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Abstract: The weigh-in-motion (WIM) system weighs the entire vehicle by identifying the dynamic
forces of each axle of the vehicle on the road. The load of each axle is very important to detect the
total weight of the vehicle. Different drivers have different driving behaviors, and when large trucks
pass through the weighing detection area, the driving state of the trucks may affect the weighing
accuracy of the system. This paper proposes YOLOv3 network model as the basis for this algorithm,
which uses the feature pyramid network (FPN) idea to achieve multi-scale prediction and the deep
residual network (ResNet) idea to extract image features, so as to achieve a balance between detection
speed and detection accuracy. In the paper, spatial pyramid pooling (SPP) network and cross stage
partial (CSP) network are added to the original network model to improve the learning ability of the
convolutional neural network and make the original network more lightweight. Then the detection-
based target tracking method with Kalman filtering + RTS (rauch–tung–striebel) smoothing is used
to extract the truck driving status information (vehicle trajectory and speed). Finally, the effective
size of the vehicle in different driving states on the weighing accuracy is statistically analyzed. The
experimental results show that the method has high accuracy and real-time performance in truck
driving state extraction, can be used to analyze the influence of weighing accuracy, and provides
theoretical support for personalized accuracy correction of WIM system. At the same time, it is
beneficial for WIM system to assist the existing traffic system more accurately and provide a highway
health management and effective decision making by providing reliable monitoring data.

Keywords: weigh-in-motion; truck tracking; vehicle state; information extraction; computer vision

1. Introduction

In the past decades, road and bridge collapse accidents have occurred in many coun-
tries. Especially in those countries where overload monitoring and control systems are not
well developed, these accidents pose a threat to both public infrastructure and personal
safety, and the most important cause of such accidents is the overweight of trucks, which
leads to the collapse of roads and bridges due to overload bearing [1–3]. The collapse
of the Porcavella Viaduct in Genoa, Italy, showed that a good structural design is not
enough to guarantee the longevity of a bridge. It should be continuously monitored in its
operational condition during use to verify that it can carry existing traffic. This will enable
the timely detection of damage and defects and the development of maintenance plans
to ensure the safety, efficiency and sustainability of the infrastructure [4]. Truck weight
monitoring is commonly done using static weighing, whose biggest drawback is that it
is slow and prone to traffic congestion [5]. Currently, the most promising technology is
weigh-in-motion (WIM), which is mainly used for non-stop detection of road vehicles and
off-site enforcement [6]. The WIM system can complete the weighing of the whole vehicle
during the normal driving process of the vehicle, but in the actual engineering application,
the system also reveals many problems, such as susceptibility to the driving state of the
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vehicle, low weighing accuracy and poor concealment of the system. Therefore, it is crucial
to analyze and optimize the accuracy of the WIM system.

In many countries, complex safety monitoring systems have been installed on many
bridges and highways. The WIM system is widely used on bridges and highways to
monitor the individual axle weight, total weight, quantity and speed of vehicles [7], and the
system is able to complete vehicle weight detection effectively and quickly and accurately.
In response to the problem of improving the accuracy of the WIM system, it is usually
optimized in two aspects: the hardware part, improving the structure of the load cell, the
processing process and the way it is arranged on the road surface to improve the accuracy
and stability of data acquisition. Zhao [8] analyzed in detail the selection of WIM sensor
materials and the design of the structure, and the final structural form and organization
of the multi-cell WIM system is given by the determined design index. Dolcemascolo
et al. [9] focused on the optimization of the layout configuration of the multi-cells and
the development of algorithms to correct the weighing accuracy. In the software part, a
high-precision weighing algorithm is designed for data processing to eliminate problems
such as low accuracy due to other influencing factors, such as temperature effects, vehicle
speed, load frequency of the sensors, road level and vehicle driving condition. Studies
have been carried out from the analysis of the thermal performance of the sensors [10],
the effect of temperature and speed on the error of WIM systems using piezoelectric
sensors [11,12]. Tan et al. [13] established a gray neural network model with vehicle speed,
acceleration, and weighing residual sequences as input quantities, which enabled the
weighing accuracy level of the system to reach the level 1 index and realized the high
accuracy processing of weighing data. Xiang et al. [14] investigated the correlation between
the output voltage and the applied force of the piezoelectric transducer by establishing
a theoretical model with a multilayer structure and proved that the load frequency is
an important factor affecting the measurement accuracy of the transducer. Cheng [15]
proposed a new adaptive weighing system using a neural network-based adaptive variable
step LMS (least mean squares) algorithm to filter the noise due to vehicle speed in the
WIM signal. Faruolo et al. [16] developed a nonlinear computational multi-mass spring
model aimed at eliminating the “wobble effect” in the case of liquid transport caused by
the movement of the center of gravity on the accuracy of the WIM system. Zhang et al. [17]
proposed a signal processing-based approach to develop a vehicle WIM system based on
a Hopfield neural network adaptive filter. The system is adaptable, accurate and fast for
different vehicle models. McNulty et al. [18] investigated the effect of temperature on the
uncertainty of weighing results in WIM systems. The study showed that the accuracy
of polymer piezoelectric sensors is relatively affected by temperature. If an appropriate
temperature correction algorithm is applied, it is able to reduce the uncertainty introduced.
In contrast, the quartz type load cell has a very small temperature drift due to the relatively
good temperature performance of the piezoelectric and dielectric coefficients of quartz,
and the accuracy of the sensor is almost independent of temperature. Many studies have
been conducted to continuously optimize the accuracy of WIM systems from different
influencing factors. Many of these studies input the vehicle speed as a major influencing
factor into the established network model, so as to eliminate the negative impact caused by
the vehicle speed. However, these input speed data are the average speed of the vehicle
through the WIM area, and for vehicles with small body lengths, the average speed can
completely portray the state of each axle as it passes through the area. And when large
trucks pass through, due to its long body (the total length of 6-axle vehicle and cargo is
more than 18.1 m), the speed of each axle through the weighing area will have a large
difference (the vehicle center of gravity moves back and forth), the average speed will not
be able to accurately portray the state of the vehicle but will affect the weighing accuracy
of the system.

To address the above problems, this paper proposes to optimize the network structure
based on the YOLOv3 network model to improve the detection accuracy and real-time
performance. The tracking algorithm based on target detection is used to realize the
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extraction of trajectory and speed information of vehicles in WIM area, and then analyze the
impact size of vehicles with different driving states on weighing accuracy. The experiments
prove that the combination of the method and WIM system provides a reference for an
adaptive personalized WIM accuracy correction system.

2. Weigh-in-Motion System Framework

The WIM system is commonly used in practical projects such as truck overload
detection and structural health monitoring and is a technology that can automatically
identify and detect the weight of vehicles traveling normally on a roadway or bridge [19].
The system has unique advantages such as fast weighing speed and easy operation, which
is important for rapid assessment of overload detection of trucks. The hardware layout of
the WIM system and the actual monitoring station diagram are shown in Figure 1. The
whole system deployed in the field consists of three main parts: a piezoelectric quartz-based
weighing system, a video acquisition system for traffic flow, and a data communication
and processing system. The weighing system is used to obtain the weight information of
vehicles on the road, with multiple rows of load cells installed in each lane. 4high-definition
cameras are installed on a T-frame 15 m in front and behind the weighing area to obtain the
traffic video data as the vehicles pass by. The data communication and processing system
is used to transmit and process real-time video and text data. In the system, machine
vision technology is used to obtain information about the vehicles (body color, license plate
number and model information). Both Zhou and Dan [20,21] proposed a new motion load
recognition system based on machine vision techniques. Experimental results demonstrated
that vehicle information can be easily obtained from roadside surveillance cameras and
verified the reliability and accuracy of the system. Ojio et al. [22] determined the position
and wheelbase of the actual vehicle from the surveillance video and successfully tracked the
motion of the vehicle by machine vision techniques based on the Lukas–Kanade method.

Figure 1. Hardware layout of weigh-in-motion system.

Many studies based on camera data contribute more to the WIM system to improve
the detection accuracy of vehicle information and thus the matching accuracy with vehicle
weighing data. The core task of this paper is to extract the driving state of the vehicle as
it passes through the weighing area. Through extensive data analysis, it is investigated
whether this affects the accuracy of the weighing system and the magnitude of the effect on
the accuracy under different driving states. The implementation of these tasks is described
in the following.

3. Methods
3.1. Problem Statement

Whether the driving state of the truck through the weighing area has a negative
influence on the weighing accuracy, it is necessary to accurately analyze the changes in
the driving state of the truck through the weighing area. This paper uses machine vision
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technology to extract the truck driving state information in the road monitoring video, to
solve this problem first need to be able to accurately detect the truck target on the road,
then frame by frame for target tracking, and finally in the image coordinate system and
the world coordinate system conversion can accurately extract the truck driving state
information in each frame. Thus, the extraction of the driving state information of trucks
passing through the weighing area is completed.

3.2. Model Formulation
3.2.1. Improved YOLOv3 Detection Model

To improve the speed and accuracy of the network in detecting vehicle targets, Wang,
Li et al. [23,24] incorporated an improved CBAM ( convolutional block attention module)
attention module, inverse residual network as the base feature extraction layer to further
enhance the network detection performance. In this paper, we add the spatial pyramid
pooling (SPP) network and cross stage partial (CSP) network to the YOLOv3 network
model to improve the learning ability of the convolutional neural network while making
the original network more lightweight and reducing the computational effort of the model.

CSPDarknet-53 is the backbone network, which is formed by the fusion of Darknet-53
network and CSP network. Darknet-53 network mainly consists of 53 convolutional layers,
and the speed of operation is accelerated by building a large number of residual blocks and
setting jump connections between convolutional layers, without pooling layer and fully
connected layer. CSP network structure is to split the original features into two parts and
perform tensor stitching on one part of the features and the other part of the features after
convolutional operation as the output. One part of the features is convolved, and the other
part of the features and the convolved features are tensor spliced as the output.

The CBL network is composed of Conv, the optimization function BN and the acti-
vation function Leakyrelu, and the CBL network is the basic unit of the vehicle feature
detection network.

The SPP network, called spatial pyramid pooling network, is a convolution kernel
sliding over the image, which has no relationship with the size of the input image to the
network, but only convolves feature maps of different sizes for images of different sizes.
As shown in Figure 2, the network first divides the input feature map into three different
sets of regular grids, and then extracts the features in the different grids of the division in
turn, one kind of feature for each grid, and finally the 21 extracted features constitute a
kind of 21-dimensional feature vector with three fixed sizes passed to the fully connected
layer, thus realizing that any size feature map can be converted into a fixed size feature
vector for output.

Figure 2. SPP network structure diagram.

The improved network structure mainly consists of CSPDarknet-53 feature extraction
network, CBL network, CSP network and SPP network. The surveillance video images
are used as the input of the network, and the CSPDarknet-53 feature extraction network is
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responsible for extracting the target feature information. the SPP network is responsible for
the fixed size processing of the feature vector. The target features to be detected are divided
into 3 different sizes of feature maps by feature fusion, and finally the 3 different sizes of
feature maps are detected. The improved network structure is shown in Figure 3.

Figure 3. Improved YOLOv3 network structure diagram.

3.2.2. Detection-Based Target Tracking Methods

Extracting the driving status of a vehicle through a weighing area requires the imple-
mentation of vehicle target tracking. The Kalman filter algorithm is used to predict the
position of the vehicle target that will appear in the next frame, which in turn calculates
the status information of the vehicle. Then the current video frame is detected using the
improved YOLOv3 vehicle target detection model to obtain the detection frames of all
vehicle targets on the road. The results of vehicle target detection and tracking are costed
using a fusion metric, which requires the calculation of not only motion similarity but also
appearance similarity to improve the accuracy of matching. Combined with the Hungarian
matching algorithm to correlate the vehicle detection and tracking results, the trajectory is
smoothed using RTS (rauch–tung–striebel), and finally the parameters of the model and
Kalman filter are updated to achieve continuous and stable tracking of the vehicle target.
The vehicle trajectory tracking process is shown in Figure 4.

In the tracking of vehicle targets, the detection results of vehicle targets in the current
frame and the tracking trajectories of existing vehicle targets are linked with the great
matching of bipartite graphs. The objective function of the binary assignment problem is
shown in Equation (1), where xi,j denotes the result of the i tracking trajectory assigned to
the j detection, and ci,j denotes the corresponding assignment cost.

min∑ ci,jxi,j
∑

i>0
xi,j = 1

∑
j>0

xi,j = 1

xi,j ∈ {0, 1}

(1)
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Figure 4. Vehicle trajectory tracking flowchart.

3.2.3. Coordinate Conversion

Extracting information about the vehicle’s driving status requires converting the pixel
coordinates in the image to world coordinates and calibrating the surveillance camera.
Xing et al. [25] used dynamic map convolutional neural networks to obtain the position of
the target in the point cloud for coordinate transformation under real working conditions.
Camera calibration often uses self-calibration techniques based on the extended Kalman
filter and the fundamental matrix [26,27].

In this paper, a GPS-based calibration method for camera parameters is used. In the
calibration process, GPS accurate coordinates are used instead of calibration templates,
which can effectively avoid the calibration errors caused by the low accuracy of calibration
templates. First, GPS data at four different locations on the road surface and the corre-
sponding image data are collected. Then, coordinate conversion is performed according to
the relationship between the GPS coordinate system and the world coordinate system to
obtain the coordinates of the four different locations in the world coordinate system and
the image coordinate system. Finally, the camera parameter matrix is solved according to
the camera imaging model.

Choose any point as the origin O, with the direction due north of O as the positive
direction of the x-axis, the direction due east of O as the positive direction of the y-axis, and
the vertical ground down as the z-axis. Establish a rectangular coordinate system as the
world coordinate system and convert the GPS coordinates of other points to this coordinate
system. Due to the high level of the pavement in front and behind the installation of the
weigh-in-motion system, this section of the pavement is specified here as plane z = 0. The
camera imaging model is shown in Equation (2).

si

 ui
vi
1

 =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 Xi
Yi
1

 (2)

where si is the scale factor, α is the coordinate representation of different positions in
the world coordinate system, β is the coordinate representation of different positions
in the image coordinate system, and M is the camera parameter matrix. The camera
parameter matrix M is solved by the direct linear transformation method based on the world
coordinate system and the corresponding image coordinates at the four known locations.

α =

 Xi
Yi
1

 (3)
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β =

 ui
vi
1

 (4)

M =

 m11 m12 m13
m21 m22 m23
m31 m32 m33

 (5)

As shown in Figure 5, the red points are the pixel coordinates after the projection
transformation, and the yellow points are the pixel coordinates of the road position points.
It can be seen from the figure that the red points and yellow points basically match before
and after the projection conversion. By actually measuring the distance between the four
points compared with the coordinates after conversion, the maximum coordinate error is
0.201 m, and the relative error is 1.3%. This is able to achieve the accuracy requirement for
the estimation of vehicle driving status.

Figure 5. Road surface Coordinate system and reference points.

4. Experimental Procedure and Results Analysis
4.1. Data Collection

Some images from the existing datasets PascalVOC2007 and PascalVOC2012 and the
surveillance video images from the WIM system of Tongchuan Super Control Point were
selected as the datasets for the vehicle detection model in the experiment. Matlab was used
to process the surveillance video into a single frame, remove the blurred images, and finally
use the LableImg tool to make the dataset in VOC format. The final experimental dataset
consists of 3306 images for trucks, 4205 images for cars, and 1853 images for buses. The
dataset is divided into training set and test set in the ratio of 9:1. Figure 6 shows some of
the image samples from the surveillance video of the WIM system.

The weighing data of the vehicles were collected from the WIM site of the truck for
overloading in Xiaoxi Village, Tongchuan City, which works around the clock. Since the
real weight of the truck on the road is not known, this paper takes the Jidong cement
tanker as the research object, such as the vehicle in the yellow box shown in Figure 6. Its
transportation company provided us with the real weight of this fleet of vehicles, and due
to the calibration settings of the weighing system, the weight of all monitored vehicles was
calculated at an average value of 17.5 tons.
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Figure 6. A sample of some of the images in the training dataset.

4.2. Analysis of Network Detection and Tracking Results

The hardware used to train the target detection model includes: Intel i7-9700 CPU@3.0
GHz, NVIDIA GeForce RTX 2080 Super 8 GB, 16 GB of memory, the vehicle target detection
program is based on the python Pytorch framework, and the training environment is
Windows 10 64 + Pytorch (GPU). During the training process of the target detection model,
the change of the model loss function is used to determine whether the detection model
converges or not. The Loss curve of the training process and the detection accuracy of the
van are shown in Figure 7.

Figure 7. Model training loss curve and detection accuracy of trucks.

From the figure, it can be seen that the model has a large loss value in the first 10 epochs
of training and the accuracy of vehicle detection is low, but the loss value decreases very fast
and the accuracy increases substantially. After 35 epochs of training, the accuracy improves
very slowly and the model gradually stabilizes. The improved YOLOv3 network model
in this paper has a high accuracy for truck detection, as shown in Figure 7, the accuracy
reaches 94.41%. As shown in Table 1. Although the accuracy is relatively similar to the
YOLOv3 detection algorithm, its recall rate and detection real-time have been improved to
a certain extent.
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Table 1. Performance comparison results of different detection algorithms.

Contrast Model Precision/% Recall/% FPS

YOLOv3 94.6 85.3 15.72
Improved YOLOv3 94.4 87.2 17.12

The trained target detection model is tested on the test set, and the detection effect of
9 consecutive frames is shown in Figure 8.

Figure 8. The detection effect of 9 consecutive frames.

Vehicle tracking and driving status information is shown in Figure 9. The weighing
monitoring area in Figure 9a is a rectangular box of 8 m × 15 m, and the weighing area is
a rectangular box of 8 m × 2 m. The points of different colors in Figure 9b represent the
trajectories of different targets driving. It can be seen from the figure that the tracking effect
of the vehicle is more accurate, and it can accurately capture the driving trajectory and state
information of the vehicle.

Thus, through the monitoring video of WIM system, the driving status information
of 467 such trucks through the weighing area is extracted, as shown in Figure 10 is the
drawing of the driving status information extraction effect of some trucks.

Figure 9. Vehicle tracking and status extraction results for weighing areas. (a) WIM monitoring area;
(b) Vehicle driving status information extraction.
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Figure 10. Extraction effect of driving status information of some trucks.

4.3. Analysis Results on the Influence of Vehicle Driving State on Weight Accuracy

As shown in Figures 11–13, the x, y coordinates represent the position coordinates
of the vehicle in each frame of the video, and the z coordinates represent the speed of
the vehicle in each frame of the video. The figure shows the change of driving status of
the vehicle from far and near through the weighing monitoring area. The 467 extracted
trucks of this type are numbered one by one in the chronological order of the records,
and Figures 11–13 show the driving state changes of nine different numbered trucks. For
example, (a) No.2 in Figure 11 is the driving state change diagram of truck numbered 2,
and the others in the same way. After observing the driving state of the vehicle in the field
and analyzing the video data, the driving speed of the vehicle through the weighing area
has different changes, which is shown on the coordinate axis as the change of vehicle speed
between x-axis−4 m and−2 m. x-y surface projection is the driving trajectory of the vehicle
in the monitoring area, and the small section of the yellow part of the trajectory is the
trajectory of the vehicle through the weighing area, which corresponds to the purple part
of the vehicle velocity. Classifying and analyzing all the extracted data, there are 3 different
driving states of the trucks passing through the weighing area, which are smooth state,
acceleration state and deceleration-then-acceleration state.

Figure 11. Steady state effect diagram. (a)No.2; (b) No.5; (c) No.11.
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Figure 12. Acceleration state effect diagram. (a) No.4; (b) No.9; (c) No.16.

Figure 13. First deceleration—then acceleration state effect diagram. (a) No.6; (b) No.13; (c) No.17.

According to the extracted monitoring video of 467 trucks of this type and the cor-
responding weighing data, after data comparison and analysis, we draw 2 conclusions
as follows:

(1) When the truck passes the weighing area in the smooth state and acceleration state,
its WIM result and static weight error is within 1.5%, indicating that the truck passes
the weighing area in this driving state and the WIM system can accurately detect the
weight of the truck.

(2) When the truck passes the weighing area under the state of deceleration and ac-
celeration, the WIM result and static weight have an error of 1–4 tons as shown in
Table 2 because the center of gravity has obvious backward and forward movement
in the weighing process. Therefore, the truck passes through the weighing area in
this driving state, which will have a negative impact on the weighing accuracy of
WIM system.

Table 2. Comparison of the data of vehicles passing through the weighing area in the state of first
deceleration and then acceleration (5 vehicles data, for example).

Time No. Weigh/ton WIM Weigh (ton) Error

3.18–10:02:58 6 17.5 16.0 8.6%
3.18–11:17:35 13 17.5 15.8 9.7%
3.19–09:52:31 17 17.5 16.2 7.4%
3.19–10:11:23 26 17.5 16.2 7.4%
3.20–15:23:52 31 17.5 14.5 17.1%

Take the example of a truck with No.17 that first decelerates—then accelerates through
the weighing area. By analyzing the driving status of the truck through the weighing area
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through video, the position of the truck on the scale and the corresponding driving speed
are determined. As shown in Figure 14a, the truck is constantly decelerating as it passes
through the WIM sensor, at which point the weight of the truck is transferred to the front
axle due to inertia. When the front axle of the truck passes through the weighing area to
complete the weighing, the deceleration of the truck causes the front end of the truck to
dip down, and at this time the weight readings of the back 3 axles are small, resulting in
a small total weight of the truck. As shown in Figure 14b, the image of this truck when
passing through the weighing area is recorded by the right camera.

Figure 14. The effect of the position and speed correspondence of the truck (No.17) on the scale.
(a) Map of the correspondence between the position and speed of the truck; (b) Map of the truck
passing through the weighing area.

As shown in Figure 15 is a comparison of the trajectory and speed of 10 trucks passing
through the monitoring area in the state of first deceleration—then acceleration, the arrow
to the left represents the trajectory of the truck, and the arrow to the right represents is
the speed of the truck. The rectangular part (x from −4 to −2) represents the trajectory
and speed change of the vehicle through the weighing area. It can be seen from the figure
that the corresponding trajectory points become more and more dense when the speed is
decreasing, but the trajectory basically remains stable. There are differences in the driving
speed of different vehicles, while there are also differences in the degree of deceleration of
different vehicles. Through the data comparison, it is found that: the degree of deceleration
of the vehicle into the weighing area until it leaves the weighing area also has a different
impact on the weighing accuracy.

Figure 15. Trajectory and velocity comparison diagram.

As shown in Table 3 below, statistical analysis is conducted on all the vehicle driving
status data and weighing data of vehicles passing through the weighing area under the
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state of deceleration and acceleration first. According to the degree of deceleration of
trucks passing through the weighing area, they are divided into three categories and the
corresponding weighing error range, and the number of vehicles with different deceleration
ranges in the detected vehicles is counted. Due to the limited data, the influence of weighing
accuracy is only studied for such trucks, and the suggestion of compensating accuracy is
given for vehicles passing the weighing area with different driving states. When such trucks
are detected passing through the weighing area, the WIM system is able to compensate
for the individual weighing according to the suggested compensation accuracy according
to their driving state, thus improving the weighing accuracy, and this method is able to
reduce the weighing error to less than 3%.

Table 3. Distribution of weighing accuracy for truck deceleration range.

Classification Deceleration Range (m/s) Weighing Error(ton) Number of Trucks Recommended Compensation Accuracy (ton)

1 1.5~3.9 1.0~1.9 177 1
2 3.9~5.9 1.9~2.9 99 2
3 5.9~8.5 2.9~3.9 34 3

4.4. Analysis of the Results of the Method Validation Experiment

In order to verify whether the proposed method is applicable to other types of trucks
and whether the driving state information of the truck extracted by the method is accurate
and can play a role in the accuracy correction of the WIM system. Taking a truck with a
weight of 36,380 kg as an example, the truck is driven through the WIM area with different
driving states. As shown in Figure 16, the effect of driving state information extraction of
the truck through the weighing area is shown.

The truck passes through the weighing area with different driving states for a total
of 10 times, and extracts different driving state information as shown in Figure 17a–j is
the 10 times verification experiment. The horizontal coordinate represents the position
change of the truck from far to near, and the vertical coordinate represents the driving
speed of the truck in each frame of the video. The road surface is installed with two rows
of weighing sensors, and the part of the dashed box is the driving state information of the
truck through the weighing area. The results of the validation experiment are shown in
Table 4. As the results of the initial experiments with cement tankers, the WIM system
is able to achieve high accuracy when the trucks pass the weighing area under smooth
and accelerated conditions. When the truck decelerates in the range of 1.5–3.9 m/s, the
weighing error will reach 1.0–1.9 tons. When the truck deceleration range is 4.0–5.9 m/s,
the weighing error will reach 2.0–2.9 tons. The experimental results show that the proposed
method can accurately detect other types of truck targets, can accurately extract the driving
status information of trucks passing through the weighing area, and can be applied to the
personalized accuracy correction analysis of WM system.

Table 4. Validation experimental results table.

Experimental Sequence Standard Weight (kg) Detection Weight (kg) Speed Change Value (m/s) Weighing Error (ton)

a 36,380 35,121 2.04 1.26
b 36,380 35,553 1.20 0.83
c 36,380 35,894 0.87 0.49
d 36,380 34,169 4.02 2.21
e 36,380 36,187 0.92 0.19
f 36,380 36,001 0.63 0.38
g 36,380 36,292 0.19 0.09
h 36,380 35,262 1.63 1.12
i 36,380 36,033 1.70 0.35
j 36,380 36,202 2.51 0.18
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Figure 16. Verification experiments truck driving state information extraction effect diagram.

Figure 17. Comparison chart of different driving states of the truck for the validation experiment.

5. Conclusions

Driving behaviors vary across drivers for the WIM system in terms of truck weight
detection accuracy. This paper proposes a YOLOv3-based truck driving state extraction
method, which adds a spatial pyramid pooling network and a cross-stage local network on
the basis of the original network to improve the real-time performance of model detection
while making the network more lightweight. Then Kalman filtering + RTS smoothing is
used to track and extract the driving state information of the truck. Finally, the impact of
different driving states on the weighing accuracy of the truck is statistically analyzed, and
the accuracy compensation value of the weighing system under different driving states
is given based on the available data. The experimental results show that although the
WIM system is corrected for accuracy before it is put into use, for 6-axle trucks with long
bodies, some of them cannot be weighed accurately due to the variable driving state of the
vehicle during weighing, which leads to the shift of the vehicle’s center of gravity back and
forth. The method in this paper shows effectiveness and superiority, and is expected to
be applied to real-time, personalized WIM system for condition monitoring and accuracy
compensation, thus improving the weighing accuracy of the whole system. It will be
more beneficial for WIM system to assist the existing traffic system and provide reliable
monitoring data for road health management and effective decision making. The next step
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of the study also needs monitoring data of other types of trucks to investigate whether
there are differences in the influence of different types of trucks on weighing accuracy.
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