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Abstract: In this work a multicriteria optimization approach to minimize weight and maximize
power output in piezoelectric energy harvesting systems for aerospace applications is studied. The
design variables are the geometric and electric circuit parameters of the vibration-based piezoelectric
energy harvester (PEH). A finite element model is developed to model the dynamic behavior of the
composite plate-type harvester with embedded piezoelectric layers. The cantilever PEH structure is
subjected to constraints in the bending stresses which must be lower than or equal to the tensile yield
strength of the piezoelectric material. For solving the multi-objective optimization problem, the Non-
dominated Sorting Genetic Algorithm II (NSGA-II), the Non-dominated Sorting Genetic Algorithm III
(NSGA-III) and the Generalized Differential Evolution 3 (GDE3) algorithm are employed. It is shown
that the proposed algorithms are effective in developing optimal Pareto front curves for maximum
electrical power output and minimum mass of the PEH system. A comparative assessment of the
solutions generated on the Pareto Front show that GDE3 achieved solutions that generate higher
maximum power output and performs better compared to the two other algorithms.

Keywords: piezoelectric energy harvesting; stress constraint; unmanned aerial vehicles (UAV);
multi-objective optimization; NSGA-II; GDE3; performance metrics; PlatEMO

1. Introduction

Energy harvesting (EH) from environmental energy sources such as vibrations, wind,
heat, solar power etc., has attracted significant research interest due to the growing de-
mand for energy. Vibration energy harvesting is the conversion of the ambient vibrations
into electrical energy and provides a viable solution for powering small electronic com-
ponents. Among the principles of energy conversion, piezoelectricity is known as one of
the most efficient and practical way for conversion of mechanical vibration energy into
electrical energy [1,2].

Piezoelectric energy harvesters (PEHs) have attracted research interest because of
the high conversion efficiency compared to electromagnetic and electrostatic based har-
vesters [2]. However, efficiency of PEH systems depends on several parameters such as
material properties, geometric dimensions, electric circuit components, etc. Conventional
piezoelectric materials, such as lead-based piezoceramics, are brittle in nature and difficult
to manufacture. Despite the high electromechanical response of lead-based piezoelectric
ceramics, the problem of brittle nature has not been effectively solved for a long time.
To overcome these drawbacks, new flexible piezoelectric composite materials have at-
tracted attention of the research interest [3]. These new type of piezoelectrics are suitable
for wearable energy harvester applications. Wearable energy harvesting focuses on the
fabrication of reasonable-cost smart garments using special nanostructure piezoelectric
fibers that make use of the vibrations due to the natural movements of the body [4,5].
Various materials are proposed, e.g., barium titanate and polyvinylidene fluoride, with
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satisfactory results, indicating the potential for industrial mass production of commercial
devices. However, this approach seems more appropriate for personalized sensoring and
monitoring applications in everyday life, such as patient monitoring, robotic assistance, etc.

Piezoelectric energy harvesters are typically designed as cantilever beams or plates
with one or two piezoceramic layers covering the structure either entirely or partially. Sev-
eral methods have been employed to model the electromechanical behavior of a PEH. The
works of Erturk and Inman [6,7] present analytical distributed electromechanical models
for unimorph and bimorph cantilever beam which provides closed form expressions for
harmonic behavior of PEHs. Based on classical laminated theory, a distributed parameter
electroelastic model was developed in [8] for piezoelectric energy harvester structurally
integrated to cantilever composite beam. Electrical and mechanical closed form steady
state solution response have been obtained by harmonic base excitation.

On the other hand, the finite element method has proven to be very useful in modeling
the dynamics of PEHs [9–11]. A coupled electromechanical finite element (FE) model
for predicting the electrical power output of piezoelectric energy harvester plates was
presented in [9]. The FE formulation is based on the Kirchhoff plate assumptions which is
suitable for modelling thin structures. Additionally in this paper, an optimization problem
for aluminum wing spar generator of an unmanned air vehicle (UAV) was solved for the
maximum electrical power without exceeding a prescribed mass addition limit.

Most analytical and FE models of PEHs are based on classical beam/plate theories
which ignore shear stresses and are suitable for modelling thin structures. However, for
accurate modeling of thick PEH for various applications, such as aircraft wing structure
or wind turbine blade, higher order shear deformation theories are needed. Recently,
Khazaee et al. [11] developed a coupled electromechanical model for non-uniform piezo-
electric energy harvesting composite laminates based on third-order shear deformation
theory. The presented high-order shear FE model also considers the contact layer thickness
in the harvester beams, non-uniformity in the piezoelectric sheet, non-constant thickness
of the piezoelectric sheet and is suitable for analysis of a wider range of problems in
piezoelectric harvesting.

On the other hand, several studies have been carried out on design optimization of PE
harvester to improve the energy harvesting efficiency by optimizing the dimensions of the
piezoelectric energy harvesters [10,12,13]. The performance of few important piezoelectric
materials has been simulated by Kumar et al. [10] for unimorph-type cantilever piezoelectric
energy harvester. The genetic algorithm (GA) optimization approach is used to optimize the
structural parameters of mechanical energy-based energy harvester for maximum power
density. In [12], a new design of piezoelectric energy harvester subject to tip excitation is
proposed. The mechanical and electrical behaviors of piezoelectric materials are solved
by coupled analysis using ANSYS, and the design optimization is performed for power
maximization using Sequential Quadratic Programming (SQP) algorithm.

Most studies on design optimization of PEH are limited to single objective optimization
techniques using the maximization of power output as the main performance criterion.
However, not much research has been carried out on the optimization of the parameters of
the vibration-based piezoelectric harvester based on multicriteria.

The concept of energy harvesting has received much attention in recent years to
enhance operational autonomy of low-power electronic applications (biosensors, micro-
electronics etc.) as well as for aerospace applications (e.g., unmanned aerial vehicle (UAV)),
as it can offer a sustainable solution for power supply from ambient vibrations. However, a
crucial aspect of the design of such kind of systems is the potential effect that the additional
mass of the piezoelectric energy harvesting system might have on the performance of the
initial structure. Since mass densities of typical piezoceramics used in energy harvesting
are considerably large compared to typical substrate materials such as steel, aluminum or
graphite/epoxy material, the minimization of the mass of the system should consider as an
additional performance criterion in optimal design of PEH.
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A design optimization problem for UAV applications has been studied in [9]. The
aluminum wing spar of a UAV is modeled using a FE plate model appropriately modified
to design a generator wing spar. In order to take into consideration the mass added by the
piezoelectric layers, an upper limit for mass addition is imposed as a design constraint. The
resistor load R and the geometric dimensions of the embedded piezoceramics have been
determined to maximize the generator spar’s output power by varying their values in a
reasonable range without applying any optimizationtechnique.

Recently, a multi-objective design optimization of piezoelectric energy harvesting
system for UAV has been presented in [14]. In contrast with the previous approaches,
this work considers the minimization of mass added by the embedded piezoceramics as
an additional performance criterion along with the maximization of the power output as
design optimization objectives. Non-dominated Sorting Genetic Algorithm II (NSGA-II),
Non-dominated Sorting Genetic Algorithm III (NSGA-III) and Generalized Differential
Evolution 3 (GDE3) algorithms are carried out to optimize the structural and the electric
circuit parameters of vibration-based piezoelectric energy harvester. The results prove that
Multi-Objective Genetic Algorithm (MOGA) approach is very promising for optimal design
of PEH for aerospace applications.

So far, the literature review shows that the consideration of the material strength in
optimal design of PEH is somewhat limited. In [12], the design of piezoelectric energy
harvester subject to tip excitation is addressed under the constraint of maximum bending
stress. The work of [15] focuses on nonlinear energy harvester design optimization with
magnetic oscillator under the constraint that the maximum strain on piezoelectric material
do exceed the allowable limits. However, the strength of the piezoelectric material is
another crucial parameter in designing energy harvesters. This parameter is of major
importance since the values of the strength of piezoelectric materials are much lower
compared to the strength of substrate materials such as steel, aluminum, and brass [9,15].
Therefore, the stress generated in the energy harvesting process should be considered as a
new design constraint in order to ensure the adequate mechanical behavior of the device.

Motivated by the above consideration, this study presents a multicriteria optimization
approach to minimize mass and maximize power output in piezoelectric energy harvesting
systems within the limits of allowable stress of the piezoelectric layers. A finite element
model has been developed for modeling the behavior of the plate-type PEH under base
excitation. The formulation is based on laminated plate theory combined with the first-
order shear deformation theory (FSDT) for which each piezoelectric layer has one additional
electrical degree of freedom. This paper extends the modeling and the optimization problem
presented in [14] by considering additional constraint on bending stress of the piezoelectric
layers. NSGA-II, NSGA-III and GDE3 algorithms are applied in the optimization process
and both trade-off Pareto optimal fronts and the respective optimal design are obtained.
Finally, the results are analyzed and discussed.

2. Multi-Objective Genetic Algorithms

Since the 1970s, multi-objective optimization problems (MOOP) have attracted the
interest of both academics and industry. However, most of the time, they were treated
as single-objective problems, aggregating multiple objectives in one using a weighted
sum. The goal of single-objective optimization is to find the best solution, which is the
minimization or maximization of a single objective function. Multi-objective optimization
problems, on the other hand, usually, do not have a single optimal solution, but rather
a set of compromise alternatives known as Pareto optimal solutions. So, the purpose of
multi-objective optimization is to find solutions that yield the best values for more than
one, often conflicting to each other, objectives.

Developments in technology and in heuristic approaches, particularly evolutionary
algorithms, have enabled the development of current optimization tools that can solve
multi-objective problems efficiently and reliably. Evolutionary algorithms have been used
to solve a variety of multi-objective optimization problems, including economics (e.g.,
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the economic dispatch problem [16], finance [17], optimal control [18], scheduling [19],
and others).

In this research, we compare three state-of-the-art multi-objective genetic algorithms,
NSGA-II, NSGA-III, and GDE3, to solve a multi-objective constrained optimization problem
involving piezoelectric energy harvesting systems for aerospace applications.

2.1. NSGA-II and NSGA-III

Since NSGA-III expands on the core ideas of NSGA-II, the NSGA-II and NSGA-III
algorithms are briefly discussed simultaneously. The NSGA-II algorithm employs both an
elite and a diversity-preserving mechanism to achieve two objectives: discover solutions
that are as close to the Pareto optimal as possible and find solutions that are as diverse as
possible in the produced non-dominated front [20,21]. The initial population is sorted into
distinct non-dominance levels. Based on the fitness of each solution, the solution is assigned
to a previously determined non-domination level. The development of the offspring
population for next steps, is dependent on selection mechanisms. A niching technique is
used to choose a diverse collection of solutions, followed by crowded tournament selection,
crossover, and mutation operations that ensure better distribution of the solutions.

NSGA-III, on the other hand, determines a set of reference points before generating
the initial population. During the process, the solutions indicated by the Pareto front,
are associated with these reference points. In essence, the reference point set serves as
a guidance mechanism for the evolution towards creating a uniform Pareto front in the
objective space [22].

2.2. GDE3

GDE3 is a global optimization approach that is based on the standard Differential
Evolution (DE) method and can solve problems with many constraints and objectives [23].
The selection method differentiates DE and GDE from an algorithmic standpoint. In the
initial versions of GDE, the trial vector was chosen to replace the old vector in the following
generation if it weakly constraint-dominated the old vector by changing the selection rule
of the basic DE. GDE3, extends its predecessor GDE2 [23], which can choose between
achievable and non-dominating aims based on crowdedness in specific conditions, in that it
can solve problems with multiple objectives and multiple constraint functions by extending
the DE/rand/1/bin method [24]. So, decisions are based on the objective values and
crowdedness while ensuring feasibility. A strong feature of GDE3 is that it appears to be
less reliant on the selections of control parameters than other MOGAs.

3. Mathematical Model of a Piezoelectric Energy Harvester

The configuration of the structure studied is depicted in Figure 1. A piezoelectric
energy harvester (PEH) consists of a host plate made of metal or composite materials with
piezoelectric layers covering both surfaces in a bimorph arrangement. The piezoelectric
layers need not extend along the entire length of the structure. The bond between two
layers is assumed to be perfect and the physical properties of the bonding material are not
considered. The piezoelectric layers are poled in the thickness direction and are covered by
continuous electrodes with negligible thickness. Top and bottom electrodes of piezoelectric
layers are connected to the external resistance R as shown in Figure 1. The piezoelectric
harvester is constrained by the clamped-free boundary conditions, and it is excited by the
motion of its base.

Next, first order shear deformation theory (FSDT) is employed to derive a finite
element model for the composite plate structure shown in Figure 1. Single mechanical
displacement field is considered for all layers (equivalent single layer theory), while electric
fields are considered for each piezoelectric layer separately (layerwise approach).
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3.1. Mechanical Displacements and Strains

Based on FSDT, the displacement field can be expressed as follow,

{u} =


ux(x, y, z, t)
uy(x, y, z, t)
uz(x, y, z, t)

 =


−zψx(x, y, t)
−zψy(x, y, t)

w0(x, y, t)

 =

 0 −z 0
0 0 −z
1 0 0


w0
ψx
ψy

 ≡ [Zu]{u} (1)

where ux, uy, uz are the displacement components along the (x, y, z) coordinates and

{u} =
{

w, ψx, ψy
}T indicates the transverse displacement and the section rotations of the

mid-surface of the plate. Using the usual strain–displacement relations in conjunction with
relations (1), the strain field can be written as,

{ε} =


εxx
εyy
γxy
γyz
γxz

 =



−z ∂ψx
∂x

−z ∂ψy
∂y

−z
(

∂ψx
∂y +

∂ψy
∂x

)
∂w
∂y − ψy
∂w
∂x − ψx


= [Zε][∇u]{u} (2)

where,

[Zε] =


−z 0 0 0 0
0 −z 0 0 0
0 0 −z 0 0
0 0 0 1 0
0 0 0 0 1

, [∇u] =



0 ∂
∂x 0

0 0 ∂
∂y

0 ∂
∂y

∂
∂x

∂
∂y 0 −1
∂

∂x −1 0


(3)

3.2. Constitutive Relations

In this work the linear constitutive equations of piezoelectricity are employed,

{σ}p = [Q]p{ε} − [e]Tp{E}p, {D}p = [e]p{ε}+ [ξ]p{E}p (4)

where {σ}p, {ε}, (D}p, {E}p are stress, strain, electric displacement and electric field vec-
tor, respectively. [Q]p, [e]p and [ξ]p are plane-stress reduced stiffness matrix, the piezoelec-
tric coefficients and the permittivity constant matrices, respectively. Matrix transposition is
denoted by superscript T. The electric field vector {E}p of the p− th piezoelectric layer can
be derived from the electric potential φp as,

{E}p = −∇φp (5)
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Relation (4) can be greatly simplified since piezoelectric materials are transversally
isotropic in the plane normal to the axis of polarization z (see, e.g., [25]).

The constitutive relation for the elastic substructure material can be written as,

{σ}S = [Q]S{ε}. (6)

3.3. Finite Element Discretization

In order to derive the coupled electromechanical equations governing the dynamic
behavior of the PEH, the finite element method is used. The essential idea of finite elements
is that the structure is approximated as an assembly of elements linked at nodal points
on the element boundaries. In this study, the overall structure has been discretized using
four-noded isoparametric quadrilateral elements with three mechanical degrees of freedom
(DoF) per node and one electrical degree of freedom per piezoelectric layer. The generalized
displacement vector is discretized on a quadrilateral element as:

{u(x, y, t)}e = [Nu(x, y)]{de(t)} =
4

∑
j=1

(Nj[I]3x3{d
e
j}) (7)

where {de
j} =

{
w0j, ψxj, ψyj

}
,T j = 1, 2, 3, 4 corresponds to the jth node of the eth element

and Nj(x, y) are the linear Lagrange interpolation functions.
Substituting Equation (7) into Equation (2), the strain vector at any point within an

element can be expressed as,

{ε(x, y, t)}e = [Zε]∇u([Nu]{de}) = [Zε][B]{de}. (8)

For a thin piezoelectric layer polarized in the thickness direction, the electrical potential
can be assumed to be constant throughout the plane of the element and to vary linearly
along the z-direction. Therefore, the electric field strengths of an element for the lower (p1)
and upper (p2) piezoelectric layer can be accurately approximated as,

{Ee}p1 =

{
0 0 − v1

hp1

}
e

T = −
[
Bp1
]
ve

1 (9)

{Ee}p2
=

{
0 0 − v2

hp2

}
e

T = −
[
Bp2
]
ve

2 (10)

where ve
i is the difference of electric potential between the electrodes covering the surface

on each side of the piezoelectric layer i. Notice that in this way, two additional electric
DoFs per element have been included, namely the electric potential difference ve

1 and ve
2 at

the top of the lower and upper piezoelectric layers.

3.4. Variational Formulation

The equations of motion for the energy harvester composed of elastic and piezoelectric
layers are obtained using the extended Hamilton’s principle,

δ

t2∫
t1

(T − (Um + UE) + W)dt = 0 (11)

where t1 and t2 are arbitrary time moments, T is the mechanical kinetic energy, Um is the
mechanical potential energy UE is the electrical potential energy, W is the external work
and δ denotes the variational operator.

In the Finite Element Method, the structure is divided into a finite number of elements
and therefore, the various energy terms must be computed for each element and subse-
quently to be assembled all together in order to describe the whole structure. We emphasize
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that each finite element of the mesh is either a single elastic layer, when only the substrate
is present, or a multilayer, when both the substrate and the piezoelectric layers are present.
Next, all energy terms are given for a single multilayer element as follows,

Te =
1
2

∫
ΩS

ρS
{ .

u
}T{ .

u
}

dΩ +
1
2

∫
Ωp1

ρp1

{ .
u
}T{ .

u
}

dΩ +
1
2

∫
Ωp2

ρp2

{ .
u
}T{ .

u
}

dΩ (12)

Ue
m =

1
2

∫
ΩS

{ε}T{σ}SdΩ +
1
2

∫
Ωp1

{ε}T{σ}p1
dΩ +

1
2

∫
Ωp2

{ε}T{σ}p2
dΩ (13)

Ue
E =

1
2

∫
Ωp1

{E}T
p1
{D}p1

dΩ +
1
2

∫
Ωp2

{E}T
p2
{D}p2

dΩ (14)

In the above equations, Ω denotes the volume, ρ denotes the mass density and the sub-
scripts S, p1 and p2 stand for the host plate structure, the lower and the upper piezoelectric
layer, respectively, and a dot represents partial derivative with respect to time t.

Finally, the virtual work carried out by the mechanical forces and electrical charges for
an element e, is given by,

δWe = {δu}L
T{ f e}L + δve

1qe
1 + δve

2qe
2 (15)

where { f e}L is the applied mechanical force at (xL, yL) position and qe
j is the charge ex-

tracted by the piezoelectric layer j.
Using the Equations (4)–(10) and (12)–(14) the Hamilton’s principle (11) applied to an

arbitrary piezoelectric element, can be expressed as,

T∫
0

δ{de}T

 ∫
Ωs

[N]T [Zu]
TρS[Zu][N]dΩ

{ ..
d

e}
+
∫

Ωp1

[N]T [Zu]
Tρp1[Zu][N]dΩ

{ ..
d

e}
+
∫

Ωp2

[N]T [Zu]
Tρp2 [Zu][N]dΩ

{ ..
d

e}
+
∫

Ωs

[B]T [Zε]
T [Q]S[Zε][B]dΩ{de}

+
∫

Ωp1

[B]T [Zε]
T [Q]p1

[Zε][B]dΩ{de}+
∫

Ωp2

[B]T [Zε]
T [Q]p2

[Zε][B]dΩ{de}

+
∫

Ωp1

[B]T [Zε]
T [e]Tp1

[Bv1 ]dΩ ve
1 +

∫
Ωp2

[B]T [Zε]
T [e]Tp2

[Bv2 ]dΩ ve
2 − { f e}


+δve

1

− ∫
Ωp1

[Bv1 ]
T [e]p1

[Zε][B]dΩ{de}+
∫

Ωp1

[Bv1 ]
T [ξ]p1

[Bv1 ]dΩ ve
1 − qe

1


+δve

2

− ∫
Ωp2

[Bv2 ]
T [e]p2

[Zε][B]dΩ{de}+
∫

Ωp2

[Bv2 ]
T [ξ]p2

[Bv2 ]dΩ ve
2 − qe

2

dt = 0

(16)

Since δ{de}, δve
1 and δve

2 are independent and arbitrary, Equation (16) implies,

[Me]
{ ..

d
e}

+ [Ke
u]{de}+ [Ke

1]v
e
1 + [Ke

2]v
e
2 = { f e} (17)

− [Ke
1]

T{de}+ Cp1ve
1 = qe

1 (18)

− [Ke
2]

T{de}+ Cp2ve
2 = qe

2 (19)

where [Me], [Ke
u],
[
Ke

1
]
, [Ke

2], Cp1 and Cp2 are the element mass matrix, element stiffness
matrix, electromechanical coupling matrices and piezoelectric capacitances, respectively.
Their definitions follow directly by Equation (16).
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In this work, the structure’s motion is caused by the base’s acceleration, and the
effective force on the plate is caused by its inertia. As a result, the forcing term in the
right-hand side of Equation (17) can be expressed as,

{ f e} = −[Me]
..
wb (20)

where
..
wb = ab{1 0 0 1 0 0 1 0 0 1 0 0}T and ab is the magnitude of the base acceleration. In

our case, ab is taken as the gravitational acceleration, g = 9.81 m/s2.

3.5. Coupled Electromechanical Equations of the PEH

The global coupled electromechanical equations of the PEH can be obtained by assem-
bling the elemental Equations (17)–(19). To identify elements with piezoelectric layers, a
unique numbering scheme should be utilized during the assembly procedure. Elements
with piezoelectric layers, for example, may be denoted by 1, while the rest may be des-
ignated by 0. In addition, since the piezoelectric layers are fully covered by uniform
electrodes, a single electrical degree of freedom vi for each piezoelectric layer is assigned, to
consider the equipotential condition on the electrodes. Thus, the global coupled equations
of the system are given as,

[M]{
..
d}+ [C]{

.
d}+ [Ku]{d}+ [Θ1]v1 + [Θ2]v2 = {Fb} (21)

− [Θ1]
T{d}+ Cp1v1 = q1 (22)

− [Θ2]
T{d}+ Cp2v2 = q2 (23)

where {d} is the global vector of mechanical coordinates, [M] is the global mass matrix,
[K] is the global stiffness matrix, {Fb} is the global force vector and [Θ1], [Θ2] are the
electromechanical coupling matrices. Cpi and qi are the capacitance and the electric charge
output of the piezoelectric layer i, respectively. In Equation (21), a Rayleigh-type mechanical
damping matrix [C] = α[M] + β[K] has been introduced a posteriori.

In order to use the model for energy harvesting applications, some additional con-
siderations should be made. First, the two piezoelectric layers are considered identical
(made of same material and have same dimensions) and poled in antiparallel directions. In
this case, Cp1 = Cp2. Secondly, in order to maximize the voltage output, the two opposite
polarized piezoelectric layers have been connected in series to an external resistance R. In
this case, the global charge in the circuit is equal to each output charge generated by each
piezoelectric layer, i.e., q1 = q2 = q, whereas the global output voltage is the sum of the
output voltages, i.e., v = v1 + v2. Summing up Equations (22) and (23), we obtain,

− ([Θ1]
T + [Θ2]

T){d}+ Cp1v− 2q = 0. (24)

Next, we differentiate the above equation and using Ohm’s law (I =
.
q = −v/R), the

complete system of equations governing the dynamic response of the PEH under study
become:

[M]{
..
d}+ [C]{

.
d}+ [K]{d}+ [Θ]v = {Fb} (25)

− [Θ]T{
.
d}+ Cp

.
v +

v
R

= 0 (26)

where Cp =
Cp1

2 =
Cp2

2 and [Θ] = 1
2 ([Θ1] + [Θ2]).

3.6. Solution of the Coupled Electromechanical System

In order to derive the electromechanical response of the PEH under base excitation, the
system is assumed to be excited by a harmonic input of the form {Fb} = {F0}e−jωt. In this
case, the steady-state solutions of the mechanical displacement and voltage responses can
be formulated as {d} = {d0}ejωt and v = v0ejωt where {d0} and v0 are the amplitudes of
the displacement and the voltage, respectively, and ω is the driving frequency. Substituting
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the assumed solutions in the system (25)–(26) and doing some mathematical manipulations,
the mechanical displacement and the voltage output are found to be related to the input
force by,

{d0} = [H(ω)]{F0} (27)

v0 =
jω

( 1
R + jωCp)

[Θ]T [H(ω)]{F0} (28)

In the above equations, the frequency response function (FRF) between the mechanical
output and input signal is given by,

[H(ω)] =

(
−ω2[M] + jω[C] + [K] +

jω
( 1

R + jωCp)
[Θ][Θ]T

)−1

(29)

Once the system’s DoFs have been derived by Equations (27) and (28), the stresses can
be evaluated using the constitutive equations.

The power FRF (P) is calculated using the voltage FRF and the load resistance as,

P =
v2

R
(30)

The modulus of the power output FRF will be used in the next section to define a
multi-objective optimization problem.

A MATLAB code has been developed to implement the presented FE model, to
perform the harmonic analysis and the post-processing computation of stresses.

3.7. Verification of the FE Model

The developed FE model has been verified by comparing with the experimental results
of [7] for a bimorph cantilever harvester with a tip mass. The bimorph cantilever PEH
consists of a brass substructure and sheets of piezoelectric material PZT-5A. The material
and geometric parameters needed to construct the FE model are given in Table 1. The
global mass matrix of the FE model has been appropriately modified at the tip degrees of
freedoms in order to incorporate the additional mass. The experimental results have been
recovered by the study [7] using the WebPlotDigitizer v4.5 software [26] which is a useful
tool for accurate data extraction from plots and images.

Table 1. Material and geometric parameters of the bimorph PEH with tip mass.

Parameter Value

Beam length (mm) 50.8
Beam width (mm) 31.8
Substructure thickness (mm) 0.14
Piezoelectric thickness (mm) 0.26 (each)
Substructure Young’s modulus, ES [GPa] 105
Substructure Poisson’s ratio, v 0.35
Substructure density, ρS

[
kg/m3 ] 9000

Rayleigh coefficient α [rad/s] 14.65
Rayleigh coefficient β [s/rad] 10−5

Piezoelectric layer density, ρp
[
kg/m3 ] 7800

Tip mass [kg] 0.012

Qp
11 = Qp

22 [GPa] 70

Qp
12 [GPa] 24.5

Qp
44 = Qp

55 [GPa] 21.8

Qp
66 [GPa] 22.8

ep
31 = ep

32
[
C/m2 ] 15.97

ξ
p
11 = ξ

p
33 [nF/m] 11.0
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The harmonic analysis of the PEH under base excitation has been performed using the
developed MATLAB code. In Table 2 the fundamental frequency obtained by the present
FE model is compared with the analytical and experimental frequencies in short-circuit and
open-circuit condition obtained in [7] From the results of Table 2, an excellent agreement
is obtained. Figure 2. FE model verification with the experimental results of [7]. Figure 2
depicts the power spectrum in an excitation range close to the first resonance frequency
when a resistor R = 1 kΩ is connected in series with the piezoelectric layers. From Figure 2
it can be concluded that the predicted power output FRF obtained using the present FE
model agrees excellent with the experimental results.

Table 2. The fundamental frequency (Hz) of the bimorph harvest with tip mass [7].

Short-Circuit Open-Circuit

Analytical 45.7 48.2
Experimental 45.6 48.4

Present FE 45.7 48.3

Information 2022, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 2. FE model verification with the experimental results of [7]. 

4. Design Optimization of PEH 
In design optimization of PEH systems, the optimization formulation (objectives, 

constraints, method etc.) depends on the particular implementation requirements. For ex-
ample, for applications where the mass of the system is of major concern (e.g., UVA ap-
plications), the designer should focus their attention not only on maximization of the 
power output but also on the competing objective of the mass minimization. Although the 
approach given here is limited to two specific objectives (generated power and PEH mass), 
it might be modified to include any additional objective and/or constrains. 

Based on the FRF model developed in previous section, a design optimization of the 
geometric and electric parameters of PEHs subject to base excitation is studied next. 

Formulation of the Optimization Problem 
An optimization problem with multi-objectives is formulating in this section to de-

sign a cantilever plate-type PEH with embedded piezoceramics which can be used to sim-
ulate the dynamics of an UAV wing spar [14] The dimensions of the original PEH are 
given as 300 ൈ 30 ൈ 12 mmଷ. The standard material of the harvester is partly replaced by 
two PZT-5A layers that are embedded in both surfaces of the harvester (see Figure 1 for 
the configuration). The bimorph PEH consists of an aluminum substructure and the PZT-
5A piezoceramic layers. The piezoelectric material constants are given in Table 1. The re-
main physical properties of the bimorph PEH are listed in Table 3. The piezoelectric layers 
are assumed to have the same width as the substrate. The geometric properties of the pi-
ezoceramic layers, particularly their length and thickness, as well as the resistance of the 
electric circuit, are the design variables of the optimization problem The base excitation 
speed is assumed to be close to the short circuit resonance frequency of the first vibration 
mode of the system, that is in a range between 98 and 110 Hz. Recall that the base accel-
eration considered in this work is 1.0 g (9.81 m/sଶ). 

Table 3. Physical properties of the bimorph PEH. 

Parameter Value 
Substructure Young’s modulus, 𝐸ௌ [GPa] 70 
Substructure Poisson’s ratio, 𝑣 0.34 
Substructure density, 𝜌ௌ   [kg mଷ⁄ ] 2750 
Rayleigh coefficient 𝛼 [rad/s] 21.28 

Figure 2. FE model verification with the experimental results of [7].

4. Design Optimization of PEH

In design optimization of PEH systems, the optimization formulation (objectives,
constraints, method etc.) depends on the particular implementation requirements. For
example, for applications where the mass of the system is of major concern (e.g., UVA
applications), the designer should focus their attention not only on maximization of the
power output but also on the competing objective of the mass minimization. Although the
approach given here is limited to two specific objectives (generated power and PEH mass),
it might be modified to include any additional objective and/or constrains.

Based on the FRF model developed in previous section, a design optimization of the
geometric and electric parameters of PEHs subject to base excitation is studied next.

Formulation of the Optimization Problem

An optimization problem with multi-objectives is formulating in this section to design
a cantilever plate-type PEH with embedded piezoceramics which can be used to simulate
the dynamics of an UAV wing spar [14] The dimensions of the original PEH are given
as 300× 30× 12 mm3. The standard material of the harvester is partly replaced by two
PZT-5A layers that are embedded in both surfaces of the harvester (see Figure 1 for the
configuration). The bimorph PEH consists of an aluminum substructure and the PZT-5A
piezoceramic layers. The piezoelectric material constants are given in Table 1. The remain
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physical properties of the bimorph PEH are listed in Table 3. The piezoelectric layers
are assumed to have the same width as the substrate. The geometric properties of the
piezoceramic layers, particularly their length and thickness, as well as the resistance of the
electric circuit, are the design variables of the optimization problem The base excitation
speed is assumed to be close to the short circuit resonance frequency of the first vibration
mode of the system, that is in a range between 98 and 110 Hz. Recall that the base
acceleration considered in this work is 1.0 g (9.81 m/s2).

Table 3. Physical properties of the bimorph PEH.

Parameter Value

Substructure Young′s modulus, ES [GPa] 70
Substructure Poisson′s ratio, v 0.34
Substructure density, ρS

[
kg/m3 ] 2750

Rayleigh coefficient α [rad/s] 21.28
Rayleigh coefficient β [s/rad] 10−5

Next, we define the dimensionless geometric parameters: the dimensionless length
(L∗) which is equal to the ratio of the length of the piezoceramic layers (Lp) divided by the
total length of the harvester (L) and the dimensionless height (h∗) which is equal to the
ratio of the height of one piezoceramic layer (hp) divided by the total height of the harvester
(i.e., L∗ = Lp/L and h∗ = hp/h).

The main goal in vibration-based energy harvesting is the maximization of the power
output P to enhance the performance of the PEH system. So, the first objective considered
in this study is the maximization of the peak power FRFs P(ω). Next, the maximization of
the peak power FRFs is handle as a minimization of the following function,

f1 = −peak power(L∗, h∗, R) = −‖P‖∞ (31)

where ‖P‖∞ = max
ω
|P(ω)|.

Since the mass density of PZT-5A is considerably larger than that of the aluminum alloy,
the minimization of the mass of the PEH system is consider as an additional performance
criterion in the following optimization problem:

f2 = mass(L∗, h∗, R) = ΩS
(
ρs − 2L∗h∗ρs + 2L∗h∗ρp

)
(32)

where ΩS = Lbh is the volume of the original substrate structure.
Generally, the strength of piezoelectric materials is much lower compared to the

strength of substrate materials such as aluminum considered in this study [9,15]. The
reported value of dynamic strength of PZT-5A is 27.6 MPa [9]. This fact motivates us to
incorporate the material strength of piezoelectric material in designing the PEH. Thus,
in pursuit of better performance, the maximum bending stress is considered as a new
constraint in the design optimization.

Thus, the multi-objective constrained optimization problem is formulated as follows:
Find design variables L∗, h∗, R to,

minimizeF(L∗, h∗, R) ≡ ( f1, f2)
st 0 ≤ L∗ ≤ 1.0

0 ≤ h∗ ≤ 0.5
1 ≤ R ≤ 600 (kΩ)

σp ≤ σ0
PZT

(33)

where σp is the maximum bending stress of the piezoelectric layers and σ0
PZT = 27.6 (MPa)

is the dynamic tensile strength of PZT-5A.
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A multi-objective optimization problem with the same objectives and without the stress
constraint has been solved in [14]. Furthermore, an additional constraint on the mass of the
system was imposed that f2 does not exceed the value 0.3267, which corresponds to 10%
increase of the mass of the original structure. Depending on the particular implementation
requirements, this constraint could be changed and it was chosen arbitrarily only to show
the capabilities of this procedure to perform optimization under different constraints.

5. Optimization Results

Experiments were carried out on a workstation running MATLAB 2018b on Windows
10 with an Intel Core i9 7960X @2.8 GHz CPU and 64 GB DDR4 RAM. The three multi-
objective algorithms employed are those that are implemented in the PlatEMO v3.4 [27]
software, which is freely available for research purposes. It should be noted that PlatEMO
implements numerous MOGA and other algorithms.

The optimization procedure is shown in Figure 3. The MATLAB code that we have
developed for the FE model implementation is executed at each iteration to calculate the
objectives and the constraints required by the optimization procedure (e.g., the output
power, the mass, the stress distribution). PlatEMO software provides the implementations
of the multi-objective algorithms used (NSGA-II, NSGA-III, GDE3). Our MATLAB code is
embedded in the procedure as a set of functions, which, when the values for the decision
variables are given as input, return the fitness of the objective functions and the constraints
violation amount. The convergence criterion is a predefined number of maximum genera-
tions allowed. As long as the criterion is not satisfied, the algorithm continues to evolve to
population. Finally, the Pareto optimal solutions are obtained. A post-processing procedure
is carried out with the aid of two extra python packages, pfevaluator [28] that computes
various Pareto front performance metrics, and OAPackage [29] that can easily identify
Pareto optimal solutions in a population of solutions.
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The experiments entailed running each of the algorithms NSGA-II, NSGA-III, and
GDE3 for 50 generations with a population of 50 individuals. Based on the collected
findings of each run’s final population, a Base Pareto Front (BPF) is created, as shown in
Figure 4. The BPF comprises 493 points (135 from NSGA-II, 202 from NSGA-III, and 156
from GDE3). It is easily shown that GDE3 manages to extend the BPF to the top-right
part of the graph. Each algorithm was run 10 times, each time taking roughly 5500 s. The
indifference of the running times among the three algorithms can be attributed to the fact
that the heavier parts of the approach, due to FEM, are the evaluation of the power objective
and the assurance of the stress constraint which is common across the algorithms.
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GDE3).

All three algorithms begin to converge, rather early, around the 10th generation.
Figure 5 shows the evolution of the Pareto fronts for generations 3, 10, and 50. In addi-
tion, the Pareto fronts for generation 5, 10, and 50, are shown in Figure 6. BPF is also
shown in each subfigure as a substitute for the unknown optimal Pareto front. GDE3
can achieve solutions that NSGA-II and NSGA-III were unable to attain for this problem
and experiment setup. As a result, GDE3 achieves solutions that generate a maximum
power of 322.2709 mW/g2, whereas the maximum power generated by solutions produced
by NSGA-II and NSGA-III is 284.3626 mW/g2. By inspecting the evolution of solutions
across the generations we observed that GDE3 attained solutions with power greater than
284.3626 mW/g2 for all 10 runs and this occurred on average at about the 33th generation.
This occurred as early as at the 18th generation and as late as at the 45th generation. More
experiments were undertaken for NSGA-II and NSGA-III, in an attempt to achieve solu-
tions with greater values for the generated power. A population of 100 individuals and
100 generations is used for the optimization process. This time, each run took about 21,000 s.
Nevertheless, the maximum power generated is again no greater than 284.3626 mW/g2.



Information 2022, 13, 182 14 of 19

Information 2022, 13, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 5. NSGA-II, NSGA-III, GDE3 Pareto front evolution through generations. 

Figure 5. NSGA-II, NSGA-III, GDE3 Pareto front evolution through generations.



Information 2022, 13, 182 15 of 19

Information 2022, 13, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 6. Pareto fronts produced by NSGA-II, NSGA-III and GDE3 at generations 5, 10 and 50. 

5.1. Metrics 
Several metrics exist in the literature that evaluate the performance of multi-objective 

algorithms, including Generational Distance (GD), Inverted Generational Distance (IGD), 
Maximum Pareto Front Error (MPFE), Hypervolume (HV), Maximum Spread (MS), and 
others [30]. The optimal Pareto front is used to calculate most of the metrics. We employed 
the Base Reference Front (BPF), which comprises the Pareto optimal solutions of 10 runs 
of the algorithms NSGA-II, NSGA-III, and GDE3, because we had no theoretical guarantee 
of the best Pareto front. 

The GD metric evaluates the distance between the solution Pareto front and the BPF, 
with smaller values signifying better performance. It calculates the average distance be-
tween any place in the BPF and the solution Pareto front’s nearest point. Since the IGD 
metric is an inverted version of the GD, higher values are preferable. IGD specifically as-
sesses how well the Pareto Front solution represents the BPF. The maximum distance 

Figure 6. Pareto fronts produced by NSGA-II, NSGA-III and GDE3 at generations 5, 10 and 50.

5.1. Metrics

Several metrics exist in the literature that evaluate the performance of multi-objective
algorithms, including Generational Distance (GD), Inverted Generational Distance (IGD),
Maximum Pareto Front Error (MPFE), Hypervolume (HV), Maximum Spread (MS), and
others [30]. The optimal Pareto front is used to calculate most of the metrics. We employed
the Base Reference Front (BPF), which comprises the Pareto optimal solutions of 10 runs of
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the algorithms NSGA-II, NSGA-III, and GDE3, because we had no theoretical guarantee of
the best Pareto front.

The GD metric evaluates the distance between the solution Pareto front and the
BPF, with smaller values signifying better performance. It calculates the average distance
between any place in the BPF and the solution Pareto front’s nearest point. Since the IGD
metric is an inverted version of the GD, higher values are preferable. IGD specifically
assesses how well the Pareto Front solution represents the BPF. The maximum distance
between a point in the solution Pareto front and the nearest point in the BPF is measured
by the MPFE metric. Smaller numbers are preferred because MPFE represents mistake. HV
is computed against a reference point, rather than a reference front, that is dominated by
all solutions of the solution Pareto front, and measures both closeness and diversity. Larger
numbers are preferred for HV. Finally, MS indicates how well the solution Pareto front
covers the BPF, with higher MS values indicating better coverage.

In Table 4 metric values that were computed over 10 runs of each algorithm against
the BPF are presented. Best values across algorithms are indicated by bold style. GDE3
performs best according to MPFE, MS and HV metrics, since it manages to extend the
Pareto front to values of power greater than those of the two other algorithms.

Table 4. Performance Metrics for NSGA-II, NSGA-III and GDE3 (Population = 50, Generations = 50).

GD IGD MPFE MS HV

NSGA-II
Mean 0.0863 0.2380 8.3296 0.7398 38,026.42

SD 0.0073 0.0508 2.5134 0.0349 722.97
Best 0.0737 0.3158 5.3478 0.7652 38,566.79

NSGA-III
Mean 0.0576 0.4174 35.4863 0.7307 37,782.24

SD 0.0067 0.0223 2.5286 0.0264 600.21
Best 0.0518 0.4405 32.3415 0.7623 38,477.20

GDE3
Mean 0.0870 0.1121 6.3600 0.9743 41,234.90

SD 0.0124 0.0265 1.2441 0.0295 1227.58
Best 0.0740 0.1769 4.8380 1.0000 42,357.87

5.2. Solutions of the Multi-Objective Optimization Problem

It is well known that all points in the Pareto front correspond to optimal solution for
design variables. In Figures 4 and 5, the upper-right point corresponds to the optimal solu-
tion if power output f1 is set as a unique objective, while the lower-left point corresponds
to the optimal design variables if the mass f2 of the PEH is set as a unique objective. Any
other point in the Pareto front provides an intermediate solution that balances the posed
objectives f1 and f2.

Table 5 shows a few solution values together with their corresponding parameter
values obtained by the present approach. The rightmost column of the table indicates the
algorithm that provides the solution to the BPF.

Table 5. Some solutions belonging in optimal Pareto front.

Power Mass L* H* R Algorithm

283.46553 0.53482 0.62928 0.34647 310.01575 NSGA-III
284.36259 0.53595 0.62587 0.35000 325.36746 NSGA-II
310.98901 0.66365 0.99147 0.33902 63.05137 GDE3
320.36665 0.67724 0.99596 0.35000 69.58982 GDE3
322.27086 0.67842 0.99905 0.35000 76.01130 GDE3

As mentioned above, GDE3 achieves solutions that generate a power output greater
than that generated by NSGA-II and NSGA-III. As it may be seen, these maximum values
for power output correspond to a length of piezoelectric layers which cover the whole
harvester as well as to lower values of electrical resistance.
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Our experiments showed that the imposed constraint on bending stresses seem to
have no effect on the solutions provided by the optimization algorithms. Similar solutions
are obtained by excluding the stress constraints altogether. Nevertheless, for different
problem parameters (e.g., type of the piezoelectric material, geometric dimensions of the
structure, forcing term etc.) the proposed model can guarantee that the solutions provided
will always respect the stress limits of the manufactured energy harvesting system. Table 6
contains some solutions of the optimal Pareto front obtained in [14] where an additional
constraint on the mass of the system is imposed, namely f2 ≤ 0.3267. It can be seen from
that table, that the greater values for output power are obtained when the mass approaches
the upper limit of the imposed constraint.

Table 6. Some solutions belonging to the optimal Pareto front of [14].

Power Mass L* H* R Algorithm

165.71184 0.32666 0.24316 0.11184 139.61471 NSGA-II
165.57695 0.32656 0.22207 0.12203 160.53703 NSGA-III
165.27248 0.32619 0.20690 0.12934 190.74535 GDE3

A comparison of Table 5 to Table 6 shows that the values of the power outputs obtained
by the present approach are greater than that of [14]. However, due to the conflict between
mass function and power output function, these values correspond to greater values for
the mass. The multi-objective optimization procedure and the provided multiple Pareto-
optimal solutions give the designer the opportunity to make a better decision in selecting
one final optimal solution depending on the particular implementation requirements.

6. Conclusions

A multicriteria design optimization problem has been studied in this work in order
to achieve an optimal design of cantilever PEH. The harvester is considered as a bimorph
plate structure with two embedded piezoceramic layers in series connection. A finite
element model has been and verified with experimental results found in the literature. The
objectives taken into consideration are maximization of power output and minimization
of mass system. Maximum bending stress is considered as an additional constraint in
the design optimization. Three state-of-the-art multi-objective constrained optimization
algorithms (NSGA-II, NSGA-III and GDE3) have been applied optimize the geometric
dimensions the geometric dimensions and the electrical component of the PEH. Numerical
results show that all these algorithms start to converge to the base Pareto optimal front
around the 10th generation. Nevertheless, only GDE3 manages to extend to solutions
generating power greater than about 284 mW/g2. Performance of the three multi-objective
optimization algorithms (has been assessed by calculating several metrics demonstrating
the good quality of the solutions. Overall, the results show that GDE3 achieves solutions
that generate higher maximum power output and performs best according to MPFE, MS
and HV metrics, compared to the two other algorithms.
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