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Abstract: Game cheating is a common occurrence that may degrade the experience of “honest”
players. It can be hindered by using appropriate anticheat systems, which are being considered as a
subset of security-related issues. In this paper, we implement and test an anticheat system whose
main goal is to help differentiate human players from AI players. For this purpose, we first developed
a multiplayer game inside game engine Unity that would serve as a framework for training the
reinforcement learning agent. This agent would thus learn to differentiate human players from bots
within the game. We implemented the Machine Learning Agents Toolkit library, which uses the
proximal policy optimization algorithm. AI players are implemented using state machines, and
perform certain actions depending on which condition is satisfied. Two experiments were carried out
for testing the agent and showed promising results for identifying artificial players.

Keywords: security; artificial intelligence; infosec; reinforcement learning; agents; games; gaming; unity

1. Introduction

This research proposes a contribution to the domain of game anticheat systems through
the implementation of reinforcement learning agents. The goal of the research is to im-
plement and test a functional self-learning agent that is able to detect a nonhuman player
based on artificial intelligence in real time within the game.

The anticheat system here was built inside the third-person perspective game. The game
consists of two teams, where the player’s goal is to transfer five boxes to the opposite side
faster than the rival team in a limited time frame. Unity was used to develop the game,
and the implementation of the reinforcement learning agent was accomplished using the
Machine Learning Agents Toolkit (ML-Agents) library [1]. The main goal of reinforcement
learning is to have an intelligent agent that acts in the environment by maximizing its
reward. In order to accomplish that goal, the agent needs observational data and rewards.
If the agent does what it is required to do, it receives a positive reward, and a negative
reward if it fails to do so.

Reinforcement learning is advancing quickly as a field, and is used in many real-
world examples. The computer learns to drive a car on its own, helps with trading and
finances, processes natural language, and it is used in healthcare, games, robotics, and other
application domains [2].

2. Related Work

There are several papers related to cheat detection within multiplayer games using
machine learning. One of the papers studied only the logs of the game, which means it did
not intrude the privacy of the player, but studies on files that are written when playing on
the server. While reading logs, they must extract the most important properties on which
their model learns to use supervised learning [3]. Within this paper, collecting logs from
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the server are not needed. With reinforcement learning, the agent continuously studies all
players and, with the help of certain rewards, figures out who is cheating.

The following paper demonstrated cheating detection by using game outcomes [4].
The authors proposed a general framework for various types of games, where one needs
to know the current rank of the player. It is assumed that the cheating player has an
artificially increased rank, and with such an assumption, the authors tried to detect the
cheater by calculating probabilities. This is an interesting way of cheat detection, but it has
some limitations, for example, some games do not have ranks. In this paper, the proposed
solution is more generalized in a way that it can be used in any Unity game.

The paper [5] is about finding bots within the game Quake II by analyzing their
trajectories. The work is based on the fact that the player almost never uses a similar
or identical path, while the bot does. Using these settings, the authors tried to find the
difference between a human player and a bot. By training the reinforcement learning agent,
it is possible to detect a human player assisted by artificial intelligence. An agent can
understand that a player has much faster reactions than those of other players, that a player
has access to more data than other players have, and so on. It is necessary to properly set
the problem and the environment in which the agent learns. Players using illicit aids are
not detected within this work, but the agent can certainly be adjusted to find them.

Another cheat detection by using machine learning is performed in Unreal Tourna-
ment III [6]. The authors created a framework consisting of a server that collects data,
a preprocessing backend, and the frontend that analyzes the data. Supervised learning
was used with five different techniques: decision trees, Naive Bayes, random forest, neural
networks, and support vector machines. Results showed that the framework could handle
most of the test scenarios. There are some similarities with their paper and our research,
but since there are many data that a computer needs to process, a reinforcement learning
agent might prove better in some domains. The authors showed promising approaches for
cheat detection and the number of various techniques used for learning.

Khalifa, in his paper, analyzed cheating inside FPS games [7]. The chosen game was
Counter-Strike Global Offensive, where the main task is to find players that use aimbots.
To achieve this, data from each player are analyzed, generating features and utilizing
Markov models to see if the player is cheating. Since the main goal in this paper is to find
the player using the aimbot, it studies certain things on the basis of the player’s direction
of viewing. This method is specific because it only explores the player’s aim without any
other forms of cheating. As already said, in this paper, the agent only distinguishes a bot
from a human player, but can be adjusted to perform more complex cheat detection, such
as detecting aimbots and forbidden scripts.

Staying on the game Counter-Strike Global Offensive, Willman was trying to identify
aimbot players using neural networks [8]. Khalifa was analyzing logs from the game,
but with a different approach. The aim of his paper was to create a machine-learning algo-
rithm that would achieve cheat detection accuracy over 90%, but only 50% was achieved.
Some problems are similar to this paper, as he stated that more training data were needed
to achieve better results. When using reinforcement learning, the longer the training is,
the better the result. However, an agent with reinforcement learning should also be able to
detect more than just aimbots if that is intended.

Islam and others used another interesting way of finding cheats [9]. The goal was to
train a machine-learning model observing network traffic. Their dataset was also from
Counter-Strike, but 1.6 and not Global Offensive. In their experiments, they attempted to
find out if a player is cheating by aimbot, speed hack, or wall hack. Their paper covers a
slightly larger context than other papers do, considering they attempted to detect three
different cheats, but it is also similar to other papers because they are trying to determine if
a player is cheating using logs, while in this paper, a reward-driven agent is just dropped
inside the environment in which it needs to learn what its goal is. So, in order to do that
correctly, the length of training is important.
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Platzer, in his paper, created a sequence-based solution to detect bots inside massive
multiplayer online games (MMOG). The solution was implemented inside the game World
of Warcraft. The approach for finding a bot is based on a combat sequence when it fights
with an enemy. The bot probably uses repeated combat actions and the human player
probably does not. If someone uses the bot as a tool to achieve an advantage, their account
is not able to level up. Results showed that only 10 of 70 people leveled up in one month.
None of the human players was detected as a bot, which is impressive [10]. Results show
that a sequence-based solution can reliably differentiate the human player from the bot,
and the importance of bot detection in some multiplayer games. This algorithm cannot be
upgraded to detecting other cheats, but a similar solution can be used in other games in
order to detect bots. The approach of this paper is that the agent needs to learn by itself
what it needs to do and how. Because of that, if training is not long enough, the result could
be a bit worse, but it is surely able to perform its task.

The following paper did not address finding cheats, but focused on training the rein-
forcement learning agent to play the game Doom. To allow for an agent learn, the authors
used positive rewards for kills and object pickup, and negative rewards for suicide, losing
health, and losing ammo (shooting). After configuring the hyperparameters, the training
started, and after training for 65 h, significant results were achieved [11]. Rewards need to
be properly determined, so that the agent can learn more efficiently. In this paper, the agent
uses simple rewards, where positive reward are given if the agent correctly distinguishes a
bot from a human player or human player from a bot, and a negative reward if the agent
does it wrong. Naturally, the longer the training is, the better the final results.

3. Methods and Implementation

While creating initial sketches of the application and contemplating about implement-
ing reinforcement learning, we created a simple game in which reinforcement learning
agents would be implemented. In short, there would be a security agent who could
distinguish a bot from a human player. Implementation steps were the following:

• the development of a multiplayer game;
• the implementation of state machines (bots);
• the implementation of security agents using ML-Agents.

3.1. Game Implementation

The first steps in developing a simple game without complicated logic serve as a
good template for an agent to learn. This concept of an agent can be implemented in any
Unity game, but for each game, the agent needs to be trained. The game is called “Courier”
and is a multiplayer game that consists of server and client sides tested only on Windows
platforms and a local area network. The main goal of the game was to transfer five boxes
to the opposite side faster than the rival team. One round lasts 185 s, and if neither of the
teams transfers five boxes in that period, the winning team is the one that carried more
boxes. If the score is even between teams, the result is a draw. The map is mirrored and
contains a water and maze area. If a player falls into water, they respawn at the starting
location. For additional complexity, artillery was added on each side that can hit players
from both teams. If the player is hit by a missile, they are respawned. The maximum
number of players is 10 (5 per each team), and the number of boxes is 12 per team. If the box
falls into the water or out of the map, it respawns after two seconds. Players are randomly
spawned at certain locations near their base.

The map was created using the libraries ProGrids [12] and ProBuilder [13] inside
Unity. These libraries allow for the easy creation of maps and their mirroring. There are
no materials on the map, but only on the required elements like player, boxes and similar.
Controls are simple, using W, A, S and D for movement, SHIFT for faster running, and the
left mouse click for picking up and dropping boxes. Players cannot collide with each other,
but boxes can collide with other boxes and missiles. Figure 1 shows the game map and an
in-game screenshot.
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Figure 1. The game map (left) and an in-game screenshot (right).

3.2. Implementation of Bots

After the new game had been developed, bot implementation was required. For this
purpose, state machines were used where the bot has a certain number of states, and upon
completion of one state, it passes to another state [14]. All transitions between bot states
are shown within Table 1.

Table 1. Transitions between bot states.

No. Current State Next State Condition

1. Search Go toward box If box found
2. Go toward box Search If stuck for more than 0.5 s
3. Go toward box Pick up the box If near box
4. Pick up the box Search If box is not picked
5. Pick up the box Go to the destination If box is picked
6. Go to the destination Drop the box If arrived at the destination
7. Drop the box Search If not carrying the box
8. From any state Dead If health is zero or less than zero
9. Dead Search If health is greater than zero

Each bot has six states. The first state when spawned on the map is ‘Search’. In this
state, the bot checks which box is the closest. When it finds the box, the condition ‘If box
found’ is satisfied, and the bot goes in next state, which is called ‘go toward box’. All bot
movements are produced by a Navigation mesh agent (NavMeshAgent) that is attached
to each bot, allowing for it to travel through a baked map [15]. If the bot is stuck or does
nothing at the state ‘go toward box’ for more than half of a second, it starts searching for
another box. If close enough to a box, it picks it up. Sometimes it happens that the bot just
starts to pick up the box, but before someone else takes it, which results in blocking the bot.
Therefore, transition number 4 is implemented, where if the bot failed to pick up the box, it
starts to look for a new one. After the bot manages to pick up the box, it moves to condition
‘go to the destination’. The destination is the area where the box needs to be placed in order
for the bot to win one point for its team. When it reaches its destination, it enters the state
‘drop the box’ and wins a point for the team. When the bot drops the box, it goes to the
‘search’ state and everything repeats.

While in any state, a bot can die from missiles or by falling down into the water. If the
bot has zero or less health, it goes to the ‘dead’ state. After respawning, it return to full
health and transitions to the ‘search’ state.

3.3. Implementation of Security Agents (ML-Agents)

The implementation of security agents is achieved using ML-Agents, which is an
open-source library for Unity based on Pytorch. According to the official documentation,
there are three supported reinforcement learning algorithms: proximal policy optimization
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(PPO), which is used in this paper, soft actor-critic (SAC), and multiagent posthumous
credit assignment (MA-POCA) [1].

3.3.1. Proximal Policy Optimization

Proximal policy optimization is one of the most successful algorithms in reinforcement
learning [16]. The algorithm uses a neural network to approximate an ideal function that
maps the agent’s observations to the best action that the agent can bring in a given state.
The PPO algorithm is implemented within TensorFlow that communicates with Python
processes [17]. More specifically, this algorithm serves to optimize step updates within
a gradient descent, where it was proven to be a better solution than a standard gradient
descent. It allows for more stable and faster training [18]. More about the configuration of
PPO algorithm can be seen in Section 3.3.4.

3.3.2. Observations

Each agent is assigned to each player, but all agents share the same “brain”, meaning
that they are learning one from another. If one agent learns something on the certain player,
the other agents use it [19].

In order to allow for a security agent learn, it needs to observe the environment and
players. A reward-driven agent is able to reach decisions on these observations. On one
player, the agent next observes:

• local position;
• local rotation on Y axis;
• velocity;
• is player carrying a box;
• box positions of your team and rotations;
• blue team score;
• red team score

Bots and players are implemented in such a way that they can be recognized within the
server, but the agent only receives movement data from the player, regardless of whether
he is a bot or not, and according to this information, the agent must learn the difference on
its own.

3.3.3. Rewards

The agent uses discrete actions, meaning that only three possible decisions are avail-
able. Those decisions are in values of 0 (true), 1 (neutral), and 2 (false). If the agent marks
the player with decision 0, then it concludes that the player is a bot. Decision 1 states that
the player is neither a bot nor a real player, giving a neutral decision. Otherwise, if the
agent reaches decision 2, then it concludes that the player is a human player.

In order to allow for the agent learn, it is necessary to provide rewards. An agent’s
main goal is to maximize the reward. If an agent concludes that the human player is indeed
a human player, it receives a positive reward (+1), but if it concludes that the human player
is a bot, then it receives a negative reward (−1). The same works for the bot: if the agent
reaches a decision that the bot is a bot, it receives a positive reward (+1); if it concludes that
the bot is a human player, it receives a negative reward (−1). If the agent chooses to remain
neutral, it is not rewarded. The agent can wrongly identify a bot as a human player (false
negative) or a human player as a bot (false positive). When the agent initiates one of these
conditions, it receives a negative reward, steering it away from such assessments. If the
agent correctly identifies a human player or a bot, it receives a positive reward, and there is
increased tendency to repeat such actions.

3.3.4. Training Configuration

A basic configuration is needed before proceeding to training. This is achieved using
a YAML configuration file that contains information about the used reinforcement learn-
ing algorithm and its parameters, which are analyzed in the following sections. It was
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important to correctly adjust the parameters, because training might otherwise not have
given results consistent with our goals. While testing the training, several configurations
were conducted. The main goal was to straighten the line of cumulative reward as much as
possible, so that there were no excessive deviations from the curve. The main reason for
this is more stable training updates, which allow for better training efficiency. After a few
versions of configurations, the following was created and used in training.

behaviours:
ACSystemDiscrete:
trainer_type: ppo
hyperparameters:
batch_size: 32
buffer_size: 10240
learning_rate: 0.0003
beta: 0.005
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear

network_settings:
normalize: false
hidden_units: 128
num_layers: 2
vis_encode_type: simple

reward_signals:
extrinsic:
gamma: 0.99
strength: 1.0

max_steps: 500000
time_horizon: 64
summary_freq: 10000

The mostly adjusted parameters were batch size, buffer size, learning rate, and beta.
ML-Agents have typical range values for each parameter, so some of them were left as
default. ACSystemDiscrete is the name of the YAML file configuration that needs to be
equal to 1 inside Unity. The next parameter is trainer type, which shows the used algorithm,
in this case proximal policy optimization (PPO). Parameter batch size is the number of
experiences in each iteration of the gradient descent. Several changes were conducted,
but leaving it at the default value proved to work best. Since buffer size needs to be multiple
times greater than batch size, after some testing, it was set to 10,240 and proved to be the
most stable during training. Buffer size is the number of experiences that must be collected
before updating the policy model [20]. While testing, entropy was monitored all the time,
which shows the randomness of the agent actions [21]. If entropy is high, the agent is
conducting random actions in order to conclude and learn something, but if entropy stays
high all the time, the agent is not able to learn anything from it. Because of that, parameter
beta needs to be properly set since it shows the strength of the entropy regularisation.
The last one edited was the learning rate, showing the strength of update for each gradient
descent step [20]. After testing out the parameters, the training of agent was able to start.

3.3.5. Description of Agent Decisions

Above every player within the game world, there is a description of agent decisions.
In the first row, the latest agent decision is written (true, neutral or false) and in the
second row is a number which represents the percentage of player cheating. The last
3000 decisions from the agent are taken, and only the number of positive decisions is
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extracted. For example, if an agent has marked a player with a positive decision 2700 out
of 3000, the following calculation gives the percentage of cheating on that player.

2700
3000

∗ 100 = 90% (1)

Therefore, the probability of cheating is 90%, and it can almost certainly be concluded
that the player is a bot. Since the percentage varies all the time, each trained model has a
representative result that is taken as the mean value of ten rounds. A percentage is taken
each second, and the mean value is calculated at the end. This description is only shown at
the server side of the game and is not visible to the players.

3.3.6. Testing

Since the training is a time-consuming process, it is important to ensure that the game
functions properly, and that the agent can perform its activities. ML-Agents could imple-
ment a heuristic where the user controls the agent by testing its functionalities. Keyboard
controls were assigned to the agent and after testing out the decision-making process,
and ensuring that everything was working properly, the experiments were initiated.

4. Experiments

All experiments were monitored by Tensorboard, which enables the continuous obser-
vation of statistics of the model and was mostly used during configuration of the YAML
file in order to get better results. Each training was analyzed in the next sections using
Tensorboard [22].

Training was performed in two parts, 1v1 and 2v2. For training initialization, a com-
mand line program called Anaconda was used, allowing for simple package manage-
ment [23]. In order to start training in ML-Agents, one command was used inside Anaconda:

mlagents-learn config/ppo/ACSystemDiscrete.yaml –run-id=ACS_RLU_v0.72
–time-scale=1

The first parameter is the path to the YAML file and the second one is the ID of the
run. Each run has a unique ID that is shown inside the Tensorboard. Moreover, there are
certain parameters that can be added, for instance, the time scale that allows for training at
normal speed. By default training, time scaling is set at value 20 and accelerates the process
of training [24]. In this case, this is not desirabl, because human players are participating
in training.

After the end of each training, the model is generated with file extension ONNX. This
file can be inserted in Unity, allowing for an agent to work in production. Generated models
are used later for result evaluation.

4.1. Training 1v1

In the first training, there was a bot in the blue team, and a human player in the red
team. No swapping between teams was made during the training. It lasted for 1 h 51 min
and 17 s, and the cumulative reward is shown in Figure 2.

With almost every step, the agent increased the reward, meaning that it acquired some
level of knowledge at the end to distinguish the bot from the real player. The agent started
with the negative reward, because it was randomly trying to take actions. After the initial
tryouts, the reward increased steadily every 10,000 steps.



Information 2022, 13, 173 8 of 12

Figure 2. Cumulative reward of 1v1 training (Tensorboard).

4.2. Result Evaluation for 1v1

In order to obtain representative results from the model, five normal games were
played; afterwards, the players swapped the teams and played five more games. While
training, a human player was inside the red team and a bot in the blue team, and in that
order, the first test was carried out. After that, player and bot changed teams, and the
second test was performed. Both tests are shown in Table 2.

Table 2. Result of 1v1 training.

Blue Team Red Team

Player Cheating
Percentage Player Cheating

Percentage

Test 1 Bot 84.15% Person 12.18%

Test 2 Person 71.92% Bot 6.34%

For Test 1, the cheating percentage for a bot was 84.15%, while for a real player it
was 12.18%. Since the training was short, the obtained results were promising, as the
agent could distinguish a bot from a human player. However, within Test 2, the cheating
percentage of the human player in the blue team was 71.92%, while that of the bot in the
red team was 6.34%. This indicated that the agent was not working properly. The reason for
this was because training occurred only when the player was in the red team and the bot in
the blue team. Therefore, the agent concluded that the real player would most certainly
play in the red team, and the bot in the blue team. The bot in the training was also only
using one side of the map, which was the closest path to score for its team, while the real
player was using multiple paths. Because of that, if the real player went to the side on
which the bot mainly was, the agent would mostly mark him as the bot. For these reasons,
it was necessary to change the way of training.

4.3. Training 2v2

Within this training, there was one human player with one bot in the blue team,
and one human player with one bot in the red team. The same training model was used,
and the training continued. So, the cumulative reward of both training is shown in Figure 3,
where the first training is marked with blue and the second training with red.
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Figure 3. Cumulative reward of 2v2 training (Tensorboard).

The start of the 2v2 training was at 130,000 steps. Shortly after, the cumulative reward
fell to −227.5, meaning that the agent found itself in a new environment where more
players existed. Quickly after that, the reward started to climb continuously, and after
250,000 steps, it was positive. This training lasted for 3 h 26 min and 56 s with 340,000 steps
and a cumulative reward above 100.

The cumulative reward in 1v1 grew faster because the agent had a clear situation,
where one bot was in the blue team and one person in the red team. In 2v2 training, it was
a bit more complicated to distinguish the person from the bot because the walking path of
the person interfered with the bot’s path.

Figure 4 shows parameters of beta and learning rate. They both continuously de-
creased, meaning that the agent was continuously learning in both training without ma-
jor exceptions.

Figure 4. Beta (left) and learning rate (right) (Tensorboard).

The random actions of the agent are shown in Figure 5.
After 1v1 training or 130,000 steps, entropy was at the lowest point, meaning that

agent decisions were not random. When 2v2 training started, the agent’s rewards dropped
really quickly, so it needed to change its behavior. Because of that, more random actions
were taken in order to find a pattern in the behaviour of players. After 250,000 steps,
entropy began to fall, meaning that the agent gained certain knowledge to distinguish bots
from real players.
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Figure 5. Entropy (Tensorboard).

4.4. Result Evaluation for 2v2

Same as for 1v1 result evaluation, ten games were being played. In the first test, five
games were played and then, after the players had swapped teams, another test with five
games was carried out. Tests are shown in Table 3.

Table 3. Result of 2v2 training.

Blue Team Red Team

Player Cheating
Percentage Player Cheating

Percentage

Test 1
Person 1 28.98% Person 2 14.28%

Bot 1 38.43% Bot 2 67.78%

Test 2
Person 2 17.90% Person 1 31.72%

Bot 2 40.54% Bot 1 62.61%

From the tests, it can be concluded that the agent had a certain ability to distinguish
the bot from the human player. The main problem was within the blue team. Since 2v2
training continued from 1v1, and the bot played on the blue team during 1v1 training, the
performance of the blue team was less effective than that of the red team. If the training
had lasted for longer or if had not continued on 1v1, these results would have certainly
been better. However, inside the red team, the percentage of cheating for bots was more
than 60%, while for human players, it was below 32%.

One of the reasons why the percentage of human players differed is because the person
in the red team (Person 2) was more familiar with the game, allowing him to play much
faster than the person from the blue team (Person 1). Since Person 1 had more similar
movements as bots in the beginning, the agent increased the cheating percentage.

5. Discussion

According to the results of this paper, the main goal was achieved: to develop an agent
that is able to identify a human player from a bot. It is possible to configure this kind of
agent in order to find other ways of cheating, such as finding the players using illicit aids
(scripts). The agent could also have more than one goal, such as distinguishing bot from the
human player and detecting the aimbot at the same time. in order to obtain better results
from the training, the agent can be improved by finetuning the hyperparameters of the
YAML file. The agent configuration that was used within this paper could be used in other
Unity games, but at this stage, the agent would need to be retrained for each game instance.
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One of the goals of related future research would involve a more general solution that
could be transparently applied in more than one game. At this stage of research, however,
the proposed solution was implemented as a proof of concept tied to a single domain,
but with a tangible potential to continue and build more scalable implementations from
this point. Moreover, it would be interesting to explore the application of the proposed
solution to other, seemingly disjointed areas of research, where there is a need to identify
some sort of anomalous behaviours or patterns, or differentiate between two types of
certain dynamics.

6. Conclusions

With the continuous growth of the gaming industry, security demands are also on
the rise. Gaining an advantage over other players is always the goal of a multiplayer
game, but when proven difficult, some players turn to illicit ways. One of the possible
scenarios is to create an artificial-intelligence entity that can play the game instead of a
human player. The computer can play day and night without the need to rest. For such
scenarios, we implemented an anticheat system based on a reinforcement learning agent,
with the main goal of detecting bots among human players. The system was tested in the
Unity environment; the game Courier was developed solely for this purpose.

In a relatively short time, the agent was able to distinguish the bot from the human
player: it took around five hours of training to achieve these results. To boost the perfor-
mance of the agent, more time would be needed for the training itself. With the currently
trained model, it can be concluded that a player is a bot if the percentage of cheating is over
38%; otherwise, if it is lower than 32%, then the player is not a bot. These two values are
close to each other, but by only looking at the red team, a player is a bot if it has more than
60% cheating percentage. The training would have had significantly better results if it had
not continued from the initial training, which biased the final results.

One of the disadvantages of the proposed approach is that it takes time for an agent to
be able to determine a bot from a human player with a high probability. This is probably
the major restriction, because a reinforcement learning agent at the beginning “does not
know what to do”. The agent is reward-driven, meaning that it acts to maximize reward,
but in order to obtain better results, much trial and error is needed. Library ML-Agents
only exists within Unity and cannot be used inside any other game engine.

The next step for improving the proposed approach would include the training of the
agent for a longer time and with larger number of players. In this way, the agent would
have more data from the players, allowing for it to distinguish real players from bots with
higher probability. In further research, the agent domain should be expanded to detect
players that are using cheats such as scripting, aimbots, and other exploits. Since cheating
is increasingly advanced, the approach including a self-learning agent might prove efficient
for finding cheaters.
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