender System

With the rapid development of GNN and its excellent performance in node classifica-
tion, many researchers try to apply GNN to recommender systems.

The data in a recommender system is generally divided into three types: user–item
interaction, item sequence, and other side information such as the social relationship.
Knowledge graph user–item interactions can be regarded as a bipartite graph, the item
sequence can be regarded as a sequence graph, and the side information can naturally be
regarded as graph structure data. Therefore, we can see that most of the data in a recom-
mender system (in essence, it can be seen as graph structure data) are suitable for GNN. In
addition to data, for the specific learning process, GNN can explicitly encode cooperative
signals through node aggregation to enhance the representation and learning ability of
users and items. Compared to other models, GNN’s modeling of multi-hop information is
more flexible and convenient [38]. In short, the data structure of a recommender system
is very suitable for transformation into a graph structure, and GNN has a strong learning
ability in the representation and learning of graph data.

NGCF [39] and LightGCN [40] enhance user representation by using user–item in-
teractive records and enhance item representation by using interactive user records. SR-
GNN [41] is the migration of items through iterative propagation based on sequence
diagrams to learn representative item representation. KGCN [19] and KGAT [32] integrate
a knowledge graph into recommender systems, which leads to two benefits: (1) rich se-
mantic associations between items can improve the effect of item representation; (2) the
interpretability of the recommended results is enhanced.

In MAKR, we not only use interactive data but also knowledge graph information.
Moreover, we implemented a novel GNN-based recommender system that combines
factorization machine, attention mechanism, and transformer layers for node aggregation
with different feature fields.

3. Methods

In this section, the detailed method is introduced. The MAKR model is mainly
divided into five modules: (1) Graph construction—builds user–item interaction; the item
attributes information into the user–item bipartite graph and knowledge graph, integrating
and improving the first graph. (2) Embedding layer—the initial feature vectors of users,
items, and entities are obtained through random initialization or pre-training embedding.
(3) Information propagation layer—carries out message propagation for nodes in the self-
defined graph neural network module and updates the node representation. (4) Prediction
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layer—outputs the prediction results of the model according to the final user and item node
representation. (5) Optimization: We used BPR loss and L2 regularization terms as loss
functions to optimize our model. The message propagation layer is the focus of the model
in this chapter. The message propagation layer focuses on the interactive information
between neighbor nodes and carries out interactive aggregation with different granularity
so as to reduce the information loss during aggregation as much as possible.

Next, the structure of each layer of the MAKR model in this paper is introduced in
detail, and each layer is described in Sections 3.2–3.4.

3.1. Graph Construction

• User–Item Bipartite Graph: User historical behavior, purchases, and clicks are im-
portant and widely used in recommender systems. We constructed the user–item
interaction behavior as a user–item bipartite graph, G1, with the user set on the left
and the item set on the right. Users and items are connected to each other. There
is no connection between users and no connection between items. G1 is defined as
{(u, yui, i)|u ∈ U , i ∈ I}, where U is the user set and I is the item set, and yui = 1 if
there is a user–item interaction; otherwise, yui = 0.

• Knowledge Graph: User–item interaction information is sparse. In order to enrich the
data, many studies have tried to add item attributes or external knowledge into the rec-
ommender system as side information. Here, we formed an item attribute knowledge
graph, G2, by integrating the item, its attributes, and the relationship between them.
This knowledge graph is composed of triples, expressed as {(h, r, t)|h, t ∈ E , r ∈ R},
where h represents the head entity, t represents the tail entity, and r represents the rela-
tionship between them. For example, (Timothy Donald Cook, Manage, Appl) states
the fact that Timothy Donald Cook manages Apple. Note thatR contains relations in
both the canonical direction (e.g., Manage) and inverse direction (e.g., ManagedBy).
Moreover, establishing a set of item–entity alignments is necessary. Alignments are
depicted as A = {(i, e)|i ∈ I , e ∈ E}, where (i, e) indicates that item i aligns with e in
the knowledge graph.

• Collaborative Knowledge Graph (CKG): In order to enrich the data of the recom-
mender system and enhance the expression ability of the model, we integrated the
user–item bipartite graph and item attributes knowledge graph into one graph to build
a more complete graph. Here, we define the concept of the CKG, which encodes user
behaviors and item knowledge as a unified relational graph [32]. Firstly, we represent
the interaction behavior of each user–item pair as a triple {u, interact, i}, where u
represents the user, i represents the item, and interact is the relationship between
the user and item. Then, based on the item entity alignment mentioned above, G1
and G2 can seamlessly form a unified CKG = {(h, r, t) |h, t ∈ E ′, r ∈ R′}, where
E ′ = E ∪ U andR′ = R∪ {Interact}.

• Improved Collaborative Knowledge Graph (ICKG): Although CKE has strong pre-
sentation ability, including both user interaction information and item knowledge, in
the bipartite graph of user interaction, there is neither an edge between the users nor
between goods, ignoring the influence of users and goods. Whether the user–user is
connected or not is calculated by the similarity of the two users:

sim(i, j) = α1

〈
Yi, Yj

〉∣∣∣∣Yi
∣∣∣∣·∣∣∣∣Yj

∣∣∣∣ + α2

〈
Di, Dj

〉∣∣∣∣Di
∣∣∣∣·∣∣∣∣Dj

∣∣∣∣ (1)

where Yi represents the user–item interaction vector of the user i (click 1, otherwise 0),
and Di represents the DeepWalk pre-training vector of the user i (described in detail in
Section 3.2). α1 = α2 = 0.5, that is, the similarity between two users, is determined by
the user’s historical behavior and the DeepWalk vector. After calculating the similarity,
it takes the K neighbors with the greatest similarity to each user.
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Whether the item–item is connected or not is the same for the user–user. Finally,
according to the value of K, we connect the user–user and item–item on the CKG to form
an ICKG. As shown in Figure 2, the red arrow r5 indicates the connected edges of similar
users, and r6 indicates the connected edges of similar items.

Figure 2. Improved collaborative knowledge graph (ICKG). The red arrow r5 indicates the connected
edges of similar users, and r6 indicates the connected edges of similar items.

3.2. Embedding Layer

Graph-embedding representation uses the method of deep learning to represent
the adjacency relationship in the topological graph, with vectors embedded in the low-
dimensional space [25]. DeepWalk is a typical data mining method in graph structure [21].

Here, we employed DeepWalk, widely used in graphs, on a user–item bipartite graph.
To be more specific, in a user–item bipartite graph, each node is randomly walked five
times to obtain five random walk sequences, and then trained with a word2vec algorithm
with skip-gram and hierarchical SoftMax [42,43]. Thus, the vector of each user and item
can be obtained as the projection-embedding matrix.

All heterogeneous nodes need to be projected into the feature space. For node u and
its neighbor Nk, the graph construction will add self-connection; thus, the node itself is
also its own neighbor. Then, each node can be represented as

{
uk, ik, ek

}
according to its

node type, which refers to the one-hot representation of the user and item, respectively.
After mapping the one-hot representation through the projection embedding matrix, the
embedded feature representation of nodes is obtained.

hu = Pu u (2)

Here, hu represents the user feature embedding vector, u represents the user one-hot
embedding, and Pu ∈ Rdu×nu denotes the projection-embedding matrix. nu is the number
of user nodes, and du is the dimension of embedding. The projection-embedding matrix
uses the matrix obtained by the above DeepWalk algorithm. Then, we obtain users’ feature
embedding. We use the same method on the item.

3.3. Embedding Propagation Layers

The message propagation layer is the focus of the MAKR model, and the overall
structure is shown in Figure 3. In addition to learning the attention scores among the
user, item, and entity nodes through the attention mechanism, this layer also uses FM
and transformer to learn the cross-features of the different granularity between neighbor
nodes. FM focuses on the second-order cross-feature, and transformer focuses on the
multi-order cross-feature.
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Figure 3. Message propagation layer.

3.3.1. Aggregator Based on Attention Mechanism

After sampling the neighbors of the user or item node, the next step is to aggregate
these neighbor features to obtain the node’s new feature representation based on the
neighbor information. For example, to aggregate node u’s neighbor features, we use the
aggregator based on an attention weighting mechanism:

eAtt
Nu

= ∑j∈Nu
αu←jej (3)

where αu←j is the weight assigned by node u to neighbor j, which indicates the importance
of neighbor j to u. The neighbor nodes include the user, item, and entity. One of the
most common and simple ways to calculate this weight is to set αu←j =

1
|Nu | as shown in

Equation (3). But this method assumes that all neighbors have the same importance, which
is obviously unreasonable.

In order to solve the above problems, we use the attention mechanism to adaptively
calculate the attention weight. Informative neighbor nodes will help to provide more signif-
icant features, while irrelevant neighbors will be ignored to a large extent. When calculating
the attention weight at the node level, the model takes into account the information of the
node representation and relation type as shown in Equation (4). The attention network
not only knows the central node and neighbor nodes but also considers the relation types
between them, which makes the whole attention modeling process more comprehensive.

α′u←j = vTLeakyReLU
(
W1[hu ‖ hrel ] + W2hj + b

)
(4)

Here, ‖ represents the concatenate operation, hu and hrel are the embedding feature
of the central node and neighbor j, and erelation is the embedding feature of the ID of the
relation u← j . In the graph construction process, the relation type ID is processed and
used as the attribute of the relation. In addition, W1, W2, b, and vT are the trainable
parameters of the model. The model uses the relation-aware attention aggregator, which
can learn the hidden layer features of nodes corresponding to different types of edges
more finely. Finally, the attention weight, αu←j, needs to be normalized using SoftMax to
obtain α′u←j:

αu←j = softmaxj

(
α′u←j

)
=

exp
(

α′u←j

)
∑k∈Nu exp

(
α′u←k

) (5)
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Generally, existing heterogeneous graph convolution models usually use the function
based on pooling to update node information, such as average pooling, maximum pooling,
and attention pooling, which will lose the node information and ignore the important
cross-features in a recommender system. Therefore, we propose an information updating
method based on FM and transformer to capture multi-granularity cross-features.

3.3.2. Aggregator Based on Factorization Machine

FM is a factorization machine proposed in reference [23], which is mainly used to learn
the interactive features of the recommendation model. In addition to the linear first-order
interaction features between features, the FM model also models paired second-order
interaction features as the inner product of their potential feature vectors.

FM can capture second-order cross-features more effectively than previous methods,
especially under conditions of sparse data sets. In the previous methods, only when the
features xi and xj appear in the same record can the parameters of the cross action be
trained. In FM, the cross-feature is learned through the inner product of the hidden vector
of its feature. With this flexible design, FM can train the hidden vectors, Vi or Vj, when
the features xi or xj appear in the data record. Therefore, FM can better learn the cross-
features that never appear or rarely appear in the training data. In this model, the output
of the neighbor nodes through the FM aggregator is the sum of several second-order inner
product elements:

yFM =
n−1

∑
i=1

n

∑
j=i+1

〈
Vi, Vj

〉
xixj (6)

where Vi ∈ Rk, and K is the dimension of the user-defined hidden vector, which is a
hyperparameter. The second-order inner product element

〈
Vi, Vj

〉
represents the influence

of the feature interaction.
As shown in Figure 4, FM uses the neighbor information of u1 to learn the cross-

feature of node u1. Suppose that the neighbors of user u1 are {u1, e1, e2, i1, i2 }, and
the corresponding features are expressed as {h1, h2, h3, h4, h5 }. We concatenated these
neighbor features and then obtained a new representation of user u1’s second-order cross
neighbor aggregation through the FM layer.

hFM
Nu

=
4

∑
i=1

5

∑
j=i+1

h1 � h2 (7)

Figure 4. Attention aggregator.

There are still deficiencies. As shown in Figure 5, FM only performs a second-order
cross on neighbor features, and the learned cross-features are coarse-grained. This model
further uses transformer to learn more fine-grained features.
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Figure 5. FM aggregator.

3.3.3. Aggregator Based on Transformer

The transformer model was first applied in machine translation tasks [24]. Later, with
the emergence of Bert, a pre-training language model based on transformer, transformer
was gradually applied to other fields. Transformer consists of two parts: the encoder and
the decoder. This model mainly uses the encoder part to encode sequence information.

In this model, transformer is applied to the neighbor aggregation of nodes in an
ICKG graph. As shown in Figure 6, the neighbors of the nodes do not have the concept of
order, so the transformer’s position embedding is not used. The core of the transformer
is the multi-head self-attention layer [44], and then the residual connection [45] and layer
normalization mechanism [46] are added. Next, we introduce the principle of transformer
cross-aggregation by the example of item neighbor cross-aggregation.

Figure 6. Transformer aggregator.

Taking a user node u in the ICKG as an example, the features of the sampling neighbor
nodes of the user node u, which include the user, item, and entity nodes, are expressed as
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Fu = {h1, h2, . . . , hn }. The query, key, and value of self-attention are all from Fu. Then, it
is obtained through a linear transformation:

Q = WQFu, K = WKFu, V = WV Fu (8)

where WQ, WK, and WV are linear transformation matrices, which are the learnable pa-
rameters of the model, and n is the number of neighbors. Then, the self-attention score is
calculated based on the query, key, and value:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (9)

where T is matrix transformation operation, and KT represents the transpose matrix of K.
In order to further extract effective information from different potential subspaces,

this model uses the multi-head self-attention mechanism for modeling:

Hu = concat( head1, . . . , headh)WO (10)

headi = Attention
(

WQ
i Q, WK

i K, WV
i V
)

(11)

Finally, the model obtains the node representation of the output of the transformer
neighbor aggregator through the average pooling layer and then normalizes the layer to
make the model training more stable and accelerate the convergence speed.

hTrm
Nu

= Layer_norm (Average_pooling(Hu)) (12)

In addition, the transformer aggregator stacks multiple transformer layers to learn
more fine-grained neighbor cross-features.

After the attention aggregation, FM aggregation, and transformer aggregation of the
node’s neighbor information, the model concatenates the outputs of the three and obtains
the final node representation through a linear transformation.

h(l+1)
u = ReLU

(
Dense

(
concat(hAtt

Nu
, hFM
Nu

, hTrm
Nu

)
))

(13)

3.4. Model Prediction

After the customized attention aggregation and multi-granularity interactive aggre-
gation information message propagation layer, the model can obtain the final feature
representation of each node. The output of each layer of the user is

{
h(0)u , h(1)u , · · · h(L)

u

}
,

and the output of each layer of the item is
{

h(0)i , h(1)i , · · · h(L)
i

}
.

The output of each layer is a message aggregation of a tree structure with a depth
of L, with u or i as the root. Therefore, the output of different layers emphasizes the
connectivity information of the different layers. Therefore, we refer to the layer aggregation
mechanism [47] to concatenate the output of each layer. In this way, we obtain the final
u, i representation.

h∗u = h(0)u ||h
(1)
u || · · · ||h

(L)
u , e∗i = h(0)i ||h

(1)
i ||· · · ||h

(L)
i (14)

where || is a concatenation operation. Finally, we use the vectors of the users and items
to carry out an inner product operation to obtain the matching scores of the end users
and goods:

ŷ(u, i) = h∗u
Th∗i (15)
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3.5. Optimization

In order to make the ranking ability better, we adopted BPR loss [48] to optimize our
proposed model, which is based on Bayesian personalized ranking. The idea of BPR loss is
to maximize the difference between the scores of positive samples and negative samples.
The specific formula is as follows:

L = ∑
(u,i,j)∈O

− ln σ(ŷ(u, i)− ŷ(u, j)) (16)

where O = {(u, i, j)|(u, i) ∈ R+, (u, j) ∈ R−} indicates the training set. R+ indicates
the observed (positive) interactions between user u and item j, while R− is the sampled
unobserved (negative) interaction set; σ(·) is the sigmoid function.

To alleviate over-fitting, we added the L2 regularization term to the loss function
so as to make the model not too complicated and improve the accuracy of the model
generalization prediction.

LMAKR = L+ λ||Θ||22 (17)

where λ represents the hyperparameter of the L2 regularization term, and Θ represents the
parameters that the model needs to be trained.

4. Materials and Experiments

In this section, we describe our data sets, baseline models, and experimental settings
in detail.

4.1. Data sets

We conducted experiments on three data sets including Yelp2018, Amazon-Book, and
Last-FM. A detailed description of each data set is listed in Table 1.

• Yelp2018: This data set is about hotel management. We considered restaurants and
bars as the items. We collected the data set from the 2018 edition of the Yelp challenge
(https://www.yelp.com/dataset/challenge) (accessed on 5 March 2022);

• Amazon-Book: The Amazon-Book data set records the book information of Amazon
and users’ ratings of Amazon books. Here, we viewed the books as the items. (http:
//jmcauley.ucsd.edu/data/amazon) (accessed on 5 March 2022);

• Last-FM: Last-FM is a data set about the sequence of users listening to songs that is
provided by the Last-FM online music system. We took tracks as the items. We used
the subset of the data set from January 2015 to June 2015. (https://grouplens.org/
datasets/hetrec-2011/) (accessed on 5 March 2022).

Table 1. Statistics of the data sets.

Yelp2018 Last-FM Amazon-Book

User–Item Interaction
Users 45,919 23,566 70,679
Items 45,538 48,123 24,915

Interactions 1,185,068 3,034,796 847,733

Knowledge Graph
Entities 90,961 58,266 88,572

Relations 42 9 39
Triplets 1,853,704 464,567 2,557,746

To ensure the quality of the data sets, we used users and items that had at least
10 interactions.

4.2. Baselines

To demonstrate the effectiveness, we compared our proposed model with the super-
vised learning model without a knowledge graph (i.e., FM and NFM), an embedding-based
model (i.e., CKE), a path-based model (i.e., MCRec), and a unified model (i.e., RippleNet
and KGAT) as follows:

https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon
http://jmcauley.ucsd.edu/data/amazon
https://grouplens.org/datasets/hetrec-2011/
https://grouplens.org/datasets/hetrec-2011/


Information 2022, 13, 229 13 of 19

• FM [23]: Factorization machine (FM) is a classical recommendation method that
performs second-order interaction on all input features. Here, the IDs of a user, an
item, and the knowledge consisted of the entities as input features;

• NFM [49]: NFM brings DNN into FM methods, learning more information through
the nonlinear structure. Here, we used one hidden layer on the input features as
suggested in [49];

• CKE [10]: This is an embedding-based method that uses an item’s attributes graph as
the knowledge graph. The latent vector is encoded with the TransR algorithm;

• CFKG [50]: CFKG considers user behaviors as a relation in the user–item KG, which
includes the user–item interaction and item attributes;

• RippleNet [18]: RippleNet merges the embedding-based and path-based methods to
enhance user representations by propagating the user’s preferences from historical
interests along the path in the KG;

• GC-MC [51]: GC-MC applies the GCN method to the user–item bipartite graph. The
model consists of three parts: ordinal mixture GCN, dense, and bilinear mixture.

• KGAT [32]: This method is a state-of-the-art knowledge graph-based model that ap-
plies the attention mechanism to the KG convolution for modeling high-order relations.

4.3. Evaluation Metrics

The method outputs the user’s preference scores over all the items except the positive
ones in the training set. To evaluate the effectiveness of top-N recommendation and
preference ranking, we adopted two widely used evaluation metrics [52,53]: recall@k and
ndcg@k. By default, we set k = 20. We report the average metrics for all users in the test set.

recall = ∑u∈U |R(u) ∩ T(u)|
∑u∈U |T(u)|

(18)

Here, R(u) represents the top-N recommendation list made to the user according to
the user’s behavior on the training set, and T(u) represents the set of items actually selected
by the user after the system recommends items to the user.

Normalized discounted cumulative gain (NDCG) was used to evaluate the sort-
ing results. It is common in search and recommendation tasks. IDCG means the best-
ranked DCG.

DCGK = ∑k
i=1

rel(i)
log2(i + 1)

(19)

NDCG =
DCG
IDCG

(20)

4.4. Experiment Settings

For all the data sets, we removed the user–item interactions that were used less
than 10 times for the quality of the data sets. For each user, we randomly selected 80%
of the interacted items as the training set, 10% of the interacted items as the validation
set, and the remaining 10% as the testing set. We optimized the models with mini-batch
Adam, where the batch size was fixed at 1024 and the learning rate was tuned among
{0.05, 0.01, 0.005, 0.001}. The negative items were tuned among {1, 5, 10, 15, 20}, and the
dropout ratio was tuned in {0.1, 0.3, 0.5, 0.7, 0.9}. Moreover, we adopted an early stopping
strategy that interrupted the training process if recall@20 on the validation set did not
increase for 10 successive epochs. We implemented our model in Pytorch and DGL, which
is a GNN framework for effectively processing and training graph data.

5. Results and Discussion

In this section, we compare our model with seven baseline models and conduct an
ablation study to analyze the influence of the different parts of the model.
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5.1. Overall Comparison

Table 2 shows the top-N recommended performance of MAKR on three data sets
compared with the baseline model, where n = 20. Obviously, MAKR achieved the best
performance on all the data sets. MAKR was also higher than the strongest baseline KGAT;
the ndcg@20 values of Amazon-Book, Last-FM, and Yelp2018 increased by 9.54%, 5.21%,
and 5.19%, respectively. By superimposing multiple customized message propagation
layers, MAKR can explore high-order connectivity in an abundant way so as to effectively
capture collaborative signals. This verifies the importance of capturing collaborative
information to transfer knowledge. In addition, compared to KGAT, MAKR proved the
effectiveness of the multi-granularity cross-aggregation neighbor mechanism. On the basis
of the attention aggregation neighbor, FM and transformer were further used to aggregate
neighbor characteristics with different granularity.

Table 2. Overall performance comparison.

Amazon-Book Last-FM Yelp2018

Recall Ndcg Recall Ndcg Recall Ndcg

FM 0.1345 0.0886 0.0778 0.1181 0.0627 0.0768
NFM 0.1366 0.0913 0.0829 0.1214 0.0660 0.0810
CKE 0.1343 0.0885 0.0736 0.1184 0.0657 0.0805

CFKG 0.1142 0.0770 0.0723 0.1143 0.0522 0.0644
RippleNet 0.1336 0.0910 0.0791 0.1238 0.0664 0.0822

GC-MC 0.1316 0.0874 0.0818 0.1253 0.0659 0.0790
KGAT 0.1489 0.1006 0.0870 0.1325 0.0712 0.0867
MAKR 0.1571 0.1102 0.0930 0.1394 0.0775 0.0912

% Improvement 5.51% 9.54% 6.90% 5.21% 8.85% 5.19%

The performance of GC-MC in the Last-FM and Yelp2018 data sets was equivalent
to that of RippleNet. While introducing high-order connectivity into user and item repre-
sentation, GC-MC abandons the semantic relationship between the nodes. RippleNet can
use relationships to explore users’ interests and preferences. Compared to the FM model,
RippleNet improved the effect and verified that merging multi-hop adjacent nodes can ef-
fectively enrich the user’s representation. This also reflects that the high-order connectivity
or neighbor modeling was effective.

The FM and NFM methods achieved a better performance than CFKG and CKE in
most cases, which shows that regularization-based methods may not make full use of
item knowledge. In order to enrich the representation of items, FM and NFM use the
embedding of their associated entities, while CFKG and CKE only use the embedding
of their aligned entities. In addition, the cross-function in FM and NFM is actually the
second-order connection between the users and entities, while CFKG and CKE model the
connection on the granularity of triples to maintain the high-order connectivity.

5.2. Parameter Sensitivity Analysis
5.2.1. Effect of Depth

We changed the depth of the MAKR model to study the effect of using multiple
message propagation layers. Specifically, the influence of model depth was explored in
the range of {1, 2, 3, 4}. In this paper, MAKR-1 is used to represent a one-layer model, and
more layers are represented by similar symbols. Table 3 shows the impact of the number of
message propagation layers on the model effect. Summarizing the results in Table 3, we can
see that increasing the depth of MAKR can effectively improve performance. Obviously,
MAKR-2 and MAKR-3, in the three data sets of Amazon-Book, Last-FM, and Yelp2018,
all achieved consistent improvement over MAKR-1. We attribute these improvements to
the effective modeling of high-order connectivity among users, items, and entities, which
are second-order and third-order connectivity, respectively. When stacking another layer
on MAKR-3, it can be observed that MAKR-4 only achieved a slight improvement. This
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suggests that considering the third-order relationship between the user–item entity may be
sufficient for learning the representation of the user and item.

Table 3. Effect of embedding propagation layer numbers (L).

Amazon-Book Last-FM Yelp2018

Recall Ndcg Recall Ndcg Recall Ndcg

MAKR-1 0.1450 0.1007 0.0843 0.1302 0.0705 0.0810
MAKR-2 0.1525 0.1053 0.0902 0.1324 0.0723 0.0873
MAKR-3 0.1571 0.1102 0.0930 0.1394 0.0775 0.0912
MAKR-4 0.1575 0.1110 0.0923 0.1387 0.0772 0.0920

5.2.2. Effect of Aggregators

Table 4 shows the impact of applying different aggregators to the customized message
propagation layer on the final experimental effect of the model. It can be seen in Table 4 that
for a single aggregator, the effect of attention aggregation is the best, which is better than the
average aggregation. The reason is very simple; attention aggregation can learn the impor-
tance of different neighbors. For cross-polymerization, a transformer (Trm) aggregator is
better than an FM aggregator, which may be attributed to the coarse granularity of FM cross-
aggregation. The best effect in the aggregator of the message propagation layer is attention
+ Trm + FM, which not only uses attention to aggregate the learning node representation but
also uses FM to learn the second-order coarse-grained cross-information between neighbors
and uses transformer to learn the fine-grained cross-information between neighbors.

Table 4. Effect of aggregators.

Amazon-Book Last-FM Yelp2018

Recall Ndcg Recall Ndcg Recall Ndcg

Mean 0.1452 0.0978 0.0854 0.1289 0.0698 0.0834
Attention (Att) 0.1480 0.1022 0.0890 0.1322 0.0720 0.0856

FM 0.1438 0.0965 0.0834 0.1284 0.0692 0.0812
Transformer (Trm) 0.1455 0.1016 0.0845 0.1275 0.0687 0.0820

Att + FM 0.1493 0.1077 0.0901 0.1340 0.0743 0.0893
Att + Trm 0.1522 0.1095 0.0912 0.1367 0.0750 0.0901

Att + Trm + FM 0.1571 0.1102 0.0930 0.1394 0.0775 0.0912

5.2.3. Ablation Study about the Improvement of ICKG

It can be seen in Figure 7 that the collaborative knowledge graph with user–user or
item–item connection edges had a more significant effect than the original CKG, and the
effect of adding user–user edges alone was better than adding item–item edges alone,
reflecting the interest preference of modeling users and depicting the similarity between
users, which is more effective than commodity similarity. The collaborative knowledge
graph with user–user and item–item connection edges, at the same time, had the best effect,
as shown in the red histogram above.
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Figure 7. Experimental analysis of improved ablation of CKG.

5.2.4. Effect of the Number of Adding Edges

To explore the impact of connecting similar neighbors with different thresholds on the
model effect in the process of constructing ICKG, we conducted the following experiments.
We set K at {5, 10, 15, 20, 25, 30}. As can be seen in the experimental results in Table 5, a
larger K did not indicate better performance. We conjecture the following reasons:

1. The smaller K is, the more edges are connected. However, noise is introduced,
resulting in a decline in the model effect;

2. The larger K is, the fewer edges are connected. Therefore, some effective information
between nodes is not connected, and the collaborative knowledge graph cannot
be learned.

Table 5. Effect of the number of added edges.

K
Amazon-Book Last-FM Yelp2018

Recall Ndcg Recall Ndcg Recall Ndcg

5 0.1520 0.1075 0.0905 0.1380 0.0734 0.0880
10 0.1532 0.1097 0.0912 0.1388 0.0750 0.0875
15 0.1554 0.1094 0.0921 0.1401 0.0766 0.0905
20 0.1571 0.1102 0.0930 0.1394 0.0775 0.0912
25 0.1578 0.1089 0.0912 0.1395 0.0765 0.0902
30 0.1544 0.1080 0.0905 0.1368 0.0754 0.0895

6. Conclusions

In this study, we committed to using a GNN knowledge graph to alleviate the feature
sparsity and behavior sparsity in the recommender system. A multi-granularity enhanced
graph neural network, MAKR, combining an attribute graph and interactive information
was proposed. First, in order to enhance the high-order connectivity of graphs, based
on the fusion of interaction graphs and attribute graphs, we proposed using similarity
to connect similar users and items to form ICKG graphs. Second, in order to reduce the
feature sparsity in the recommender system, we proposed a new aggregation method that
used attention mechanisms, FM, and transformer as aggregators to aggregate neighbor
information from different granularities. A large number of experiments on three real data
sets proved the rationality and effectiveness of MAKR.
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In this work, we explored the importance of high-order connectivity to the recom-
mender system based on a knowledge graph, actively changed the aggregation mode of
GNN in the past, and used comprehensive and detailed attention mechanisms, FM, and
transformer to replace the common mean or maximum pooling method, which reduced
the problem of heterogeneous information cancellation caused by the previous methods.

This paper did not consider tag records that could depict user profiles and item
features. In the future, more side information, such as social relations and tag behaviors,
could be considered in graph construction to improve the performances. In addition, we are
also interested in exploring meta-path method in knowledge graph for recommendation.
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