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Abstract: The COVID-19 pandemic highlighted the importance of validated and updated scientific
information to help policy makers, healthcare professionals, and the public. The speed in disseminat-
ing reliable information and the subsequent guidelines and policy implementation are also essential
to save as many lives as possible. Trustworthy guidelines should be based on a systematic evidence
review which uses reproducible analytical methods to collect secondary data and analyse them.
However, the guidelines’ drafting process is time consuming and requires a great deal of resources.
This paper aims to highlight the importance of accelerating and streamlining the extraction and
synthesis of scientific evidence, specifically within the systematic review process. To do so, this paper
describes the COKE (COVID-19 Knowledge Extraction framework for next generation discovery sci-
ence) Project, which involves the use of machine reading and deep learning to design and implement
a semi-automated system that supports and enhances the systematic literature review and guideline
drafting processes. Specifically, we propose a framework for aiding in the literature selection and
navigation process that employs natural language processing and clustering techniques for selecting
and organizing the literature for human consultation, according to PICO (Population/Problem, Inter-
vention, Comparison, and Outcome) elements. We show some preliminary results of the automatic
classification of sentences on a dataset of abstracts related to COVID-19.

Keywords: natural language processing; health data; systematic reviews; guidelines; evidence-based
medicine; COVID-19; SARS-CoV-2; machine reading; machine learning; artificial intelligence

1. Introduction

A new strain of Coronavirus (SARS-CoV-2) was first documented on 31 December
2019. Although more than two years have elapsed, the human knowledge about the
Coronavirus Disease 19 (COVID-19) is still pervaded by uncertainty [1,2]. Some effective
public health measures, prevention strategies, and therapeutics options are now available,
but international, national, and subnational policies do not always follow shared guidelines,
creating confusion and mistrust among the general population [3–5]. This issue is partially
determined by a gap between data collection, scientific evidence, their validation, and
the creation/modification of the guidelines [6]. The forced cohabitation with SARS-CoV-2
has made it even clearer that there is great importance in making validated and updated
scientific information available to policy makers, healthcare professionals, and the public as
quickly as possible. The speed in disseminating reliable and verified information, as well as
the subsequent policy implementation based on that information, is also essential to save as
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many lives as possible [7]. Currently, the most influential public health recommendations
come from guidelines developed by international and national organizations (e.g., WHO,
CDC, ECDC, etc.) [8–10]. The drafting of these guidelines is time consuming and requires
a great deal of resources [11]. Moreover, specific circumstances, such as the COVID-19
pandemic, preclude the development of a standard guideline. This is the case when the
WHO must provide guidance in response to public health emergencies. Depending on the
type of event or situation, such guidelines may need to be produced within hours, days,
weeks, or months.

In general, but even more so in an emergency, it is appropriate to draft and update the
guidelines in a relatively short time. This is especially true considering that the scientific
community generates an exponentially growing number of scientific papers [12], and that
this trend accelerated during the COVID-19 pandemic [13].

Moreover, all of this is taking place in a context in which several new solutions in the
management and extraction of information in healthcare are being introduced. For instance,
the introduction of information extraction software is an important way of facilitating more
sophisticated healthcare research [14]. Search engines, big data search, and mining tools are
continuously being introduced in healthcare processes. The past decade has seen a truly
revolutionary paradigm shift to Natural Language Processing (NLP) as a result of which
Deep Learning (DL) became the dominating mind-set of researchers and developers in this
field [15–17] and became an extremely robust and effective tool for adequately dealing with
the contents of unstructured visual, audio/speech, and textual data.

1.1. Guidelines Development and Systematic Literature Reviews

A standard guideline covers a clinical or policy area (e.g., COVID-19). Health care
guidelines and their appropriate implementation are of interest to national organizations,
professional associations, health care providers, policymakers, patients, and the public [11].
Plenty of the literature illustrates in detail the guideline development, implementation,
and evaluation process [11,18]. Standard guidelines vary greatly in scope and focus: they
might address the use of a single drug for a disease or condition, such as naloxone injection
by lay persons for suspected opioid overdose, or they might encompass the full scope of
a condition or public health problem, such as the diagnosis, screening, and treatment of
type two diabetes mellitus. Recommendations in a standard guideline are either developed
de novo or by updating previous guidelines. Standard guidelines usually take between
9 and 24 months to complete, depending on their scope. They should be supported by
one or more systematic reviews of the evidence and finalized after one or two meetings of
the expert panel. Specific circumstances, such as the COVID-19 pandemic, preclude the
development of a standard guideline. Providing clear evidence in situations such as this
is inherently challenging, both for current and possible future pandemics. Firstly, this is
because of the extremely narrow time window available in emergency situations. Secondly,
it is because of human limits in cognitive skills, which, in turn, are core in the process of
scientific discovery [19,20].

Systematic reviews are a type of review that uses reproducible analytical methods
to collect secondary data and analyse it [21]. Systematic reviews differ from traditional
literature reviews because they are more replicable and transparent [22,23]. As stated
by Liberati et al. [23], systematic reviews are essential tools for summarizing evidence
accurately and reliably. They help clinicians keep up-to-date; provide evidence for policy
makers to weigh the risks, benefits, and harms of health care behaviors and interventions;
gather and summarize related research for patients and healthcare providers; provide a
starting point for clinical practice guideline developers; provide summaries of previous
research for funders wishing to support new research; and help editors judge the merits
of publishing reports of new studies. This makes them pivotal not only for scholars, but
also for clinicians, researchers, policymakers, journalists, and, ultimately, the public [24,25].
They adopt a structured, transparent, and reproducible methodology that consists of the
a priori specification of a research question; clarity on the scope of the review and on the
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type of studies eligible for inclusion; making every effort to find all relevant research and
to ensure that possible bias is accounted for; and analysing the included studies to draw
conclusions based on all the identified research in an impartial and objective way [26].

Clinical studies and questions always either explicitly or implicitly contain four aspects:
Population/Problem (P), Intervention (I), Comparison (C), and Outcome (O), which are
known as PICO elements. Using this structure to guide the information retrieval of medical
evidence within a medical citation database is popular and advantageous. However,
accurately and efficiently extracting PICO elements from non-structured information, such
as a collection of medical abstracts, is challenging.

Usually, systematic reviews are conducted by expert panels chosen mainly for their
scientific and clinical reputation. Those who are excluded are individuals with clear finan-
cial conflicts and those whose professional or intellectual bias can diminish the credibility
of the review. Once the research question, the inclusion and exclusion criteria, and the
research protocol are defined, the panel experts perform the operative part of the review
process (Figure 1). The researchers perform a comprehensive query in multiple databases
using search strings and download the records’ information (i.e., title, abstract, and other
metadata such as the authors’ names, journal name, and DOI). The researchers perform title
and abstract screening based on the predetermined inclusion and exclusion criteria and on
the PICO elements. In this phase, usually, the majority of the articles are discarded [21]. Sub-
sequently, the researchers extract and read the full text of each individual record included
in the new set of articles and eliminate irrelevant articles. Then, from the final set of articles,
the researchers extract the information and evidence relevant for the research question.
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Figure 1. Guidelines development steps, including systematic literature review.

It is important to consider that, in the case of systematic reviews aimed at supporting
guidelines development, it is necessary to evaluate the strength of the extracted scientific
evidence. This process is usually completed through the GRADE system [27]. GRADE
is a systematic approach to rating the certainty of evidence in systematic reviews and in
other evidence syntheses. Specifically, the GRADE system is a transparent framework for
developing and presenting summaries of evidence, and it provides a systematic approach
for making clinical practice recommendations. This whole process is error-prone and
inefficient (time-intensive) because of extremely imbalanced data: only a fraction of the
screened studies is relevant. Moreover, the scientific literature is growing faster than the
amount of time available for systematic reviews. Thus, adequate manual literature reviews
become increasingly challenging at a point that, in certain research fields, they are becoming
impossible [28].

Luckily, the systematic review process entails several explicit and, ideally, reproducible
steps, including identifying all possibly relevant publications in a standardized way, extract-
ing data from eligible studies, grading, and synthesizing the results. These characteristics
make the process amenable to automation. This can make it much faster, more efficient,
less error-prone, and actionable with the use of fewer resources.

A number of tools have been developed to streamline and semi-automate this pro-
cess [29,30], including tools to generate terms, to visualize and evaluate search queries, to
trace citation linkages, to deduplicate, limit, or translate searches across databases, and
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to prioritize relevant abstracts for screening. Ongoing research is moving toward the
development of tools that can unify searching and screening into a single step, and several
prototype of such tools have already been implemented. A recent scoping review [30]
identified several of these tools (LitSuggest, Rayyan, Abstractr, BIBOT, R software, Robot-
Analyst, DistillerSR, ExaCT and NetMetaXL), which have the potential to be used for the
automation of systematic reviews. However, these tools are not without limitations, as the
majority of algorithms have not yet been developed into user-friendly tools. Some of these
algorithms show high validity and reliability, but their use is conditional on user knowledge
of computer science and algorithms. Furthermore, a living systematic literature review [29],
which examined published approaches for data extraction from reports of clinical studies,
showed that more than 90% of the publications evaluated developed classifiers that used
randomized controlled trials (RCTs) as the main target texts, while only a small number of
tools extracted data from observational studies. These are major limitations that should be
addressed in order to implement automatic or semi-automatic support systems for experts
who want to conduct systematic literature reviews on broad and mainly unknown topics,
such as SARS-CoV-2/COVID-19.

1.2. Rationale and Aim

Methodological rigor and the need to rapidly produce solid scientific evidence are
of utmost importance for the guideline drafting process. This is especially true during
emergency situations such as the COVID-19 pandemic, in which every choice and its timing
can affect the health outcomes of millions of people. Therefore, it seems necessary to con-
ceptualize automated or semi-automated systems to support human action in the process
of screening, extracting, and grading scientific evidence through the implementation of
user-friendly tools that can support the expert panel during the systematic literature review
process. Moreover, during an emergency situation, it is mandatory to include not only
the abstract and text from RCTs, but also observational studies, which constitute a very
important part of the body of the scientific literature.

Accordingly, this paper aims to highlight the importance of accelerating and stream-
lining the extraction and synthesis of scientific evidence in the biomedical field, specifically
within the systematic literature review process. To do so, we organized this paper into two
main parts. The first (Section 2) describes the COKE (COVID-19 Knowledge Extraction
framework for next generation discovery science) Project’s framework, which involves
the use of machine reading [31] and deep learning [32] to semi-automate the workflow
of systematic literature reviews in healthcare and, more specifically, which describes our
proposed strategy for selecting and navigating the relevant literature starting from a set
of abstracts obtained by interrogating scientific databases (e.g., EMBASE, Pubmed). The
second part (Sections 3 and 4) reports the project’s methods and preliminary results on the
automatic classification of sentences into PICO elements on a dataset of abstracts related
to COVID-19.

2. The COKE Project

The COKE Project, funded by the Italian Ministry for University and Research (MUR)
in June 2021 and which started in November 2021, is a joint venture of the Italian National
Council of Research (CNR) and the University of Bologna. This project aims to design
and implement a semi-automated system that supports and enhances the systematic
literature review and guideline drafting processes. Specifically, it aims to expedite the
“development” phase (i.e., the systematic review), the “rating/grading” of the scientific
evidence, and the extraction of relevant scientific knowledge, with a particular focus on the
COVID-19 literature.

The COKE Project answers the following questions: how to automatically link scientific
texts or data to state-of-the-art knowledge during an emergency situation or relating to an
emergent disease/pathogen, such as COVID-19? How to adapt and exploit methods of
reasoning, learning, and reconciling knowledge graphs to recommend serendipitous results
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to researchers and policy makers? How to achieve a good level of quality in knowledge
extraction performed by an AI on articles with different formats and based on different
study designs if compared to manual research and content extraction performed by a
domain expert in evidence-based medicine (EBM)?

The COKE Project consists of four consecutive phases: (i) the definition of potentially
automatable “nodes” in the guidelines drafting workflow, specifically in the systematic
literature review process; (ii) the design of a semi-automated system to make the process
faster; (iii) semi-automated system testing on research questions related to the COVID-19
pandemic; and (iv) benchmark tests (human vs machine-supported human). At the time of
writing, phases (iii) and (iv) of the COKE Project are ongoing.

The guidelines’ drafting process is summarized in Figure 1 and in Section 1.1. The
systematic literature review workflow has been refined over the years and involves a series
of standardized steps that are already reported in Section 1.1. and Figure 2, some of which
can be potentially automated.
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In the first phase of a systematic literature review, the researchers define the research
question, the aim of the review, and the PICO and the eligibility criteria. This preparatory
phase is usually human-driven. Afterwards, the researchers develop and define the research
strings optimized for each search engine of the selected platforms/repository/libraries (e.g.,
MEDLINE, Embase). These queries generate the initial list of records that are to be screened
and eventually analysed. In this phase it is possible to automate the full-text retrieval
process and the duplicate record elimination process (nodes 1 and 2, Figure 2). The full-text
retrieval is enabled by querying the Search API provided by Scopus. The deduplication
process is performed by relying on DOIs associated with papers as unique identifiers. In
case an article is not associated with a DOI, then our disambiguation approach uses the
title and the list of authors for such a task.

Once the first list of records is obtained, the systematic review workflow provides a
filter on some major criteria typically available in the metadata, such as language, publica-
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tion date, and, above all, the PICO criteria. This screening process is usually carried out
by the researchers analysing the title and abstract of each article and not on the entirety
of the full text. This choice has been made to maintain high sensitivity and to save time
without using too many resources. Most records are excluded in the title and abstract
phase. Typically, only a small fraction of the records belongs to the relevant class, making
title and abstract screening an important bottleneck in the systematic reviewing process
(node 3, Figure 2) [33]. On one hand, the filtering based on metadata is fully automated. In
fact, COKE performs this task by querying the Scopus API for retrieving all the required
records that enable the selection. Among the various metadata, we also collect article
level metrics, such as h-index and altmetrics. On the other hand, the selection based on
PICO criteria is semi-automated. This is because a first step allows COKE to automatically
identify candidate sentences in the title and the abstract of an article that evoke one or more
of the PICO criteria, i.e., Participants/Problem (P), Intervention (I), Comparison (C) and
Outcome (O). Those sentences are then annotated and presented to the expert for a manual
assessment. We rely on the automatic annotation of sentences on a deep learning classifier
based on three layers, namely BERT, a bi-LSTM layer, and a Conditional Random Field
module, whose details are described in Section 3.

After the title and abstract screening process, the researchers perform the information-
extraction process (i.e., study design, study quality and content analysis). During this
phase, the researchers use several design-specific checklists (e.g., RoB 2 tool for randomized
clinical trials, or ROBINS-I tool for non-randomized studies) to assess each study’s risk
of bias. This stage (node 5, Figure 2) can be automated by re-using solutions such as
the RobotReviewer system [34,35] that relies on a Convolutional Neural Network (CNN)
architecture trained on corpora derived from the Cochrane Database of Systematic Reviews
(CDSR) for rating articles as having a “low”, “high”, or “unclear” risk of bias.

Finally, all the necessary information (i.e., PICO-related information, information
relevant for the GRADE quality assessment of each study, and other information of interest)
are extracted and organized. In this last phase (node 6, Figure 2) we construct a knowledge
graph that organizes all the relevant knowledge extracted with selected articles through
previous steps.

The last step, the so-called “snowball”, is carried out manually by searching for
relevant articles among the references of the studies included in the systematic literature
review. This iterative phase is automatable too by using the entries in the reference lists
of selected articles as seeds for querying Scopus again and by iteratively re-starting our
process from the initial step.

Once the aforementioned steps are completed and the necessary information has been
obtained, we proceed with the (manual/human) analysis of the evidence and the drafting
of recommendations for the guidelines.

In summary, the COKE Project contributes to discovery science by defining a novel
knowledge extraction layer in the framework of guidelines development that integrates
machine reading [31] and the rigorous protocols of EBM. Machine reading is critical
because it allows COKE to gather knowledge graphs directly from COVID-19-related
scientific texts. Knowledge graphs are mathematical graphs representing factual, concep-
tual, and procedural knowledge in the form of triples (subject, predicate, object) defining
binary relationships (via predicates) between entities (i.e., subject and object) [36]. Ma-
chine reading enables the generation of structured knowledge from text. An example of a
state-of-the-art machine reader is FRED (http://wit.istc.cnr.it/stlab-tools/fred/ (accessed
date 20 February 2022)) [34]. The advantage of FRED is that its generated knowledge
graphs are centered upon events denoted in a text, its participants, and their links to
existing background knowledge, thus opening the possibility of expanding the content
of the text to its “interpretants” [37]. This is quite close to what human reading does,
with the plus of being processable by a machine. The accuracy of extracted knowledge
ranges between 0.75 and 0.90 depending on the kind of constructions found in a text, and
it is represented according to logical patterns [38]. An example of a knowledge graph

http://wit.istc.cnr.it/stlab-tools/fred/
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produced by FRED is presented in Figure 3. The graph is formalized by using VerbNet
(https://verbs.colorado.edu/verbnet/ (accessed date 20 February 2022)) [39] frames and
roles. Additionally, taxonomy induction is performed, and named entities are linked to
external knowledge graphs (e.g., DBpedia (https://www.dbpedia.org/ (accessed date 20
February 2022)) [40]).
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people with postsurgical colorectal cancer”.

Similarly, the analysis of procedures and practices of EBM as carried out by humans,
e.g., systematic reviews, is of utmost importance for COKE. In fact, in the continuation of
the COKE Project, FRED is to be used for producing knowledge graphs that are used for
training a deep neural network architecture for identifying PICO- [41] or GRADE-related
criteria for scientific literature selection and quality assessment.

Investigating those EBM procedures and practices is relevant for learning scientific
discovery methodologies and patterns from experts by applying machine learning [42]
approaches with human-in-the-loop and by converting those patterns into formal meth-
ods and schemata. Learned methodologies and patterns are to be applied on top of the
knowledge graphs resulting from machine reading for automatically interpreting, query-
ing, accessing, and inferring peculiar domain knowledge as gathered from the scientific
literature. Finally, scientometrics tools, such as altmetrics [43], are useful for identifying
research works that attract the attention of the community in quasi-zero-day time win-
dows [44,45]. In fact, altmetrics are scholarly impact measures, which (i) accumulate faster
than traditional metrics (i.e., h-index, citation count, impact factor) and (ii) cover a broader
“impact flavor” being based on citations and activities in online tools and environments,
such as social media or academic platforms such as Mendeley. Providing COKE with a
layer for altmetric analysis will enable the framework to better address the information
horizon problem. In fact, altmetric scores can be used as tools for filtering out works with
limited scientific impact.

COKE is to be tested by performing and comparing a series of tasks in a “double blind”
controlled trial between the tool and a team of researchers. More in detail, a COVID-19
research question is to be formulated. Both the COKE tool and the human researchers are
to review the existing scientific literature and are to try to generate a satisfactory answer.
The outputs are to be compared in terms of various metrics, such as: the number of papers
identified, the quality assigned to each paper analysed, the interpretation of scientific
evidence, and results and recommendations.

To ensure the quality of the COKE procedures, the output is to be compared to human
performance in terms of the classification of study quality and the interpretation of study
contents. In fact, benchmark testing is crucial to understand the real-world performance
of any machine-learning-aided system, but such benchmark options are currently mostly
lacking [46].

https://verbs.colorado.edu/verbnet/
https://www.dbpedia.org/
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3. Methods
3.1. Organizing and Filtering the Relevant Literature Based on PICO Elements

A fundamental component of our framework concerns the organization of the liter-
ature to enable fast and user-friendly filtering of relevant articles (node 3, Figure 2). As
previously reported, the medical literature has identified four key aspects in clinical studies,
known as PICO elements. Since such information is often unavailable in a structured form
and is described in the abstract text, organizing the retrieved literature based on PICO
elements requires a machine understanding of such text.

Next we describe a framework for the organization and filtering task based on PICO
elements. An overall description is reported in Figure 4.
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Abstracts are first analysed to classify each sentence into PICO elements (e.g., the
sentence “Oral co-amoxiclav (@ mg/kg/day in three doses for @ days) or parenteral ceftriaxone (@
mg/kg/day in a single parenteral dose) for three days, followed by oral co-amoxiclav (@ mg/kg/day in
three divided doses for seven days)” for abstract #1319 was classified as I, i.e., Intervention).
We then construct a taxonomy for each PICO element with the purpose of organizing the
abstracts and enabling filtering. This step is performed separately for each PICO element
after aggregating related sentences. It consists of three sub-steps. Clinical terms mentioned
in the text are first linked to reference ontologies and vocabularies of clinical terms (e.g., the
unified medical language system (UMLS) [47], SNOMED CT [48], etc.) and other resources
(e.g., Wikidata [49]), to reduce ambiguity. The similarity of corresponding sentences across
abstracts is then computed, and hierarchical clustering is performed. Eventually, the results
are passed to a user presentation tool for filtering and navigation. We discuss each of the
main steps in the remainder of this section.

3.2. Sentence Classification into PICO Elements

Automatic classification of the abstracts’ sentences is the first step to solve the challenge
mentioned above. To identify PICO elements in text, we adopt a linguistic model [50]
composed of three main modules: sentence encoder, sentence contextualization, and label
sequence optimization layer.

Given a sentence, the first module generates a vector from the sequence of tokens that
compound it. To fulfill this task, the authors used a pre-trained language model called
BERT [51]. Pre-trained on English Wikipedia and BooksCorpus, the model was fine-tuned
on a large corpus that combined PubMed abstracts and PubMed Central (PMC) full-text
articles in an unsupervised way [52] in order to learn the lexicon relevant to the medical
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domain. The pre-training phase was followed by a supervised learning phase conducted
on targeted downstream datasets [50].

The encoded sentences are subsequently processed by a bi-LSTM layer that contextu-
alizes each vector with information taken from nearby sentences. The output obtained is
processed by a feed-forward neural network with only one hidden layer, which returns the
probability that a sentence belongs to each label.

Finally, the results obtained from the prediction are processed through a Conditional
Random Field (CRF) module that optimizes the sequence of labels by modeling the depen-
dencies between them.

3.3. Extracting PICO Elements Taxonomies

Once sentences are classified, the text related to each PICO element can be extracted
and employed to organize the abstracts accordingly. For instance, a population-based
organization would differentiate clinical studies on men from those on women or on
children. The user might be interested in a finer partitioning, e.g., men with a specific
disease or people in an age range. Therefore, we propose to hierarchically organize the
abstracts according to each of the PICO elements extracted from the abstract text. To
obtain meaningful results, it is crucial that the similarity function stresses the appropriate
text features that refer to the population (or the specific PICO element) and disregards
unrelated parts.

We propose to perform entity linking [51,52] to medical and general resources (e.g.,
UMLS, SNOMED CT, MeSH, Wikipedia) in order to (i) reduce the ambiguity of mentions,
(ii) to identify the parts of the text that are more relevant for each PICO element, and
(iii) to gather hierarchical information from external relevant ontologies and vocabularies.
We plan to employ the available general [52] and specific [51] entity linking tools trained
on annotated biomedical corpora [53]. We plan to develop a similarity function between
entity linked text portions by combining semantic text similarity (e.g., Sentence-BERT) and
similarity among linked entities. Finally, abstracts are hierarchically organized by cluster-
ing [54]. The result of these activities is a knowledge graph (KG) that provides structured
knowledge about sentences gathered from abstracts with respect to PICO elements as well
as clinical terms.

3.4. Filtering Tool

The goal of this component is reducing the cognitive load associated with the analysis
of the scientific literature for carrying out systematic reviews by panels of experts. This goal
is obtained in our framework by providing panels with a graphical solution that enables
exploratory capabilities for interacting with the KG. A systematic review process can be
classified as an exploratory search task. Exploratory search is extremely time consuming and
cognitively complex, as it is typically associated with undefined and uncertain goals [55–57].
For example, a significant amount of literature is associated with “transmission of COVID-
19”, and it is inherently hard to identify evidence that can be used for defining guidelines
for preventing COVID-19 spread. Hence, in our approach, KG exploration supports domain
experts in browsing the literature and selecting relevant research works only.

We remind that selected works are then used by experts for finalizing a systematic
review process. Filtering is performed by allowing a panel of domain experts to interact
with the knowledge graph visually. Accordingly, the filtering tool allows a panel to explore
the literature organized in the graph with respect to PICO elements and clinical terms. This
allows the panel to select one or more concepts in the graph.

In the next Section we report the preliminary test’s results of the COKE Project on the
automatic classification of the COVID-19 abstracts.

4. Preliminary Results: A Case Study on the COVID-19 Literature

We provide the findings of a case study on the COVID-19 literature in evaluating
the sentence classifier for PICO elements described in Section 3.2. The purpose is to
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evaluate how the tool performs on a specific topic (COVID-19) with characteristics that
are different from the dataset from the authors. We employ the model trained on the
authors’ dataset [41,50], a corpus composed by 24,668 abstracts of randomized controlled
trials derived from Embase. The annotation of the dataset is carried out automatically
through a keyword detection operation. This methodology streamlines the processing of
large amounts of data, allowing for faster validation than manual execution. Hence, we
assess how the model trained on such a dataset adapts to a specific topic that has not been
covered during training.

We considered abstracts concerning the pre-exposure prophylaxis related to COVID-19
that was published within nine months in Embase, a popular free access database of medical
articles. To enable manual validation, we randomly selected 50 abstracts and divided
them into sentences, obtaining in total 752 sentences. The sentences were annotated by
two domain experts. Following [45], we considered seven labels: Aim (A), Participants
(P), Intervention (I), Outcome (O), Method (M), Results (R) and Conclusion (C), where
Comparison was incorporated with the Intervention category. Since the labels Results (R)
and Outcome (O) are similar in meaning and difficult to distinguish even for an expert,
we collapsed them into a single label, Outcome, obtaining eventually six labels: A, P, I,
O, M, and C. The annotators discarded short sentences corresponding to subsections (i.e.,
“Results:”, “Conclusions:”) and ambiguous elements, obtaining 584 annotated sentences
(e.g., the sentence “PrEP-users identified convenience as a key benefit along with access to
PrEP with reduced potential for COVID-19 exposure” of abstract #30 was annotated both
manually and automatically as R, Results).

Table 1 summarizes the results for each label in terms of precision, recall and F1.
Precision measures the percent of predictions with a given label that are correct, whereas
recall represents the percent of true sentences with a given label that are correctly predicted.
F1 is the harmonic mean between precision and recall, and therefore it can be considered
a measure of the overall performance of the classifier. We also report for each label its
support, i.e., the number of sentences annotated to that label. In the bottom we report the
overall performances in terms of accuracy, i.e., the percent of correct predictions; macro
average, i.e., the arithmetic average of the performance metrics; and weighted average, i.e.,
the average of the performance metrics weighted by support.

Table 1. Performance of the PICO classification (Section 3.2) on a dataset of 50 Embase abstracts
related to the pre-exposure prophylaxis for COVID-19.

Label Precision Recall F1 Support

A 0.884 0.850 0.867 153
C 0.796 0.854 0.824 96
I 0.312 0.625 0.417 8

M 0.750 0.543 0.630 94
O 0.748 0.821 0.782 184
P 0.479 0.469 0.474 49

Accuracy 0.757 584
Macro avg. 0.662 0.694 0.666 584

Weighted avg. 0.763 0.757 0.756 584

The results show a 76% overall accuracy of the classifier. Precision, recall, and F1 are
above or attaining 75% for all labels except I, M, and P, which also have a lower support. As
expected, the performances are slightly worse than those on the test set of [50]. This is due
to two main factors. First, the annotation criteria of our dataset are different from those of
the training set since our dataset has been manually annotated by experts, and the training
dataset has been annotated automatically by considering the section headings of abstracts
and mapping them to labels. Second, our dataset has different features since it refers to
a specific topic (COVID-19) not covered by the training dataset and is not restricted to
randomized clinical trials.
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The results show that the employed classifier, trained on automatically annotated
data, maintains adequate performances in predicting real (expert validated) labels even on
abstracts of different topics and characteristics.

5. Conclusions

A rapidly changing healthcare requires fast decisions supported by sound scientific
evidence. This is not compatible with the human limits in cognitive skills that reduce the
ability to extract and process information. This paper describes such an urgent gap in
the scientific field, specifically in the biomedical field, and a project that aims at filling it.
Specifically, it aims to speed up the creation of healthcare guidelines and, in particular,
systematic literature reviews, semi-automating parts of the workflow, and supporting the
human-performed process of extracting and analysing contents.

In this paper we describe a framework for aiding in the systematic literature review
process by analysing, organizing, and filtering medical abstracts. The tool we envision is
based on NLP techniques able to detect and classify PICO elements and medical terms and
organize abstracts accordingly. Preliminary results on the PICO element classification of
abstract sentences show that a BERT + bi-LSTM language model trained on an automatically
generated dataset performs adequately on a real case. Our proposed tool is expected to
significantly reduce the effort for producing medical guidelines and therefore have a strong,
positive impact, particularly in emergency scenarios. This paper also represents a call-
to-action for similar initiatives, aimed at strengthening and enhancing the information
and knowledge extraction process in medicine, which is particularly relevant in the fight
against the current COVID-19 pandemic and other possible health crises.
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