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Abstract: The aim of Medical Knowledge Graph Completion is to automatically predict one of three
parts (head entity, relationship, and tail entity) in RDF triples from medical data, mainly text data.
Following their introduction, the use of pretrained language models, such as Word2vec, BERT, and
XLNET, to complete Medical Knowledge Graphs has become a popular research topic. The existing
work focuses mainly on relationship completion and has rarely solved entities and related triples.
In this paper, a framework to predict RDF triples for Medical Knowledge Graphs based on word
embeddings (named PTMKG-WE) is proposed, for the specific use for the completion of entities and
triples. The framework first formalizes existing samples for a given relationship from the Medical
Knowledge Graph as prior knowledge. Second, it trains word embeddings from big medical data
according to prior knowledge through Word2vec. Third, it can acquire candidate triples from word
embeddings based on analogies from existing samples. In this framework, the paper proposes two
strategies to improve the relation features. One is used to refine the relational semantics by clustering
existing triple samples. Another is used to accurately embed the expression of the relationship
through means of existing samples. These two strategies can be used separately (called PTMKG-
WE-C and PTMKG-WE-M, respectively), and can also be superimposed (called PTMKG-WE-C-M)
in the framework. Finally, in the current study, PubMed data and the National Drug File-Reference
Terminology (NDF-RT) were collected, and a series of experiments was conducted. The experimental
results show that the framework proposed in this paper and the two improvement strategies can
be used to predict new triples for Medical Knowledge Graphs, when medical data are sufficiently
abundant and the Knowledge Graph has appropriate prior knowledge. The two strategies designed
to improve the relation features have a significant effect on the lifting precision, and the superposition
effect becomes more obvious. Another conclusion is that, under the same parameter setting, the
semantic precision of word embedding can be improved by extending the breadth and depth of data,
and the precision of the prediction framework in this paper can be further improved in most cases.
Thus, collecting and training big medical data is a viable method to learn more useful knowledge.

Keywords: medical knowledge graph completion; word embeddings; RDF triples

1. Introduction

Medical Knowledge Graphs are widely used in automatic diagnosis systems [1],
professional medical search engines [2], answering of medical questions [3], and other
applications. However, most Medical Knowledge Graphs on existing networks, such as
PHARE [4], are manually established by domain experts. This work is expensive and
laborious. Most of the acquired Knowledge Graphs have only classes, and lack entities and
the RDF triples of entities. Thus, in recent years, Medical Knowledge Graph Completion
(MKGC) has been widely used to extend existing Knowledge Graphs. The goal of MKGC
is to automatically predict one of three parts (head entity, relationship, tail entity) in RDF
triples from medical data, mainly text data.
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Most of the early methods for MKGC, such as [5], are based on rules. Following
their introduction, the use of pretrained language models, such as Word2vec [6], ELMo [7],
BERT [8], RoBERTa [9], and XLNET [10], to complete Knowledge Graphs [11,12], including
Medical Knowledge Graphs [13–16], has become a popular research topic. The biggest
limitation of these existing works is that they focus on completing relationships or classes,
and rarely involve directly obtaining entities and RDF triples from unstructured text.

Our work focused on predicting entities about a semantic relationship for MKGC
based on word embeddings. PTMKG-WE, a framework for predicting new triples for
Medical Knowledge Graphs based on word embeddings, is proposed in this paper. The
framework first acquires existing samples for a given relation from the Medical Knowledge
Graph. Then, it trains word embeddings according to these samples through Word2vec
from medical text. Third, it can obtain candidate triples from word embeddings based
on analogies with existing samples. From the point of view of a given relationship, the
analogy equation can express the embedding feature about the specific relationship. In
order to refine a semantic relation, the paper proposes two ways to improve the relation
feature. One is used to refine the relational semantics by clustering triple samples. The
other is used for the accurate embedding expression of the relation feature through means
of samples. Finally, in this study, PubMed data and NDF-RT were collected, and a series of
experiments were conducted to evaluate the PTMKG-WE framework.

The experimental results yield the following conclusions. The first is that the data-rich
model can achieve higher accuracy, in addition to the parameters during the training
process. Thus, collecting and training big medical data is a viable method of learning
more useful knowledge. The second conclusion is that PTMKG-WE can be used to predict
entities for a given relationship in the Medical Knowledge Graph when medical data are
sufficiently abundant and the Medical Knowledge Graph has appropriate existing samples.

This paper is organized as follows. The related works about KGC are introduced in
Section 2. Section 3 explains the proposed method, including the overall architecture and
implementation details. In Section 4, the experimental research, datasets, the results of the
experiment are introduced. Finally, we conclude the paper in Section 5.

2. Related Works

The goal of MKGC is to solve the problems of incompleteness and sparsity caused by
missing instances or links in existing Medical Knowledge Graphs. It is an important means
of discovering new medial knowledge.

Most of the early methods for MKGC, such as [5], are based on rules. This kind of
method has poor scalability. Following their introduction, the use of pretrained language
models, such as Word2vec [6], ELMo [7], BERT [8], RoBERTa [9], and XLNET [10], to
complete Knowledge Graphs [11,12], including Medical Knowledge Graphs [13–16], has
become a popular research topic. The literature [11] proposes a method based on XLNET
and a classification model to verify whether the triples of a Knowledge Graph are valid for
relation completion. Although the quality of embedding learning based on XLNET is high,
the method cannot be directly used to extend new triple knowledge from unstructured
text. A method for leveraging pretrained transformer language models to perform schol-
arly Knowledge Graph Completion, named exBERT, is presented in [12]. Similar to [11],
this method also performs relationship completion through two classifications. Another
study [13] only applies Word2vec to the identification of relationships from unstructured
text. However, compared with other published results, the results of this method are
very limited. This process in [14] only uses distance similarities of word embeddings
learned based on Word2vec to improve disease classes. Although these studies [13,14]
use Word2vec, they can only deal with relationships and classes, and cannot supplement
new entities. Another study [15] proposes a method to use BERT-enhanced entity repre-
sentation or path representation to improve relationships in Medical Knowledge Graphs.
This method can extend some specific relationships for a given Medical Knowledge Graph,
but it cannot extend entities from unstructured text. An approach to model subgraphs
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in a Medical Knowledge Graph is also proposed in [16]. Then, the learned subgraphs
knowledge is integrated with BERT to perform entity typing and relation classification. In
addition to the classification relationship, this work has begun to involve entities, but it
still cannot expand new entities from unstructured text, and can only learn upper types for
entities.

Certain studies [11,12] deal not only with non-medical Knowledge Graphs, but also
with relational classification. Even if other studies can complete Medical Knowledge
Graphs, they only expand relationships and types (or classes) at present. The biggest
advantage of this work is that it can complement various entities from unstructured data.

The embeddings in this paper are word embeddings learned by Word2vec, which
cannot solve the problem of polysemy, so it affects accuracies of this framework. The latest
works, such as these studies [17,18], study methods of learning contextual embeddings in
medical texts from the latest language models such as BERT. Next, the framework proposed
in this paper can be naturally extended to contextual embeddings to improve accuracies.

3. Methods
3.1. Problem Statement

Generally, a Knowledge Graph includes different elements, such as entities, relation-
ships, RDF triples, and so on. Knowledge Graph Completion (KGC) aims to complete the
structure of Knowledge Graphs by predicting the missing entities or relationships in RDF
triples from medical data, mainly text data. Therefore, it can be divided into three sub tasks:
head entity prediction; relationship prediction; tail entity prediction. Relationships are
closely related to specific areas. Domain experts are generally required to manually assist
in relationship prediction. PTMKG-WE in this paper focuses on head-entity prediction and
tail-entity prediction.

The work-flow of PTMKG-WE is shown in Figure 1. PTMKG-WE can be divided into
three major steps, namely, (1) prior knowledge acquisition; (2) word embeddings training;
(3) triples predicting. The first one refers to acquiring special types of prior knowledge
through parsing a given Medical Knowledge Graph. As shown in Figure 1, some triples
about “may_treat”, such as (glyburide, may_treat, pulmona) and (glipizide, may_treat, diabetes),
are acquired from a Medical Knowledge Graph named NDF-RT. These triples can be seen
as existing samples. The second one is training word embeddings by Word2vec from
medical data such as Figure 1. The third one is obtaining candidate triples from word
embeddings based on an analogy relationship with prior knowledge. For an existing head
entity “carvedilol”, a new triple (carvedilol, may_treat, X) can be predicted. Through the
analogy relationship v(glipizide)− v(diabetes) == v(carvedilol)− v(X) some candidates
for v(X) == v(carvedilol)− (v(glipizide)− v(diabetes)). can be obtained from word em-
beddings. Among others, the word “hypertension” can be seen as a tail entity in the new
triple (carvedilol, may_treat, hypertension). Next, we discuss these steps in detail.Information 2022, 13, x FOR PEER REVIEW 4 of 18 

 

 

 
Figure 1. The workflow of PTMKG-WE. 

3.2. Prior Knowledge Acquiring 
For a special relationship in a given Knowledge Graph, we can acquire some triples 

including the relationship as prior knowledge or existing samples by parsing the 
Knowledge Graph. The paper uses Apache Jena (Jena for short) to parse a given OWL 
Knowledge Graph. 

For a special relationship, the set of existing triples (head entity, relationship, and tail 
entity) is prior knowledge. For complex Knowledge Graphs, existing samples need some 
preprocessing, such as name segmentation, semantic merging, and so on. Special details 
will be presented in experiments. 

3.3. Word Embeddings Trained by Word2vec 
In statistical language modeling, word embedding (or a word vector) is a k-dimen-

sional vector in kR  to represent each word. Recently, some neural network models such 
as [6–10] for training word embeddings have been proposed. Word2vec is one of the com-
mon tools. Thus, it is used in this study to learn word embeddings from medical data. 
There are two models, such as Skip-gram and CBOW, and two training methods, such as 
the hierarchical softmax and Negative sampling in Word2vec. Skip-gram is slow and good 
at infrequent words. CBOW is fast and good at common words. The hierarchical softmax 
is good at infrequent words and Negative sampling is good at common words and low-
dimension vectors. Compared to the whole dataset, these words in a given Knowledge 
Graph, such as the drug list and drug characteristics in NDF-RT, are infrequency. Thus, 
Skip-gram and the hierarchical softmax are used in this study. Other parameters, such as 
-window (window widths), -sample (sampling threshold), and -size (dimensions of vec-
tor) may affect results. In order to select appropriate parameters, different word embed-
dings with different -window, -size, and -sample will be evaluated in this work. 

After the model is trained, the distance similarity and analogy relationship based on 
word embeddings can be used to explain semantic relationships. The distance similarity 
computes the value of cosine between two word embeddings. The analogy relationship 
satisfies a semantic equivalence for two pairs of words based on embeddings; for example, 

Figure 1. The workflow of PTMKG-WE.



Information 2022, 13, 205 4 of 16

3.2. Prior Knowledge Acquiring

For a special relationship in a given Knowledge Graph, we can acquire some triples
including the relationship as prior knowledge or existing samples by parsing the Knowl-
edge Graph. The paper uses Apache Jena (Jena for short) to parse a given OWL Knowledge
Graph.

For a special relationship, the set of existing triples (head entity, relationship, and tail
entity) is prior knowledge. For complex Knowledge Graphs, existing samples need some
preprocessing, such as name segmentation, semantic merging, and so on. Special details
will be presented in experiments.

3.3. Word Embeddings Trained by Word2vec

In statistical language modeling, word embedding (or a word vector) is a k-dimensional
vector in Rk to represent each word. Recently, some neural network models such as [6–10]
for training word embeddings have been proposed. Word2vec is one of the common tools.
Thus, it is used in this study to learn word embeddings from medical data. There are two
models, such as Skip-gram and CBOW, and two training methods, such as the hierarchical
softmax and Negative sampling in Word2vec. Skip-gram is slow and good at infrequent
words. CBOW is fast and good at common words. The hierarchical softmax is good at
infrequent words and Negative sampling is good at common words and low-dimension
vectors. Compared to the whole dataset, these words in a given Knowledge Graph, such
as the drug list and drug characteristics in NDF-RT, are infrequency. Thus, Skip-gram
and the hierarchical softmax are used in this study. Other parameters, such as -window
(window widths), -sample (sampling threshold), and -size (dimensions of vector) may
affect results. In order to select appropriate parameters, different word embeddings with
different -window, -size, and -sample will be evaluated in this work.

After the model is trained, the distance similarity and analogy relationship based on
word embeddings can be used to explain semantic relationships. The distance similarity
computes the value of cosine between two word embeddings. The analogy relationship
satisfies a semantic equivalence for two pairs of words based on embeddings; for example,
v(ribavirin) − v(hepatitis) = v(cefotaxime) − v(pneumonia), where v(w) is the embedding of a
word w.

3.4. Triples Predicting

For a given relationship, once we have acquired a suitable set of triples as prior
knowledge and trained word embeddings from medical data, we can get a set of tail/head
entities candidates for a given head/tail entity to combine new triples (head entity, Re-
lationship, tail entity). From the feature point of view, the embeddings offset between
the head entity word and the tail entity word in a triple, that is v(wi) − v(wj), repre-
sents the embedding feature of the particular relationship in the triple. In theory, the
embeddings offsets between entities in any two triples including the same relationship
satisfies semantic equivalence. For example, there are two triples (cycloserine, may_treat,
tuberculosis) and (praziquantel, may_treat, schistosomiasis) in a given Medical Knowledge
Graph. The equation about entities in the triples based on embeddings holds; that is
v(cycloserine) − v(tuberculosis) = v(praziquantel) − v(schistosomiasis), where v(w) is the em-
bedding of a word w. Thus, if a given relationship R and an entity C and a reference
triple

(
Aj, R, Bj

)
, an unknown entity X used to compose a new triple (C, R, X) can be

obtained from embeddings according to the analogy relationship with the reference triple.
The solution for v(X) is: v(X) = v(C)−

(
v
(

Aj
)
− v

(
Bj
))

based on the analogy equation
v(C)− v(X) = v

(
Aj

)
− v

(
Bj
)
. Then, we can compute cosine similarities between v(X)

and each word embedding in a model and rank these words according to these similarities.
Finally, the top N words are selected as candidates of X. The specific implementation
method is Algorithm 1 in Section 3.4.

Although every triple in existing samples can be seen as a reference triple for predicting
new triples alone, not every triple is a positive sample. Table 1 shows three samples about
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“may_treat” in NDF-RT. The first two are positive samples and the last one is a negative
sample. There are many reasons for generating negative samples. Knowledge Graphs are
incorrect or there are multiple semantics for a given relationship. Due to the small amount
of data, the training model is not accurate enough. These problems can be improved at
the experimental data level. Now, we are more concerned about the inherent semantic
problems of relationships and corresponding solutions.

Table 1. Examples of embedding analogy for NDF-RT.

No. Examples

1 v(fentanyl) − v(pain) = v(polymyxin) − v(urinary)
2 v(interferon) − v(purpura) = v(rifampin) − v(leprosy)
3 v(fluocinolone) − v(facial)/ = v(topiramate) − v(spasms)

The most obvious problem is that semantics of a relationship in existing samples
are not single in a given Knowledge Graph. For example, the head entity and tail en-
tity of “may_treat” are “Pharmaceutical Preparations” and “Diseases, Manifestations or
Physiologic States”, respectively. The semantic range of this relationship contains two
parallel concepts: “Diseases” and “Manifestations or Physiologic States”. From this point
of view, this relationship can be further refined. The clustering is a more common method
of refinement. Given word embeddings and a set of triples including a same relationship
R, that is {(A1, R, B1), . . . , (Ak, R, Bk)}, each embeddings offset between two entities in the
same triple v

(
Aj

)
− v

(
Bj
)

represents the embedding feature of the relationship R for a
corresponding sample. Thus, the embeddings offset can be seen as clustering features.
Then, all triples can be clustered according to similarities of embeddings offsets between
every two pairs of triples. In this study, cosine is used to compute similarities between
any two embedding offsets and K-means is used to cluster. The number of clusters and
the number of iterations (two user parameters) are closely related to experimental data.
PTMKG-WE using the cluster method to refine a relationship is named PTMKG-WE-C in
this paper. The specific implementation method is Algorithm 1 in Section 3.4.

Algorithm 1 Predicting Triples Algorithm

Input: a given entity C; word embeddings Rk; a set of triples related to a relationship R
T = {(A1, R, B1), . . . , (Ak, R, Bk)}; the number of candidate words TopN; the number of clusters
CN; the number of iterations IN;
Output: a set of candidate words {w 1, . . . , wTopN

}
;

*** 1. Refining relationships by clustering ***
if T 6= null

{for (j = 1, j + +, k)
{Acquiring embeddings from Rk Aj for and Bj;

Rj = v(Aj)− v(Bj);}
K-means ({R1, . . . , Rk}}, CN, IN);}

*** 2. Refining relationships by mean ***
for (j = 1, j + +, CN)
{if Rj 6= null

{n = |Rj|;
R = 1

n ∑n
j=1 Rj;

Acquiring v(C) from Rk;
v(X) = v(C)− R;
*** 3. Acquiring candidates ***
Acquiring the top TopN words {w 1, . . . , wTopN

}
from Rk;}}

*** clustering by K-means ***
Input: a set of clustering elements R; the number of clusters CN; the number of iterations IN;
Output: clustering results {R1, . . . , RCN} doing K-means;

Even by refinement, each finer relationship will also have multiple triples as samples.
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In order to accurately express the feature of this relationship, computing the mean of
all samples is a better method. A given set of triples related to a relationship R, that is
{(A1, R, B1), . . . , (Ak, R, Bk)}, the embedding feature of the relationship can be expressed

in v(R) = 1
k ∗

k
∑

j=1

(
v
(

Aj
)
− v

(
Bj
))

. Thus, the solution for v(X). is: v(X) = v(C)− v(R)

based on the mean of all samples. PTMKG-WE and PTMKG-WE-C using the mean of
samples to represent the embedding feature of a relationship are named PTMKG-WE-M
and PTMKG-WE-C-M, respectively. The specific implementation method is Algorithm 1 in
Section 3.4.

4. Experiments
4.1. Medical Knowledge Graphs and Preprocessing

NDF-RT is produced and maintained by the U.S. Department of Veterans Affairs,
Veterans Health Administration (VHA). NDF-RT is a formal representation of the drug list
and drug characteristics, including ingredients, chemical structures, dose forms, physiologic
effect, mechanism of actions, pharmacokinetics, and related diseases. New versions of
NDF-RT are released every year. There are 43,474 entities, 30 object properties, 39 data
properties, and 945,542 triples in NDF-RT (2015 version). There are plenty of triples about a
special relationship, such as “may_treat” in NDF-RT. Thus, NDF-RT is used as a Medical
Knowledge Graph to evaluate the methods proposed by this paper.

For a given relationship, for example “may_treat” in NDF-RT, a set of triples including
the relationship is acquired by parsing the Knowledge Graph. Because the concept granular
in these triples is too fine, multiple triples may express the same semantic. For example,
(EDETATE DISODIUM, may_treat {NDFRT}, Manganese Poisoning [Disease/Finding]) and
(EDETATE DISODIUM 150MGML INJ [VA Product], may_treat {NDFRT}, Manganese Poi-
soning [Disease/Finding]) express the same semantic. Triples with the same semantic are
merged by ignoring detailed descriptions, mainly including brackets and descriptions,
punctuation, and dose. To simplify experimental processes, we only consider two types of
triples. The first one, named single-word triples, only includes single-word entities. The
second one, named double-word triples, only includes single-word or double-word entities.
Table 2 shows the sums of triples, head entities, and tail entities corresponding to two
relationships, “may_treat” and “may_prevent”, in NDF-RT. Among these, (X, may_treat,
Y) presents that (drug X may treat disease/symptom Y) and (X, may_prevent, Y) presents that
(drug X may prevent disease/condition Y).

Table 2. Sums of triples, head or tail entities corresponding to two relationships in NDF-RT.

Relationship Type of Triples Triples Head Tail

may_treat
original triples 51,248 11,655 956
single word 1915 930 334
double word 8677 2566 680

may_prevent
original triples 6292 4076 215
single word 262 216 70
double word 1094 742 162

As shown in Table 2, the number of head entities is greater than the number of tail enti-
ties; that is, the number of drugs is greater than the number of diseases/symptoms/conditions.
Thus, “may_treat” and “may_prevent” can not only represent one-to-one relationships but
also represent many-to-many relationships. Figures 2 and 3 present the statistical informa-
tion of “may_treat” and “may_prevent”, respectively. Among these, Figures 2a,c and 3a,c
show the Figures distribution of drugs that can treat different numbers of diseases and 2b,d
and 3b,d represent the distribution of diseases that can be treated with different numbers of
drugs. Figure 2a describes the distribution of drugs in single-word triples on “may_treat”
in detail. The horizontal axis indicates the number of diseases that a drug can treat, and
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the vertical axis represents the total number of drugs that can treat the same number of
diseases. The sum of drugs that can treat a disease is more than 450. The total number of
diseases that can be treated by one drug is up to 12, and there is only one such drug. As
the total number of diseases that can be treated by one drug increases, the total number of
such drugs also decreases sharply. This trend is in line with our actual cognition. For the
relationship “may_prevent”, the distribution trend is similar, as shown in Figure 3a, but
the distribution is simpler.
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4.2. Data Collecting and Preprocessing

The data in this paper are mainly abstracts from PubMed in 2016 and articles from
PubMed Central Open Access Subset (PMCOAS) from October 2016. PubMed comprises
more than 26 million citations for biomedical literature from MEDLINE, life-science journals,
and online books in 2016. Some citations may include links to full-text content from PubMed
Central (PMC) and publisher websites. PMC is a free full-text archive of biomedical and
life sciences journal literature at the U.S. National Institutes of Health’s National Library of
Medicine (NIH/NLM). PMCOAS is a part of the total collection of articles in PMC. As of
2016, there were over 1.3 million articles available in this collection. Table 3 is the details
of datasets used in experiments. Data1 and data2 have the same source. Data1 includes
titles and abstracts and data2 increases the bodies of papers. Data2 can be regarded as a
deep extension of data1. Data3 and data4 are from the same source. Data3 includes only
titles and data4 includes titles and abstracts. Similarly, Data4 can be regarded as a deep
extension of data3. Both data1 and data4 include titles and abstracts, but data4 adds 24 M
new articles in addition to articles in data1. Therefore, data4 can be regarded as a breadth
expansion of data1.

Table 3. The details of datasets.

Name Source Articles Size Title Abstract Body

data1
PMCOAS 1.3 M

1.21 G Y Y N
data2 19.8 G Y Y Y

data3
PubMed 26 M

2.2 G Y N N
data4 15.12 G Y Y N
data5 22.06 G Y Y N

C34dd1
PMCOAS 1.3 M

1.21 G Y Y N
C34dd2 19.8 G Y Y Y

C34dd3
PubMed 26 M

2.2 G Y N N
C34dd4 15.12 G Y Y N

C38dd1
PMCOAS 1.3 M

1.21 G Y Y N
C38dd2 19.8 G Y Y Y

C38dd3
PubMed 26 M

2.2 G Y N N
C38dd4 15.12 G Y Y N

Data1, data2 and data4 include punctuation, so data1, data2 and data4 are prepossess-
ing through some nature language methods, such as deleting marks or stopping words.
Data3 only includes titles and may have very little punctuation without prepossessing. To
verify different forms of corpus, data5 is the original format of the data4 without preposses-
sion. To build double-word data for double-word triples, what needs extra treatments is
the recognition and connection of two words in data1 to data4. For a given relationship, a
recognition method based on double-word dictionaries is used in this paper. For example,
the double-word dictionary generated in NDF-RT is used to recognize “may” and “treat”
for “may_treat”. The link symbol between two words is “_”. c34dd1-4 and c38dd1-4 in
Table 3 are double-word data attained through the recognition and connection of two words
in data1-4 for the tworelationships “may_treat” and “may_prevent”. Their source and
distribution are the same as data1-4.

4.3. Experimental Setup

The experimental environment is CPU: 32*Intel® Xeon® CPU E5-2620 v4@2.10 GHz
and memory 131900072KB, Operating system: Linux 4.15.0-128-generic Ubuntu 16.04.6 LTS
server.

The essence of evaluating PTMKG-WE and its improving methods is to verify whether
a triple removed from a Knowledge Graph can be retrieved from word embeddings using
PTMKG-WE and its improving methods. For example, a triple (fludarabine, may_treat,
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leukemia) is removed from NDF-RT. Another triple (benzocaine, may_treat, otitis) is used as a
reference triple to find fludarabine/leukemia from word embeddings trained from medical
data for a given entity, leukemia/fludarabine. A set of top TopN (a user parameter) candidate
words W is acquired from word embeddings using PTMKG-WE or its improving meth-
ods. For a given entity leukemia/fludarabine, if fludarabine/leukemia or its synonyms (only
considering synonyms presented by “perperty:synonyms” in NDF-RT) can be found from
W, the triple that is removed can be seen as being retrieved. The paper only considers
predicting unknown tail entities for a given head entity. The more candidates there are,
the more opportunities there are to obtain the tail entity that has been removed. Similarly,
experiments take more time. For balance, TopN was set to 20 during the experiments.

In order to ensure entities in triples are included in each model, the original triples in
Table 2 are not used in these experiments. By filtering out tail entities whose word frequency
in data is less than a threshold, we obtain experimental RDF triples. In experiments, the
threshold was set to five.

The accuracy is the ratio of the number of triples retrieved and the number of triples
removed. The accuracy is the overall statistical indicator and cannot measure the specific
ranking. The mean reciprocal rank (MRR) is used to evaluate sorting results. The reciprocal
rank in this paper calculates the reciprocal of the rank of the first retrieved tail entity in a
candidate queue. If the tail entity is not found in the candidate queue, we assume that the
reciprocal rank is zero. The mean reciprocal rank is the average of the reciprocal ranks of
the results with multiple triples removed. The reciprocal rank of a tail-entity candidate in a
special case; that is, a drug may treat different diseases in a given Knowledge Graph, need
extra considerations. For example, a given drug “ceftriaxone” may treat three diseases such
as “pneumonia”, “septicemia”, and “meningitis” in NDF-RT. Thus, there are three triples
about the drug, that is (ceftriaxone, may_treat, pneumonia), (ceftriaxone, may_treat, septicemia),
and (ceftriaxone, may_treat, meningitis). If the first triple is removed, a candidate queue
is retrieved from embeddings by the methods in this paper for unknown tail entities. If
“septicemia”, “meningitis”, and “pneumonia”, respectively ranks one, two, and three in
the candidate queue. The rank of “pneumonia” was adjusted from three to one by ignoring
these tail-entity words of existing samples in the candidate queue, such as”septicemia” and
“meningitis”. In experiments, MRR obtained by recalculating RR is named MRR+.

To obtain the top TOPN candidate words from word embeddings, word embeddings
need to be traversed once when retrieving each removed triple. When the number of triples
is relatively large, the experimental time cannot be tolerated. In order to improve the time
efficiency of experiments, the number of traversal embeddings must be reduced. Each
experiment is performed using random sampling 100, when the number of samples is
greater than 100. The final accuracy is the mean of three random experiments.

4.4. Experimental Results
4.4.1. Models Trained by Word2vec

To train word embeddings, Word2vec in C language is used in this study. To match
single-word triples and double-word triples from NDF-RT, single-word embeddings and
double-word embeddings must be separately trained by Word2vec. As Section 3.3 denotes,
we have trained a series of word embeddings using different parameters (-window, -sample,
-size) in Word2vec. The effect of -sample is not very obvious. A slight advantage setting 1
× 10−3 is chosen. -window and -size have a relatively large impact on the experimental
results. The higher the -size is, the better the result is. However, the higher the -size is,
the larger embeddings are, and the more time experiments take. Thus, -size is usually set
400 during training. Data3/c38dd3/c34dd3 only includes titles. Generally, the number
of words in titles is less than 10. So, smodel3/c38dmodel3/c34dmodel3 is trained from
data3/c38dd3/c34dd3 through -window = five. In addition to data3/c38dd3/c34dd3,
a sentence in other data may include diseases and drugs. Most of the names of drugs
and diseases are multi-words entities. The number of words in a sentence may be more
than 10. Figure 4 shows accuracy comparison of different settings for -window. When
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-window = 15, PTMKG -WE and PTMKG -WE-M get the best accuracy. Therefore, other
models are trained from data with -window = 15, as shown in Table 4.
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Table 4. Embeddings in experiments.

Name Source -Windows Size (G) Words

smodel1 data1 15 0.5 155,407,624
smodel2 data2 15 2.09 2,634,263,510
smodel3 data3 5 1.20 307,063,987
smodel4 data4 15 2.14 1,924,072,604
smodel5 data5 15 6.30 3,390,842,792
c34dmodel1 c34dd1 15 0.5 155,192,660
c34dmodel2 c34dd2 15 2.09 2,631,795,611
c34dmodel3 c34dd3 5 1.2 155,192,660
c34dmodel4 c34dd4 15 2.14 2,631,795,611
c38dmodel1 c38dd1 15 0.5 155,192,660
c38dmodel2 c38dd2 15 2.09 2,631,795,611
c38dmodel3 c38dd3 5 1.2 155,192,660
c38dmodel4 c38dd4 15 2.14 2,631,795,611

When other settings such as methods are the same, the accuracy of smodel4 is generally
better than that of smodel5, as shown in Table 5, and the time efficiency of smodel4 is far
higher than that of smodel5. Therefore, it is necessary to reprocess the corpus, even if it is
simple to remove the punctuation. Smodel5 will be not used in future experiments.

Table 5. Accuracy comparison of different models.

Models Methods Accuracies

smodel4
PTMKG-WE 10.14%
PTMKG-WE-M 16.33%

smodel5
PTMKG-WE 5.66%
PTMKG-WE-M 9.67%

4.4.2. Experimental Results for Single Words

Figure 5a,b shows accuracies of four algorithms proposed in this paper on the same
model for “may_treat” and “may_prevent”. The accuracies of two clustering methods
denote the final comprehensive accuracy in Table 6. By comparing the accuracies of PTMKG-
WE and PTMKG-WE-M on different models, it can be found that the accuracy of PTMKG-
WE-M is nearly one time higher than that of PTMKG-WE for the same model. The accuracy
of PTMKG-WE-C-M is also close to one time greater than PTMKG-WE-C for the same
model. This means that the embedding feature of a given relationship represented by the
mean of samples, as performed in PTMKG-WE-M and PTMKG-WE-C-M, is very effective
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for all models. The accuracy increases of PTMKG-WE-C/PTMKG-WE-C-M relative to
PTMKG-WE/PTMKG-WE-M will be affected by the specific model and data. As shown
in Figure 5a, for “may_treat”, the accuracy of PTMKG-WE-C/PTMKG-WE-C-M increases
much more on smodel2 than on smodel3. For “may_prevent” in Figure 5b, the increment
of accuracy of PTMKG-WE-C/PTMKG-WE-C-M in smodel1 is much larger than that in
smodel3. However, the increasing trend of the accuracy of PTMKG-WE-C/PTMKG-WE-
C-M compared with that of PTMKG-WE/PTMKG-WE-M is obvious. This trend clearly
shows that it is effective to obtain more accurate sub-relations through clustering used in
these methods as PTMKG-WE-C and PTMKG-WE-C-M. When clustering and mean effect
are superimposed on one method, the accuracy of this method is greatly improved. As
shown in Figure 5, PTMKG-WE-C-M is the superposition of four methods and obtains the
best accuracy.
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Figure 5. Accuracy comparison of four algorithms on a same model. (a,b) show accuracies of four
algorithms on a same model for “may_treat” and “may_prevent”; (a) may_treat; (b) may_prevent.

Table 6. Accuracies of PTMKG-WE-C and PTMKG-WE-C-M for “may_treat” and “may_prevent” in
different models.

Relationship No./Triples Methods
Accuracies

smodel1 smodel2 smodel3 smodel4

may_treat

c1/19
PTMKG-WE-C 45.61% 60.8% 17.5% 23.4%
PTMKG-WE-C-M 89.47% 89.5% 78.9% 89.5%

c2/121
PTMKG-WE-C 74.02% 64.1% 20.7% 35.7%
PTMKG-WE-M 89.24% 90.7% 90.3% 88.7%

c3/599
PTMKG-WE-C 10.81% 16.6% 11.2% 14.6%
PTMKG-WE-M 18.67% 24% 22.3% 20.3%

c4/73
PTMKG-WE-C 70.83% 58.4% 52.9% 28.8%
PTMKG-WE-C-M 89.04% 97.3% 89% 91.8%

c5/29
PTMKG-WE-C 89.16% 88.2% 77.8% 74.3%
PTMKG-WE-C-M 86.21% 79.3% 79.3% 82.8%

c6/210
PTMKG-WE-C 8.2% 15.2% 5.3% 7.5%
PTMKG-WE-C-M 26.67% 42% 17% 34.3%

c7/355
PTMKG-WE-C 10.19% 14.5% 7% 10.7%
PTMKG-WE-C-M 17.33% 21.7% 15% 17%

c8/16
PTMKG-WE-C 62.92% 42.5% 14.6% 0
PTMKG-WE-C-M 50% 37.5% 43.8% 43.8

c9/99
PTMKG-WE-C 17.73% 13.1% 6.5% 9.3%
PTMKG-WE-C-M 37.37% 43.4% 35.4% 39%

c10/64
PTMKG-WE-C 15.25% 21.3% 6.2% 10.9%
PTMKG-WE-C-M 25% 43.8% 21.9% 26.6%

c1-c10/1585
PTMKG-WE-C 15.26% 24.02% 13.33% 19.86%
PTMKG-WE-C-M 31.87% 38.7% 31.47% 32.33%

may_prevent

c1/35
PTMKG-WE-C 50.17% 57.9% 41.5% 29.2%
PTMKG-WE-C-M 88.57% 97.1% 81.7% 91.4%

c2/160
PTMKG-WE-C 19.59% 18.9% 16.4% 22.5%
PTMKG-WE-C-M 31.00% 26.3% 26.7% 31%

c1-c2/195
PTMKG-WE-C 25.13% 25.9% 20.87% 23.75%
PTMKG-WE-C-M 45.32% 39.07% 37.3% 41.9%
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By comparing accuracies of different models on the same method for “may_treat”
and “may_prevent” in Figure 5, we know that using smodel2 is more accurate than using
smodel1, using smodel4 is more accurate than using smodel3, and using smodel4 is
more accurate than using smodel1, except for smodel1 for “may_prevent”. As shown
in Section 4.2, data2 and data4 are the deep extensions of data1 and data3, respectively,
and data4 is the breadth expansion of data1. Therefore, extensions of data in depth or
breadth can improve the qualities of embedding models, then affect the accuracy of the
final algorithm.

Table 6 shows accuracies of PTMKG-WE-C and PTMKG-WE-C-M on different models
for “may_treat” and “may_prevent”. “No./triples” denotes the ID of a given cluster and
the number of triples included in the cluster. Different clusters contain different numbers
of triples and obtain different accuracies. For most clusters, accuracies of PTMKG-WE-C-M
are better than those of PTMKG-WE-C on a same model. Similarly, in most clusters, under
the same method, the accuracy on smodel2 is higher than that on smodel1, that of smodel4
is higher than that of smodel3, and that of smodel4 is higher than that of smodel1. c4/73,
c5/29, and c8/16 are special cases, both of which are violated. The main reason may be that
only one or several diseases are involved in these triples in the three clusters. For example,
both c4/73 and c8/16 contain only one disease labeled “pain” and “diarrhea”. In order to
objectively express accuracies of clustering algorithms, the weighted average method can be
used to calculate the final comprehensive accuracy, which is represented as c1–c10/1585 in
Table 6. For a given cluster, its weight value is the ratio of the number of triples in the cluster
and the sum of triples included all clusters. The accuracy of every cluster for the same
method varies greatly. For example, the accuracy of c4/73 on PTMKG-WE-C-M is 89.04%,
and the accuracy of c3/599 on the same method is only 18.67%. Through detailed analysis
of the triples in these clusters, it is found that triples in clusters with higher accuracies
have a common feature. The unknown tail entity to be predicted is closely related to the
tail entity in an existing reference triple, such as two tail entities are the same entity or
have an inclusion relationship with each other in a given Knowledge Graph. For example,
only one disease, “pain”, is involved in 73 triples in c4. On the contrary, in the clusters
with lower accuracy, the unknown tail entity to be predicted is basically independent
of the tail entity in the reference triple. For example, a large number of (more than 100)
unrelated diseases, such as “trypanosomiasis”, “candidiasis”, “alcoholism”, “dyskinesias”,
are involved in 599 triples in c3. The same problem exists in c6/210 and c7/355; a large
number of unrelated diseases (more than 100) is included these two clusters. This trend
shows that the accuracy of PTMKG-WE is closely related to the form of prior knowledge.
When there is a similar or inclusive relationship between the predicted tail entity and the
prior knowledge tail entity, the prediction accuracy is significantly improved.

In addition to accuracy, the ranking results are also important. We selected 10 samples
from every cluster of “may_treat” in Table 6 and obtained MRR and MRR+ for PTMKG-
WE-C and PTMKG-WE-C-M in smodel1, as shown in Table 7. For all clusters, MRR of
PTMKG-WE-C-M has a significant improvement over that of PTMKG-WE-C. For example,
comparing MRR of PTMKG-WE-C in c1, that of PTMKG-WE-C-M in c1 is raised from
around 0.27 to 0.374. For the same method, MRR+ is generally better than MRR in most
clusters. So, in statistical results, ignoring these tail-entity words in the existing samples
has a positive impact on the ranking results.

However, in addition to the correct results, there are some noises in the top 20 can-
didates. Noise words are analyzed in detail. It is found that most of these words be-
long to the synonym of existing samples, such as, A, B, C in the formula for predicting
the unknown tail entity X, that is v(X) = v(C) − (v(Aj) − v(Bj)). For example, for
v(X) = v(dalteparin) − (v(globulin) − v(rubella)), the top 20 candidates from embed-
dings are as follows: “dalteparin—0.88262767, fondaparinux—0.6558497, enoxaparin—
0.65285647, thromboprophylaxis—0.6289057, . . . ”. The top three are synonyms of “dal-
teparin”. These values can be filtered in advance. Filtering rules will be the main focus of
our work in the future.
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Table 7. MRR and MRR+ for PTMKG-WE-C and PTMKG-WE-C-M on smodel1.

No./Triples Methods MRR MRR+

c1/19
PTMKG-WE-C 0.27 0.28

PTMKG-WE-C-M 0.374 0.5

c2/121
PTMKG-WE-C 0.355 0.383

PTMKG-WE-C-M 0.734 0.742

c3/599
PTMKG-WE-C 0.16 0.169

PTMKG-WE-C-M 0.195 0.213

c4/73
PTMKG-WE-C 0.327 0.327

PTMKG-WE-C-M 1 1

c5/29
PTMKG-WE-C 0.596 0.616

PTMKG-WE-C-M 0.816 1

c6/210
PTMKG-WE-C 0.168 0.177

PTMKG-WE-C-M 0.364 0.37

c7/355
PTMKG-WE-C 0.357 0.357

PTMKG-WE-C-M 0.361 0.361

c8/16
PTMKG-WE-C 0.183 0.188

PTMKG-WE-C-M 1 1

c9/99
PTMKG-WE-C 0.31 0.313

PTMKG-WE-C-M 0.487 0.563

c10/64
PTMKG-WE-C 0.116 0.116

PTMKG-WE-C-M 0.279 0.281

4.4.3. Experimental Results for Double Words

Figure 6 shows accuracies of “may_treat” and “may_prevent” on different methods
and different models. The accuracies of two clustering methods denote the final compre-
hensive accuracy in Table 8. By comparing accuracies of PTMKG-WE and PTMKG-WE-M,
it can be found that the accuracy of PTMKG-WE-M is nearly 1 time higher than that of
PTMKG-WE. The accuracy of PTMKG-WE-C-M is twice as high as that of PTMKG-WE-C.
This means that the embedding feature of a given relationship represented by the mean of
samples, as performed in PTMKG-WE-M and PTMKG-WE-C-M, is very effective. Although
the accuracy increase of PTMKG-WE-C is different from that of PTMKG-WE on different
models, the trend of the accuracy increase is still obvious. This explains the extraordinary
effect of subdividing the relationship in sub-relations through clustering in PTMKG-WE-C.
When clustering and mean effect are superimposed on one method, the accuracy of this
method is greatly improved. As shown in Figure 6, PTMKG-WE-C-M is the superposition
of four methods, and obtains the best accuracy. By comparing accuracies on different
models for the same method in Figure 6, we know that using c34dmodel2/c38dmodel2
is more accurate than using c34dmodel1/c38dmodel1, using c34dmodel4/c38dmodel4 is
more accurate than using c34dmodel3/c38dmodel3, and using c34dmodel4/c38dmodel4
is more accurate than using c34dmodel1/c38dmodel1, with a few exceptions. As shown
in Section 4.2, dmodel2 and dmodel4 are the deep extensions of dmodel1 and dmodel3,
respectively, and dmodel4 is the breadth expansion of dmodel1. Therefore, extensions
of data in depth or breadth can improve qualities of embedding models, then affect the
accuracy of the final algorithm for double words.

Table 8 shows accuracies of PTMKG-WE-C and PTMKG-WE-C-M for “may_prevent”
and “may_treat” on different models when min−filter = five and TopN = 20. “No./triples”
denotes a cluster formed after clustering and the number of triples included in the cluster.
Different clusters contain different number of triples, and obtain different accuracy. In
order to objectively express the accuracy of the clustering algorithm, the weighted average
method can be used to calculate the final comprehensive accuracy, such as the “c1-c10/3078”
in Table 8. For a given cluster, its weight value is the ratio of the number of triples in the
cluster and the total number of all triples processed. The accuracy of every cluster for the
same method varies greatly. For example, the accuracy of c1/762 on PTMKG-WE-C-M is
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only 7.67%, and the accuracy of c3/466 on the same method is 33.33%. Similar to the change
form of single words, when the models are the same, the accuracy of PTMKG-WE-C-M is
much better than that of PTMKG-WE-C for most clusters. Through detailed analysis of the
triples in these clusters, it was found that triples in clusters have the same trend as single
word triples. That is, the clusters with higher accuracy include a small number of related
tail entities, while the clusters with lower accuracy include a large number of unrelated
tail entities. However, since more tail entities are included in each double-word cluster,
the overall accuracy of double words is smaller than that of single words. This shows that
when predicting new knowledge, the number of existing samples is not more beneficial,
and closely related samples are more valuable.
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Figure 6. Accuracy comparison of four algorithms on a same model. Among, (a,b) show accu-
racies of four algorithms on a same model for “may_treat” and “may_prevent”; (a) may_treat;
(b) may_prevent.

Table 8. The accuracies of PTMKG-WE-C and PTMKG-WE-C-M on different models.

Relationship No./Triples Methods
Accuracies

dd1 dd2 dd3 dd4

may_treat

c1/762
PTMKG-WE-C 4.64% 6.00% 2.22% 6.44%
PTMKG-WE-C-M 7.67%8 11.00% 5.0% 11.67%

c2/278
PTMKG-WE-C 10.61% 12.6% 10.60% 16.67%
PTMKG-WE-C-M 17% 19.00% 19.00% 23.00%

c3/466
PTMKG-WE-C 16.24% 17.5% 17.37% 17.29%
PTMKG-WE-C-M 33.33% 37.7% 43.00% 27.67%

c4/342
PTMKG-WE-C 2.83% 5.30% 2.0% 3.31%
PTMKG-WE-C-M 11.67% 23.00% 5.7% 19.00%

c5/429
PTMKG-WE-C 2.77% 8.30% 2.00% 4.61%
PTMKG-WE-C-M 8% 18.3% 5.7% 12.33%

c6/324
PTMKG-WE-C 2.01% 3.70% 1.88% 4.64%
PTMKG-WE-C-M 4.33% 12.7% 7.3% 9.67%

c7/794
PTMKG-WE-C 8.01% 11.8% 8.45% 12.79%
PTMKG-WE-C-M 15.33% 19.3% 15.7% 19.67%

c8/301
PTMKG-WE-C 13.65% 19.26% 11.44% 7.31%
PTMKG-WE-C-M 31.67% 37.00% 29.7% 18.33%

c9/152
PTMKG-WE-C 8.33% 16.93% 7.47% 13.96%
PTMKG-WE-C-M 12.67% 24.3% 17.3% 21.67%

c10/30
PTMKG-WE-C 22.99% 40.00% 13.9% 38.74%
PTMKG-WE-C-M 23.33% 50.00% 40.00% 40.00%

c1-c10/3878
PTMKG-WE-C 7.56% 10.77% 6.87% 9.77%
PTMKG-WE-C-M 15.3% 21.31% 15.74% 17.74%

may_prevent

c1/466
PTMKG-WE-C 7.7% 10.94% 8.5% 13.4%
PTMKG-WE-C-M 14% 14.33% 16.00% 18.7%

c2/51
PTMKG-WE-C 17.5% 27.45% 9.3% 11.5%
PTMKG-WE-C-M 68.6% 68.62% 51.00% 62.7%

c3/19
PTMKG-WE-C 81.3% 54.39% 65.8% 0%
PTMKG-WE-C-M 89.5% 100.00% 94.7% 100.00%

c1-c3/536
PTMKG-WE-C 11.2% 14.03% 10.57% 12.73%
PTMKG-WE-C-M 21.81% 22.49% 22.05% 25.75%
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5. Conclusions

In order to solve the problem of entity completion in Medical Knowledge Graphs, this
paper proposes a framework for predicting RDF triples for Medical Knowledge Graphs
based on word embeddings (named PTMKG-WE). The framework first formalizes existing
samples for a given relationship from a Medical Knowledge Graph as prior knowledge.
Then, it trains word embeddings from big medical data through Word2vec. Third, the
framework can acquire candidate triples from word embeddings based on analogies with
existing samples. From the point of view of a given relationship feature, the analogy equa-
tion can express the embedding feature about the specific relationship. In order to refine a
semantic relationship, this paper proposes two ways to improve the embedding feature of
a given relationship. One way is used to refine a relational semantic by clustering existing
triples samples. The other way is used to improve the embedding feature of a relationship
through the mean of existing samples. Finally, the paper collects PubMed data and NDF-RT
and finishes a series of experiments to assess the framework. In experiments, single-word
and double-word triples in NDF-RT are considered, respectively. The experimental results
show that the framework in the paper and two improvement methods can be used to
predict new triples for Medical Knowledge Graphs, when medical data are sufficiently
abundant and Knowledge Graphs have appropriate prior knowledge. It is more effective
to predict new triples closely related to prior knowledge, such as reference triples. Under
same parameter settings, the semantic precision of word embeddings can be improved by
extending the breadth and depth of data, and accuracies of the framework in this paper
can be further improved in most cases. Thus, collecting and training big medical data is a
viable way to learn more useful knowledge.

In this paper, we only predict an unknown tail-entity for a given head-entity in a triple.
In the future, we need to comprehensively learn an unknown head-entity for a given tail-
entity in a triple. The current framework only considers the analogy of embedding features,
and prediction accuracies are very limited. Next, we should consider combining more
prior knowledge and more expressive models, such as BERT or GTP. Another limitation is
that this paper only considers the accuracies of new Knowledge Graphs. The consistency
and conciseness of Knowledge Graphs are not really considered in this paper, and will be
mainly considered in next studies.
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