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Abstract: Medical images of brain tumors are critical for characterizing the pathology of tumors
and early diagnosis. There are multiple modalities for medical images of brain tumors. Fusing the
unique features of each modality of the magnetic resonance imaging (MRI) scans can accurately
determine the nature of brain tumors. The current genetic analysis approach is time-consuming
and requires surgical extraction of brain tissue samples. Accurate classification of multi-modal
brain tumor images can speed up the detection process and alleviate patient suffering. Medical
image fusion refers to effectively merging the significant information of multiple source images of
the same tissue into one image, which will carry abundant information for diagnosis. This paper
proposes a novel attentive deep-learning-based classification model that integrates multi-modal
feature aggregation, lite attention mechanism, separable embedding, and modal-wise shortcuts for
performance improvement. We evaluate our model on the RSNA-MICCAI dataset, a scenario-specific
medical image dataset, and demonstrate that the proposed method outperforms the state-of-the-art
(SOTA) by around 3%.

Keywords: multi-modal medical image; image classification; brain tumor

1. Introduction

GLOBOCAN recently conducted a survey in 185 countries, reporting an estimation
of over 300 K new brain cancer cases and above 250 K new deaths in 2020 [1]. Among
the various types of malignant brain tumors, glioblastoma multiforme (GBM) is one of
the most deadly types, with a low survival rate and limited treatment options. In the
United States, the estimated number of GBM diagnoses is over 13 K, and the number
of deaths resulting from GBM is over 10 K per year [2]. GBM has been classified as the
highest-grade brain cancer (a grade five) by the World Health Organization. A combination
of chemotherapy and radiotherapy is a typical treatment following the removal of the
tumor by surgery. Radiotherapy can cause severe side effects since radiation could kill both
normal and cancer cells. Chemotherapy, on the other hand, works by placing a chemical
on the guanine DNA, preventing the replicating of new DNA and leading to cancer cell
apoptosis. However, it is known that chemotherapy can be ineffective due to an enzyme
named O6-methylguanine DNA methyltransferase (MGMT). The function of MGMT is
determined by its promoter methylation status. If the promoter region is methylated, the
enzyme transcription is affected, leading to potentially effective chemotherapy treatment.
Therefore, the MGMT promoter methylation status has become a prognostic factor, and a
predictor of chemotherapy response [3].

Invasive surgeries can be utilized to determine the status of the MGMT promoter
methylation. However, this approach, based on genetic analysis, is an iterative and time-
consuming process that requires surgical extraction of brain tissue samples and several
weeks of genetic characterization. In addition, the surgery itself may lead to side effects.
An alternative that does not involve surgery is to apply computer vision techniques to
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analyze the magnetic resonance imaging (MRI) data. Recent advances in deep learning
have achieved extensive success in a broad spectrum of domains [4]. With the continuous
efforts of MRI data collection and annotation, deep learning shows its potential in MGMT
promoter methylation detection by learning and extracting biomarkers and patterns from
MIR scans that are highly indicative of the methylation status. Thus, deep-learning-based
approaches have the potential to offer a non-invasive, efficient, and accurate alternative
with less patient suffering and more effective treatment for GBM.

MRI scans contain abundant data with a characteristic of multi-modality, which can
be and should be better exploited by deep learning algorithms. However, our investigation
of the literature shows that prior studies have not fully explored the usage of multi-modal
MRI data to detect MGMT methylation. Among the several studies [5–8] that considered
multi-modality, only a basic fusion strategy has been adopted, and there is a lack of in-depth
investigation for utilizing the multi-modality feature of MRI data for brain tumor detection.
Our study aims to fill this gap.

In this paper, we propose a novel deep neural network (DNN) architecture that
integrates three performance boosters, including a lite attention mechanism, a separable
embedding module, and a model-wise shortcut strategy. The three boosters are designed
to better mine multi-modal features and capture informative patterns to make a final
prediction. Our proposed model is lightweight and can effectively improve the model
performance. The main contributions of this study are as follows.

• We propose an attentive multi-modal DNN to predict the status of the MGMT pro-
moter methylation. In addition to a multi-modal feature aggregation strategy, our
proposed model integrates three performance boosters, including a lite attention mech-
anism to control the model size and speed up training, a separable embedding module
to improve the feature representation of MRI data, and a modal-wise shortcut strategy
to ensure the modal specificity. These joint efforts have improved the detection accu-
racy of our model by 3%, compared to the SOTA method. Experiments and results are
obtained on the RSNA-MICCAI 2021 dataset [9], which is a recently released dataset
with the most patients and MRI scans compared to existing datasets.

• We have made the project source code publicly available at https://github.com/ruyiq/
An-Attentive-Multi-modal-CNN-for-Brain-Tumor-Radiogenomic-Classification (ac-
cessed at 26 February 2020), offering a credible benchmark for future studies.

The rest of this paper is organized as follows. Section 2 reviews research work related
to fusion of multi-modal medical images. Section 3 explains our proposed model and
dataset. In Section 4, several experiments are conducted to evaluate the effectiveness of the
proposed model. Finally, in Section 5 we conclude the paper and provide future work.

2. Related Work
2.1. Detection of MGMT Methylation Status Based on MRI Data

Table 1 lists a collection of learning-based methods trained with brain MRI scans for
the classification of methylation status, which is usually treated as a binary classification
problem; namely, methylation vs. non-methylation. It is observed that both traditional
feature-based learning methods [5,10,11], such as SVM, RF, KNN, RF, J48, NB, and XGBoost,
and deep learning models [6–8,12,13], such as CNN and RNN, have been extensively
adopted to build classifiers. It is also noted that a lack of sufficient training data has been
a long-lasting challenge, limiting the power of deep-learning-based models. Most prior
studies have used data from the Cancer Genome Atlas (TCGA) database, which contains
MRI scans from fewer than 250 patients. The recent 2021 RSNA-MICCAI dataset [9] has
doubled the number of patients with data collected from multiple centers. This enhance-
ment can boost the quantity and diversity of data used for training deep neural network
(DNN) models in the area of methylation detection and potentially benefit the model per-
formance. Meanwhile, it is essential to utilize MRI scans with different modalities, which
provide more abundant image features and patterns to be learned by a model. It is found
that only half of the studies [5–8] have considered the multi-modality characteristic of the
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data. We argue that the multi-modal image features play a crucial role in building a more
accurate and robust model for MGMT methylation detection, which drives us to integrate
a multi-modal feature fusion strategy into the learning pipeline. Moreover, we propose
to adopt three performance boosters, including a lite attention mechanism, a modal-wise
shortcut, and a separable embedding strategy, which have not been seen in prior studies.

Table 1. A review of MRI-based learning models for the detection of MGMT methylation status.
The table includes the following abbreviations: dataset size (D.S.), multi-modality (M.M.), attention
mechanism (A.M.), modal-wise shortcut (M.W.S.), separable embedding (S.E.), support vector ma-
chine (SVM), random forest (RF), k-nearest neighbor (KNN), naive Bayes (NB), convolutional neural
network (CNN), and deep neural network (DNN).

Reference Year Model D.S. M.M. A.M. M.W.S. S.E.

[10] 2016 SVM, RF 155 7 7 7 7
[11] 2017 KNN, RF, J48, NB 86 7 7 7 7
[6] 2017 ResNet 155 3 7 7 7
[7] 2018 CNN+RF 133 3 7 7 7
[8] 2018 CRNN 262 3 7 7 7
[5] 2020 XGBoost 53 3 7 7 7
[12] 2020 Custom CNN 153 7 7 7 7
[13] 2021 MGMT-Net 247 7 7 7 7
Our work 2022 Custom DNN 585 3 3 3 3

2.2. Multi-Modal Learning on MRI Data

It has been shown both theoretically [14] and empirically [15,16] that models aggre-
gating data from multiple modalities outperform their uni-modal counterparts due to the
enriched features and patterns to be learned from the multi-modal data. The usage of
multi-modal learning has seen success in a wide range of learning tasks such as object
detection [17], semantic segmentation [18], video action recognition [19], and detection of
disease [20,21].

MRI data also present multiple modalities that can be extensively utilized for train-
ing DNN models. Several studies have developed various techniques to pursue better
predictive performance. Myronenko et al. applied AutoEncoder, which fuses the inputs
from different modalities [15] to achieve a better performance in 3D MRI brain tumor
segmentation. Tseng et al. proposed a deep encoder–decoder structure with cross-modality
convolution layers for 3D image segmentation [16]. Shachor et al. proposed an ensemble
network architecture to address the classification task by fusing several data sources [22].
The designed network consists of three different modality-specific encoders to capture
features of different levels. The proposed method focuses on two-view mammography,
which could be extended to multiple views and/or multiple scans. Nie et al. proposed
the use of fully convolutional networks (FCNs) for the segmentation of isointense phase
brain MR images. They trained one network for each modality image and then fused
their high-layer features for final segmentation, which uses different modality paths to
obtain the modality-specific features and then fuses the features to make final decisions [23].
Kamnitsas et al. fused the input modality-wise information directly [24]. They proposed a
dual pathway, 11-layer deep, 3-dimensional convolutional neural network for brain lesion
segmentation. They also devised an efficient and effective dense training scheme, which
joins the processing of adjacent image patches into one pass.

The aforementioned studies mainly use multi-modal MRI data to build DNN models
for the segmentation task. To the best of our knowledge, the usage of multi-modal MRI data
for the detection of MGMT methylation has not been seen. Moreover, the proposed learning
pipeline integrates three performance boosters to utilize better the extracted multi-modal
MRI features, which have not appeared in any prior studies we have investigated.
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3. Materials and Methods
3.1. Dataset

In this research, we focus on the RSNA-MICCAI dataset [9], a multi-center brain tumor
MRI dataset that comes with two tasks; namely, tumor segmentation and MGMT detection.
In this study, we only tackle the second one. In the dataset, each patient’s data is stored
in a dedicated folder with a five-digit identification number. Each sample folder consists
of four sub-folders corresponding to the four modalities of the MRI scans, including fluid
attenuated inversion recovery (FLAIR), T1-weighted pre-contrast (T1w), T1-weighted post-
contrast (T1Gd), and T2-weighted (T2), obtained from the video cut frames acquired by
imaging. Each modality (i.e., scan type) specifies a focus during imaging. For instance,
FLAIR captures the effect after cerebrospinal fluid (CSF) suppression, where liquid signals
such as water are suppressed to highlight other parts. T2-weighted, on the other hand,
highlights the difference in lateral tissue relaxation, and the combination of different effects
provides a comprehensive description of the lesion from multiple perspectives. Each
sample in the dataset is described by a quadruple of these four different imaging modalities.
Figure 1 shows the four modalities of a positive sample (Figure 1a–d) and a negative sample
(Figure 1e–h).

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1. Samples of MRI scans: (a–d) represent the FLAIR, T1w, T1Gd, and T2 modalities of a
positive sample, and (e–h) represent the FLAIR, T1w, T1Gd, and T2 modalities of a negative sample.

RSNA-MICCAI has 585 annotated samples, each corresponding to four modalities
containing samples ranging from a few tens to a few hundred. Each modality of a patient
consists of a sequence of MRI scans within a period of time. Figure 2 shows such an MRI
sequence of FLAIR scans (74 in total) for patient ten in the dataset. Compared with other
datasets used in prior studies in Table 1, RSNA-MICCAI contains a larger amount of data
and is a clearly labeled dichotomous dataset, which can better characterize the patient in
different imaging modalities and have better generalization. The number of positive MRI
scans is 3070, or 57.5%, and the number of negative samples is 2780, or 52.5%. The classes of
the dataset are relatively balanced. Table 2 reports the statistics of the number of MRI scans
for each modality. It is observed that the average number of scans for modality per patient
is in the range 127 and 171, which provides abundant information for pattern learning.
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Figure 2. A sequence of FLAIR scans for patient 10 in the dataset.

Table 2. Number of files for each scan type.

Scan Type FLAIR T1w T1wCE T2w

# files 74,248 77,627 96,766 100,000
Avg. # files per case 127 133 165 171

Figure 3 shows an intensity visualization of MRI scans for three random patients. The
charts are grouped by the four modalities. For each sub-chart, the x-axis represents the time
step, and the y-axis denotes an intensity score, which reflects the amount of information
expressed by the MRI scan at a time step. The intensity defines the shade of gray of tissues
or fluid, and different levels of intensity are encoded by different colors in the MRI scan.
The higher the intensity, the more white area in the scan; the lower the intensity, the more
black in the scan. Thus, gray encodes intermediate signal intensity. Intuitively, images with
higher intensity carry more expressive patterns that can be learned, and these images often
appear in the middle of the MRI sequence, as shown in Figure 2. It is also observed that
even for the same patient, the times of peak intensity for the four modalities vary. This
finding allows us to better pre-process the data by selecting the most informative scans
(namely, the ones with the highest intensity scores) for each modality to train our model.
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Figure 3. Intensity visualization. Subfigures (a–c) represent the intensity charts of the four modalities
for three randomly selected samples.

3.2. Learning Framework

Figure 4 illustrates the learning framework. To ensure the model effect and retain
the original input details, the output of attention is fused with the input through shortcut
connection and weighted summation, and the fused features are mapped to a more divisible
space by a smaller DNN module. Finally, the classification results are obtained by using
the LSTM structure. In this paper, four sub-structures, including multi-modal feature
aggregation, lite attention mechanism, separable embedding, and modal-wise shortcut, are
applied together to enhance the overall performance of classification.

Figure 4. The learning framework.

3.3. Multi-Modal Feature Fusion

The data of each modality are considered for modality-by-modality feature extraction
due to the significant differences in imaging principles. Each sample corresponds to four
images, namely fluid attenuated inversion recovery (FLAIR), T1-weighted pre-contrast
(T1w), T1-weighted post-contrast (T1Gd), and T2-weighted (T2), corresponding to modal1,
modal2, modal3, and modal4 inputs in the above figure.
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The feature maps F1, F2, F3, and F4, obtained through feature extraction from each
modality, are fused by the attention module to obtain the attentions that can fully describe
the overall information across the modalities.

Here, the specific form of feature extractor needs to be selected. Since the images of
each modality are 256*256 single-channel images with small scales, an overly complex
feature extraction process will greatly destroy the original information and make the
subsequent operation difficult. It is found that a simple single-layer convolution can be used
to obtain a balance between extracting features and preserving the original information.
Since the data of each modality have a different distribution, the feature extractor of each
branch does not share the weights.

To extract information from multiple perspectives, the subsequent attention module
still adopts the multi-head model. The number of heads is chosen to be 4, which is explained
below in Section 3.5.

3.4. Lite Attention Mechanism

Since each sample has four modalities, the data of each modality have a different
emphasis due to their different methods of acquisition. It is necessary to analyze each data
characteristic to decide how to fuse features from different modalities. The two commonly
used methods are as follows:

1. Fuse multi-modal data in the form of sequences and use recurrent neural network
(RNN) models for feature extraction. This operation requires traversing the input
from the first time-step to the last one, which is computationally expensive [25]. Even
though improved RNN variants such as LSTM [26] and GRU [27] can effectively
reduce the difficulty of parameter updates in training, the sequential arrangement of
different modal data introduces unnecessary sequential priors, which can force the
model to learn an unreasonable one-way information flow while understanding the
inter-modal relationships to fit the main features, affecting the effectiveness of feature
extraction [28,29].

2. Use the attention mechanism to fuse the features extracted from different modalities.
Attention can easily obtain global feature information compared to the sequential
models such as LSTM and GRU mentioned above, which can better obtain contextual
relationships and obtain an overall understanding of the input.

The attention mechanism was first proposed by the Google machine translation team
in 2017. It completely breaks away from the previous framework based on a recurrent
neural network and dynamically extracts the feature part that it cares most for from each
current input and fuses it to control the impact of all time-step features on the current
output through different weights [30]. A brief description of the attention mechanism is
given as follows. In each time step, the input obtained by the model consists of three parts:
the current query, different feature values, and the corresponding keys of the features.
The query is the object that the model needs for the current time-step, which may be a
concrete input or an abstract representation of the features extracted in the previous step.
To fully determine the important differences of features, an attention mechanism uses the
dot product of the query and key to calculate the weights of corresponding features. At this
point, the similarity between the query and key is measured by the dot product [31]. This
way of calculating attention weights is called dot-product attention. As such, we obtain the
following Equation (1) for calculation, where ki and vi are the input key and values. The
query at this point is denoted as q.

Attention(q, k, v) =
N

∑
i=1

qTkivi (1)

When the length of the vector becomes longer, the scale of its dot product result
also becomes larger. After the calculation through softmax, it reaches the saturation zone,
making the gradient smaller, which is not conducive to the model optimization. Therefore,
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before performing softmax, the inner product value is divided by the square root of the
length d, as shown in Equation (2).

Attention(Q, K, V) = So f tmax
(

QKT
√

d

)
V (2)

After a further examination of the equations above, it can be found that to perform the
dot product operation, the key used by the model, i.e., ki, and the query, i.e., q, need to have
the same dimensionality. The additive attention method is proposed to perform the weight
calculation on different occasions adequately. This method concatenates the input query of
length u and the key of length k. The resulting (query, key) pair is fed into a feedforward
neural network with a single hidden layer, and the value describing the degree of similarity
between the two is obtained by the sigmoid function and used as the weight [32].

In the above dot-product attention process, to calculate the weight corresponding
to the i-th input, two vectors of length d, query and ki, for the case of N time steps or N
different modalities, the number of parameters to be retained and trained is (N + 1)d. To
fully guarantee the relative importance of different inputs, the specific value of d cannot be
too small since it is challenging to train the model effectively in the case of insufficient data.

In this study, we propose a lite attention mechanism, which is a light weighted
improvement of the original attention mechanism, by directly modeling the weights of
different modalities, i.e., rewriting the attention formula to the following:

Attention(v) =
N

∑
i=1

wivi (3)

For the training process of wi, the number of parameters is reduced from (N + 1)d to
N, which significantly improves the training speed and generalization performance [33,34].
It does not cost much to train wi. We do not use a softmax function for normalization
and nonlinear processing before the weighted summation but achieve better results. Our
conjecture is that the simple scale variation corresponding to normalization can be adjusted
by the subsequent DNN embedding, while the parameters corresponding to formally
relative simpler binary classification problems can be directly derived by incorporating the
relationship of nonlinear mapping into the model structure.

3.5. Modal-Wise Shortcut

The features of each modal, after feature extraction and processing by the attention
modules, are represented with a highly task-relevant tensor, but the following fusion
process leads to a loss of image details that may be informative to the task, which may
further result in severe performance degradation for the prediction. Our solution is to
add a shortcut between the original input and the output of the attention module; namely,
a residual connection [4] for each modal. Bypassing all the convolution and weighted
summation, we keep and pass all the original detailed features in the network without any
loss, which significantly reduces the possibility of model degradation.

The feature map that is finally fed into the DNN embedding di can be represented as
follows:

di = Attentioni + modali (4)

where Attentioni is the ith feature map generated by the lite attention mechanism module,
while modali is the original input for the ith modal. Fusing these two, we obtain di, the
new feature representation of the ith modal. To ensure the feasibility of the operation,
the number of feature maps output by multi-head attention is set to be the same as the
number of modals; namely, four. This step is processed separately for each modal to avoid
cross-modal information interference, and the final improvement fully demonstrates the
effectiveness of this operation.
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3.6. Separable Embedding

A prior study named CLDNN [35] shows that mapping and projecting the extracted
features into a new separable space before feeding them into the detection head can
effectively boost the model’s accuracy. Inspired by this empirical finding, we adopt a
separable embedding strategy in our study. Specifically, a separate CNN is utilized again
to fuse the tensor produced from the previous module. We have evaluated two CNN
backbones to fill this role and report their effects in the next section. The output of this
module is given as follows.

fi = CNNSE(di) (5)

where CNNSE refers to the CNN that performs separable embedding; di and fi refer to the
input and output tensors of this module.

3.7. LSTM and Detection Head

The output of the separable embedding for each time step is then collected to form
a collection of sequential tensors ordered by the time step of the MRI scans. The tensor
sequence is then fed into a long short-term memory (LSTM) network, followed by a fully
connected layer and a sigmoid function layer as the detection head that outputs a value in
[0,1], indicating the probability of MGMT promoter methylation.

4. Experiments and Results

All experiments were implemented using Python. The adopted deep learning frame-
work is Pytorch 1.8.0. Experiments were run on a Windows workstation with an i7-10875h
CPU and a GTX2080TI GPU. Ten quartets were extracted from each original sample in the
RSNA-MICCAI dataset as a new dataset, and a total of 5850 samples were obtained. The
training and test sets were randomly divided according to the ratio of 8:2.

4.1. Evaluation Metrics

The primary metric of RSNA-MICCAI is the accuracy of the classification. We need
to accurately determine whether the input image is obtained from malignant brain tumor
imaging. Under the current scenario, the model should enhance the classification of positive
samples that threaten the lives of patients. At the same time, misclassifying a true negative
sample as a positive sample can lead to unnecessary surgery and post-operative torment
for the patient. We need to improve the accuracy of both situations. To optimize both
objectives simultaneously, the accuracy rate is used as the evaluation metric. The model
with minor misclassification and omission is chosen.

Acc =
TP + TN

TP + TN + FP + FN
(6)

in which TP (true positive) is the number of true positive samples; TN (true negative) is the
number of true negative samples; FP (false positive) represents the number of false positive
samples; and FN (false negative) is the number of false negative samples.

4.2. Baseline

We consider the following baselines in this study.

• ResNet by He et al. [4] is an effort to understand how deepening a neural network
can increase the expressiveness and the complexity of the network. It is found that
for DNN, if a newly added layer can be treated as an identity function, the deepened
network is as effective as the original one. This finding drives the development of
the residual block, which adds a shortcut connection to the layer output before the
activation function. The simple design allows a DNN to be trained more easily and
efficiently. ResNet was the winning solution for the ImageNet Large-Scale Visual
Recognition Challenge in 2015 and has been applied to numerous computer vision
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tasks with SOTA performance. Therefore, we consider ResNet a decent baseline. Our
empirical result shows that ResNet34 presents the highest accuracy. We thus use
ResNet34 to represent the baseline result.

• The EfficientNet [36] paper makes two major contributions. First, a simple and mobile-
size neural architecture was proposed. Second, a compound-scaling method was
proposed to increase the network size to achieve maximum performance gains. It is
suggested that to pursue better performance, the key is to balance all three dimensions,
including network depth, width, and resolution, during ConvNet scaling. Thus, the
authors of EfficientNet adopted a global scaling factor to uniformly scale the depth,
width, and resolution of the network. The scaling factor makes it possible to apply
grid searching to find the parameters that lead to the best performance. EfficientNet
offers a generic neural architecture optimization technique applied to existing CNNs
such as ResNet. It has shown superior performance in numerous tasks with SOTA
results, which is why we chose it as a strong baseline.

• The gold-medal-winning strategy was developed by Firas Baba, who open-sourced the
code at https://github.com/FirasBaba/rsna-resnet10 (accessed at 24 January 2020).
The final model of the winning team is a 3D CNN using the ResNet10 backbone with
the following design choices: BCE Loss, Adam optimizer, 15 epochs, a learning rate of
0.00001 (from epoch 1 to 10) and 0.000005 (from epoch 10–15), image size 256 by 256,
batch size 8. Each epoch took around 80 s on an RTX 3090. The author also reported
the best central image trick, which is a strategy to select the biggest MRI scan that
contains the largest brain cutaway view for training. In this study, we refer to the
model developed by Firas Baba as the SOTA since it was in first place on the contest
leader board.

4.3. Training Setting

The 3 × 3 convolution is used as the feature extractor for each modality, and each
modality uses its own feature extractor to obtain different features without sharing weights.
We choose Adam as the optimizer with a learning rate of 0.0001, and beta1 and beta2
values of 0.9 and 0.999, respectively. We set eps=1 × 10−8 to prevent the denominator from
being 0. Other parameter configurations are weight decay to be 0, batch size to be 8, and
binary cross-entropy with logits to be the loss function of the binary classification problem.
Several hyperparameters, including the learning rate, the batch size, and eps are tuned via
a five-fold cross validation to obtain the optimal values given a list of value choices for
each hyperparameter.

We also choose albumentation for data augmentation for the training dataset, with the
following configurations:

1. Horizontal flip with a probability of 0.5;
2. Random affine transformation configured as shift-limit = 0.0625, scale_limit = 0.1,

rotate_limit = 10 with a probability of 0.5;
3. Random contrast transformation with 0.5 probability.

4.4. Performance Evaluation

The accuracy of the evaluated models on the training set and the validation set is
demonstrated in Figure 5. Under all configurations in this experiment, after 50 epochs of
training, the models converge, and accuracy becomes stable.

https://github.com/FirasBaba/rsna-resnet10
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(a) (b)

(c) (d)
Figure 5. Training and validation accuracy to show an ablation study. Subfigures (a–d) represent the
four evaluated models with a booster added incrementally to the previous model.

Figure 5b shows the performance of adding the attention module only. The accuracy is
only improved to 56.74%. However, the accuracy curve converges slower and a noticeable
scale of oscillation appears in 20–30 epochs, which indicates that without adding other
modules to the fusion of the extracted features the model is not able to obtain effective
information. The training effect is poor, and the accuracy is not particularly satisfactory.

After adding two different separable embedding modules to the model, ResNet34
and EfficientNet [36], it can be observed that both accuracy and the convergence speed are
greatly optimized, which fully illustrates the necessity of separable embedding. Specifi-
cally, the improvement of the performance by adding ResNet34 is more obvious and the
convergence speed is also faster. The accuracy is improved by 4.35%, which is 61.09%. We
chose ResNet34 as the separable embedding module for further experiments.

Finally, we added the shortcut model to the multi-modality + attention + Resnet34 em-
bedding model, using weighted summation to fuse the original information and extracted
features. It can be observed that adding the shortcut model further improves the metrics
by more than 2%, reflecting the effect of direct-concatenation for training the model. The
performance of different models and training plans is provided in Table 3. Overall, the strat-
egy of multi-modality + attention + Resnet34 Embedding + shortcut largely outperforms
the baseline. Combining the above four submodules substantially improves the accuracy
by more than 10%, but the absence of any one of them brings about a significant metric
degradation. We also replicated the SOTA model, which utilized a 3D CNN + ResNet10
neural architecture. The SOTA had an accuracy of 60.74%, which is 3-point worse than
our model.
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Table 3. Performance of different models. Abbreviations: separable embedding (S.E.), training
duration per epoch (T.D.P.E).

Method S.E Acc T.D.P.E (s)

ResNet34 NA 53.12% 65.4
EfficientNet NA 54.80% 52.3

3D CNN + ResNet10 (SOTA) NA 60.74% 73.1
multi-modality + attention NA 56.74% 67.3
multi-modality + attention EfficientNet 59.03% 72.2
multi-modality + attention Resnet34 61.09% 78.8

multi-modality + attention + shortcut Resnet34 63.71% 79.3

We also report the average training duration per epoch (T.D.P.E.) in the last column of
Table 3. It is observed that the average T.D.P.E. for all models ranges from 52.3 to 79.3 s on
our deep learning workstation. The training has been relatively efficient mainly due to the
following: (1) the MRI scans have been down-scaled to 256 by 256 pixels and (2) the fast
processing speed offered by the RTX 3090. It is also noted that the best performing model
only added a reasonable amount of time compared to the SOTA (79.3 vs. 73.1), which
validates the efficient design of the lightweight attention module.

It is observed in Figure 5a–d that overfitting occurs in all evaluated models. Our
observation is aligned with other contest participants (see a post at https://www.kaggle.
com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/281347 accessed
at 20 February 2022). It is mentioned that many teams obtained higher training scores
than validation scores. In machine learning, overfitting is mainly caused by the nature
of data [37]. Specifically, the data points of training and test sets do not follow the same
distribution. As such, the models trained on the training set have learned knowledge
and patterns that do not apply well to the samples on the test set. For this study, the
quantity of MRI scans is increased compared to prior datasets. However, most scans only
contain a partial area of the brain, which does not offer many expressive patterns to be
learned by a model. We adopted the following strategies to handle overfitting. First, we
applied several data augmentation strategies to enhance the diversity of the dataset (see
Section 4.3). Second, we conducted cross-validation to examine the robustness of model
performance. Despite these efforts, a performance gap in the range 10–15% still exists
between the training and validation accuracy scores, even for our best-performing model.

5. Conclusions

Malignancy analysis of brain tumors is crucial for the lives of patients and early
prevention. For early screening and reducing patients’ suffering, accurate classification
is needed. However, the effectiveness of existing models cannot be guaranteed. In this
paper, we proposed a new classification model based on multi-modal feature aggregation,
lite attention mechanism, separable embedding, and modal-wise shortcut. The combined
effects of these boosters increased the prediction accuracy to 63.71% on the RSNA-MICCAI
dataset, outperforming the SOTA by 3%.

This work has the following limitations, which also suggest future directions. First,
our proposed method only considers the temporal association between same-modality data,
while the relationship between different modality data is not examined. This inter-modality
relation is worthy of further investigation. Second, in addition to the modal-wise attention
used in this study, image-wise attention can also be considered since some critical areas
of an MRI scan could carry informative patterns that should be learned and used to make
a better prediction. Lastly, a joint model that handles tumor segmentation and MGMT
detection is expected.

https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/281347
https://www.kaggle.com/c/rsna-miccai-brain-tumor-radiogenomic-classification/discussion/281347
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