
����������
�������

Citation: Bous, F.; Roebel, A. A

Bottleneck Auto-Encoder for F0

Transformations on Speech and

Singing Voice. Information 2022, 13,

102. https://doi.org/10.3390/

info13030102

Academic Editor: Francesco Beritelli

Received: 24 January 2022

Accepted: 18 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Bottleneck Auto-Encoder for F0 Transformations on Speech
and Singing Voice

Frederik Bous * and Axel Roebel *

Analysis/Synthesis Team, UMR 9912 STMS, IRCAM, Sorbonne Université, CNRS, 75004 Paris, France
* Correspondence: frederik.bous@ircam.fr (F.B.); axel.roebel@ircam.fr (A.R.)

Abstract: In this publication, we present a deep learning-based method to transform the f0 in speech
and singing voice recordings. f0 transformation is performed by training an auto-encoder on the
voice signal’s mel-spectrogram and conditioning the auto-encoder on the f0. Inspired by AutoVC/F0,
we apply an information bottleneck to it to disentangle the f0 from its latent code. The resulting
model successfully applies the desired f0 to the input mel-spectrograms and adapts the speaker
identity when necessary, e.g., if the requested f0 falls out of the range of the source speaker/singer.
Using the mean f0 error in the transformed mel-spectrograms, we define a disentanglement measure
and perform a study over the required bottleneck size. The study reveals that to remove the f0

from the auto-encoder’s latent code, the bottleneck size should be smaller than four for singing
and smaller than nine for speech. Through a perceptive test, we compare the audio quality of the
proposed auto-encoder to f0 transformations obtained with a classical vocoder. The perceptive test
confirms that the audio quality is better for the auto-encoder than for the classical vocoder. Finally, a
visual analysis of the latent code for the two-dimensional case is carried out. We observe that the
auto-encoder encodes phonemes as repeated discontinuous temporal gestures within the latent code.

Keywords: convolutional neural networks; attribute transformation; f0 transformation; voice
conversion; auto-encoder

1. Introduction

Since the invention of the vocoder over 80 years ago [1], people have been studying
means to transform the acoustical properties of speech recordings. Since then, enabling
transparent f0 transformations has been a prominent topic inside the speech process-
ing research community, and attempts to achieve this have been plentiful, such as the
phase vocoder [2], PSOLA [3], shape-invariant additive models [4], shape-invariant phase
vocoder [5], parametric speech vocoders [6,7], and extended source-filter models [8,9].
Recently, as speech signal processing has become dominated by deep learning-based tech-
niques, the community has focused on more abstract voice properties, such as speaker
identity [10–15] but also emotion [16,17] and accent [18].

Transforming the f0 of the singing voice is crucial for singing synthesis and could also
help refine existing recordings. In the singing voice, the f0 not only carries the melody,
but also the singer’s individual expression used to interpret the piece, which is highly
dependent on the genre of the piece [19]. Therefore, for singing synthesis, it does not
suffice to simply map the notes to their corresponding frequencies and durations. Singing
synthesizers need to translate the required melody to an f0 curve to convey the expression
and style required by the score [20,21]. A common approach is unit selection with f0
modification [22,23]. The quality of these synthesizers is thus limited by the quality of the
transposition algorithm. Combining singing units in mel-spectrum representation with the
neural f0 transformation introduced in this paper, along with our mel-inverter described
in [24], could allow creating a fully neural singing synthesizer. As for voice modification, f0
transformation can also be used on real singing recordings to alter the intonation, expression
and even melody in post production. The f0 transformation algorithm presented here could

Information 2022, 13, 102. https://doi.org/10.3390/info13030102 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13030102
https://doi.org/10.3390/info13030102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-7477-7600
https://orcid.org/0000-0001-6136-4391
https://doi.org/10.3390/info13030102
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13030102?type=check_update&version=2

Information 2022, 13, 102 2 of 19

also expand the range of a singer. If pushed far enough, thanks to the implicit adaptation
of voice features, it will create a coherent new personality.

In speech, the f0 plays a different role than in singing. It carries important information,
such as mood, intent and identity. To change the expressivity of an utterance, we need to
be able to change the f0 contour [25]. One of the most prominent differences between the
sexes is the mean f0, due to the different rates of growth of the vocal folds in puberty. Thus,
changing the f0 in speech can result in changing or obfuscating the speaker’s gender [26],
an effect which could be used in scientific studies to research the effect of perceived gender
in the voice in social interactions [27].

1.1. Related Work

The simplest way to achieve an f0 transformation effect is changing the playback
speed of a signal. The most obvious side effect of this is that the durations change as well.
To counter this, phase vocoders [2] reverse the change in duration with time stretching:
they shift frames in time and adapt the phase accordingly. After the stretching, the signal
is resampled appropriately. However, this technique shifts the fundamental frequency
and its partials as well as their amplitudes, i.e., the whole spectral envelope is stretched in
frequency. Since the spectral envelope reflects the size of the vocal tract, the result is the
well-known Mickey Mouse effect, which hints at an unnatural vocal tract size. To prevent
this, special treatment of the spectral envelope is required [5].

Another approach from classical signal processing is using a vocoder that has f0 as one
of its parameters [3,6,7]. In this case, the f0 can be changed simply by providing the desired
f0 to the synthesizer of the vocoder. However, the f0 of speech also has an effect on the
remaining vocoder parameters, and thus a mismatch during synthesis is often perceived
as being unnatural [28]. To address this problem, extended source filter models [8,9] split
the spectral envelope into a vocal tract filter and the glottal pulse spectrum, while the f0
dependency is modeled by a glottal pulse model. This works fine for small amounts of
transpositions but still has its limitations, as relationships between the f0 and the vocal
tract are not considered.

Due to the inherent complexity of relationships between the f0, glottal pulse and vocal
tract filter, we believe that these effects can best be modeled with data-driven approaches.
Deep learning-based attribute transformation has seen a few breakthroughs in image
processing over the recent years and the literature has been rich on the topic. Style transfer
was used to separate content and “style” to create effects that cast the visual appearance of
famous paintings over photos [29]. Generative adversarial networks (GAN) [30] have been
used in different configurations for attribute transformation [31], in particular, speaker
identity conversion [12,15]. Auto-encoders [32] can be used to disentangle attributes from
the auto-encoder’s latent code, either implicitly with an information bottleneck [14] or
explicitly with an adversarial classifier on the latent code [33]. Auto-encoders have been
applied to speech to disentangle the speaker identity [10,14] and even split speech into
rhythm, pitch, timbre and content, simultaneously [34].

1.1.1. F0 Analysis

To be able to manipulate the f0, we first need to be able to extract the f0 from signals.
f0 estimation has many applications and a long history. Classical signal processing methods
can be divided by the domain that they operate on, being either the cepstrum [35], the auto-
correlation function [36,37] or the frequency domain [38]. These methods were developed
to work on quasiperiodic signals in general, e.g., speech, music, and medical signals, and
special adaptions to the singing voice have been made by [39,40]. Neural networks have
been trained to extract the f0 from speech and singing voices from raw audio [41,42] or
mel-spectrograms [43]. In this paper, we use [42].

Information 2022, 13, 102 3 of 19

1.1.2. Voice Transformation on Mel-Spectrograms

Our proposed system allows changing the f0 of a given recording of speech or a singing
voice by transforming the signal’s mel-spectrogram. The transformed mel-spectrogram can
then be converted back to raw audio by means of a mel-inversion algorithm.

Mel-spectrograms have become a common choice in text-to-speech applications [44,45]
and voice conversion [13,14]. With fast and robust mel-inversion techniques [24,46], the
mel-spectrogram is an attractive representation of human voice for deep learning-based ap-
proaches, as it organizes the relevant information in a compact and homogeneous fashion.

1.1.3. Auto-Encoders

To perform f0 transformations, we train an auto-encoder conditioned on the f0. An
auto-encoder consists of an encoder–decoder pair of neural networks. The idea is that
the encoder produces a latent code representing selected features of the input signal. The
decoder receives the latent code and maps its input back to the original input space. The
decoder can be conditioned on additional information, such as, in our case, the f0. This
introduces a redundancy between the latent code and the conditional input. To perform
attribute transformation, one has to make sure that the decoder uses the attribute from the
conditional input, rather than from the latent code. This can be achieved by removing the
attribute in question entirely from the latent code, in which case we say that the attribute is
disentangled from the latent code. If the decoder is conditioned with the original attribute
value, it should reverse the encoder’s operation and reproduce the original signal exactly.
If the attribute is successfully disentangled from the latent code, the decoder would then
produce a plausible output with the provided attribute value regardless of the attribute
value. The difficulty of an auto-encoder approach is the disentanglement—finding a way to
force the decoder to use the provided attribute rather than inferring it from the latent code.

A simple but effective approach for disentanglement is through the use of an infor-
mation bottleneck [14]. Typically in an auto-encoder setup, the latent code has a lower
dimensionality than the input signal. Theoretically, the domains of the signal and the latent
code have the same cardinality (all finite-dimensional R-vector spaces have uncountable
many elements), and thus, there are bijective mappings between them. In practice, how-
ever, the modeling capacity of the neural networks is limited, and thus, the space of the
latent code has less channel capacity than the space of the original signal. Some infor-
mation is, thus, removed during the encoding process. When training the auto-encoder
on auto-reconstruction, the encoder will learn to prioritize information that is important
for recreating the original signal. Since the attribute is provided to the decoder in the
conditional input, there is no benefit in providing it again to the decoder through the latent
code. Consequently, if the information bottleneck is small enough, the encoder can be
expected to first remove the redundant attribute from the latent code.

1.2. Contributions

The novelties of this paper are the following. (1) We propose the first deep learning-
based algorithm, explicitly focusing on the f0 transformation of singing and speaking voices,
using the absolute f0. The proposed system is able to accurately follow the desired f0 within
the typical ranges of the human voice and even outside the range of the source speaker,
while surpassing the audio quality of classical vocoders. These claims are supported by
analyzing the f0 error on the test set in Section 3.1 and by a perceptive test, which we
present in Section 3.3. Since the proposed system uses an auto-encoder with information
bottleneck [14], we (2) perform a thorough study on how disentanglement depends on the
bottleneck size, the size of the neural network, the dataset size and the voice type (speech
vs. singing voice). The results of this analysis are given in Section 3.1. (3) Finally, we carry
out a visual analysis on the latent code of the auto-encoder, where we find the phonetic
content to be represented as periodic discontinuous patterns by the auto-encoder.

The remainder of the paper is structured as follows. In Section 2, we formulate the
central question of this paper, introduce the auto-encoder setup, its architecture and how to

Information 2022, 13, 102 4 of 19

train it, the datasets used in the experiments and the experimental setup itself. In Section 3,
we present the results from a perceptive test and a transformation accuracy analysis, where
we compare the proposed system to other f0 transformation algorithms, as well as a visual
analysis of the latent code for the case where the bottleneck size is two. The conclusion and
outlook for future work can be found in Section 4.

2. Materials and Methods
2.1. Problem Formulation

The problem we try to solve in this study is the free modification of the fundamental
frequency f0 in recordings of speech and singing voices. The algorithm should require only
minimal input from the user and should allow one to change the f0 by providing a fixed
transposition value or redrawing the f0 curve.

Unlike [34], where the pitch is defined as the part of the speech melody that is inde-
pendent from rhythm, timbre and content, in this paper, we use the raw f0 as the control
parameter. Therefore, the control parameter for our auto-encoder contains some informa-
tion about the speaker’s identity and timbre. Changing the raw f0 signal may change the
component of the speaker identity and timbre that depends on the f0. The system should
apply the given f0 contour onto the output signal such that the output signal contains
exactly the same f0 contour. This implies that parts of the identity will change if the change
is incompatible with the speaker ID.

Two main goals arise for a potential f0 transformation system:

1. The desired f0 contour should be followed exactly;
2. The result should sound like a human.

The first goal, the f0 accuracy, can be evaluated objectively by resynthesizing the
transformed mel-spectrograms and checking that the f0 in the resynthesized audio matches
the target f0. Our findings are stated in Section 3.1. The second objective, the naturalness
of the syntheses, can only be evaluated by listening to the generated samples. Therefore,
we perform a perceptive study by asking a selected group of participants to listen to
synthesized and non-synthesized audio and give a perceptive rating. The results of the
perceptive test are presented in Section 3.3.

To perform the f0 transformation, we train an auto-encoder with an information
bottleneck [14] as described in Section 1.1.3. One crucial hyperparameter of such a model is
the size of the bottleneck. We, therefore, perform a systematic analysis of the dependence
between the disentanglement and bottleneck size, and present the results in Section 3.2.

2.2. Proposed Model

The general outline of the proposed system can be seen in Figure 1. The auto-encoder
in this paper operates on mel-spectrograms. To change the f0, we first extract the mel-
spectrogram and the f0 from the original audio recording. Then, we use the encoder to
produce a latent code from the mel-spectrogram and the original f0. We resynthesize the
mel-spectrogram by applying the decoder to the latent code and the target f0. Finally,
the transformed audio is obtained by inverting the transformed mel-spectrogram using the
neural vocoder we presented in [43].

Information 2022, 13, 102 5 of 19

MEL

En
co
de
r D

ecode r

mel-inv

Reconstrution
Loss

F0-FCN

Figure 1. Schematic overview of the proposed method.Blue blocks are neural networks, yellow
blocks are loss functions, and green blocks are signal-processing operations. MEL—calculation of the
mel-spectrogram. F0-FCN— f0 analysis from [42]. mel-inv—mel-inverter from [43]. During training,
the f0 from F0-FCN is fed to both the encoder and decoder. During inference, the f0 from F0-FCN is
only fed to the encoder, while the decoder receives the target f0.

2.2.1. Input Data

The mel-spectrograms are computed on 24 kHz audio. We use 80 mel-bands to repre-
sent the frequencies between 0 and 8 kHz. Frequencies above 8 kHz are disregarded and
expected to be completed coherently by the final mel-inverter. The mel-spectrograms have
a hop size of 12.5 ms, resulting in a 80-dimensional signal with an 80 Hz sample rate. The
mel-spectrograms are given with logarithmic amplitudes. The f0 curve is provided as a
number pair (log(f0), voiced/unvoiced mask), and is generated from the audio signal by
our f0 analysis algorithm, F0-FCN [42].

To obtain normalized input data, we rescale the input data such that the interval
[−1, 1] represents [−120 dB,−20 dB] for the mel-spectrograms and [45 Hz, 1400 Hz] for the
fundamental frequency f0.

2.2.2. Network Architecture

The auto-encoder is implemented as a fully convolutional neural network, where the
encoder and decoder resemble mirrored structures. To benefit from the natural topology of
the frequency axis, we treat the sequence of mel-spectrograms as images and perform 2D
convolutions on them [47]. Through strides in frequency direction, the encoder reduces the
frequency axis to length 1 but keeps the time axis unchanged. The decoder uses transposed
convolutions to incrementally rebuild the frequency axis. The exact architecture is provided
in Appendix A (Tables A1 and A2).

In the encoder, we start with an “image” with the structure time× frequency. This
is stacked with the f0 signal, which is resampled and extended on the frequency axis to
match the size of the mel-frequency axis with a trainable linear projection (cf. Table A1).
We then reduce the size of the frequency axis step by step through down-sampling until
it has a length of 1. Down-sampling is performed with strided convolutions across the
frequency dimension, and the down-sampling operations are intercalated with classic
3× 3 convolutions. The last layer of the encoder, a 3× 1 convolution, maps the features to
the desired bottleneck size.

The decoder has an inverse structure with respect to the encoder. We start with the
concatenation of the latent code and the target f0 curve and broaden the frequency axis
step by step by up-sampling. Up-sampling is performed through transposed convolutions.
The final convolution maps the number of features back to 1, recreating the shape of the
input mel-spectrogram.

All convolutions use zero-padding to keep the shapes consistent. Activation functions
are ReLU [48]. Encoder and decoder have 10 and 11 convolutional layers, respectively,
where each layer has 512 filters. The models have roughly 12.5 M parameters each.

Contrary to AutoVC [14], there is no temporal down-sampling in our approach. As
AutoVC performs speaker identity conversion, the conditional input is constant in time.

Information 2022, 13, 102 6 of 19

Thus, there, a precise temporal resolution is not important. Here, however, we condition on
the f0 signal, which varies over time, and aim to preserve the temporal structure implied
by the f0 signal as precisely as possible. Similarly, we use convolutional layers instead of
RNN to focus the neural network to use more local features.

We also experimented with 1D convolutions but found the results’ quality to be
inferior with respect to the 2D versions. We tried growing the number of features after each
down-sampling of the frequency axis in the encoder, while equally decreasing the number
of features in the decoder, but found no significant difference in the results when keeping
the number of parameters and inference speed similar. Thus, we opted to keep the same
number of features for each layer, regardless of the size of the frequency axis.

2.2.3. Training Procedure

The auto-encoder is trained only on self-reconstruction. We apply a point-wise mean
absolute error loss between the input mel-spectrogram and the output of the decoder.
Optimization is performed with ADAM [49], with a learning rate of 1× 10−4 and the
parameters β1 = 0.9 and β2 = 0.999. We use a batch size of 16 training samples per batch
with 80 time steps (equivalent to 1 s) per sample. All models are trained for 250 k updates.

2.3. Datasets

In our experiments, we use the following four different datasets:

• A pure singing-voice dataset, obtained by combining several publicly available
datasets and our own proprietary datasets;

• A pure speech dataset consisting of the English dataset VCTK [50] and the French
dataset Att-HACK [51];

• A hybrid dataset of speech and singing, consisting of the two datasets above;
• A smaller speech dataset, consisting of a reduced number of VCTK speakers to match

the duration of the singing-voice dataset.

In particular, the singing-voice dataset contains the following:

• CREL Research Database (SVDB) [52];
• NUS sung and spoken lyrics corpus [53];
• Byzantine singing from the i-Treasures Intangible Cultural Heritage dataset [54];
• PJS phoneme-balanced Japanese singing-voice corpus [55];
• JVS-MuSiC [56];
• Tohoku Kiritan and Itako singing database [57];
• VocalSet: A singing voice dataset [58];
• Singing recordings from our internal singing databases used for the IRCAM singing

synthesizer [59] and other projects.

In total, the singing dataset contains 26.5 h of singing voices from 136 different singers;
however, 100 of them are from JVS and 94% of the total duration is sung by the remaining
36 singers. Most of the singers in the dataset are professionals, but a few of them are also
amateurs. For datasets which also contain speech, only the singing recordings are used.
The dataset contains singing in English, French, Greek, Italian, Japanese and Latin.

For speech, we train on both VCTK [50] and Att-HACK [51] which amounts to a
combined dataset of English and French speech, containing a total of 134 speakers (109
from VCTK, 25 from Att-HACK) and 54 h of speech (32 h from VCTK, 22 h from Att-HACK).

To better compare the results between speech and singing voices, we also train models
on a smaller speech dataset, consisting of only a subset of the VCTK speakers, resulting in
26.5 h of speech.

Dataset Splits
For evaluation, we withhold four speakers from the VCTK dataset in the following

section: two female and two male speakers. These are p361, p362, p374 and p376. Thus, all
evaluation of the speech models is performed on unseen speakers.

Information 2022, 13, 102 7 of 19

The test set for singing voices consists of five samples each from a set of different
singers, aimed to include a representative of each voice class, including baritone, tenor,
mezzo-soprano, soprano, child voice and counter tenor, and singing style, including
classical, pop, J-pop and Byzantine singing.

2.4. Experimental Setup
The variety of sounds that can be produced with the human voice is rich, and the

human voice is used in many different contexts. We usually make a distinction between
speaking and singing voices, due to their different acoustic properties and applications.
Similarly, here, we train separate models on speech and on singing. As speaking and
singing have their differences, training a model only on one domain may improve its
quality, as the difficulty of the task is reduced. On the other hand, speech and singing
share many similarities; training a universal model might allow using mutual information
and improve overall quality as a consequence [43]. We will see, however, that for our
application this is not the case, neither for f0 accuracy, nor for the audio quality.

Since our algorithm learns the correspondence between f0 and mel-spectrogram from
the training data, it is not able to produce mel-spectrograms with f0 values that are not
contained in the training dataset. We therefore limit the transpositions to files from the test
set such that the target f0 lies between 53.8 and 377 hz for speech and between 105 and
746 hz for singing. These ranges were chosen based on the distribution of f0 in the dataset,
such that only 1% of the f0 values from the training set lies below the lower limit and only
1% above the upper limit.

Since the size of the information bottleneck is the crucial part of the disentanglement,
we train models with different values for the bottleneck size. In our study about the effect
of the bottleneck size, we also vary the count of filters in the convolution operations from
the set {128, 256, 512}. Unless explicitly stated, the count of filters is 512.

To our knowledge, this is the first time that neural networks are applied to the problem
of explicit F0 transformation in an end-to-end manner. Ideally, we would compare our
auto-encoder to a baseline that is operating on mel-spectrograms as well and use the same
mel-inverter to isolate the effect of the proposed auto-encoder. As such a baseline does not
exist, we are forced to compare our method to traditional means of f0 transformation and
use the PaN vocoder [59], a variant of the parametric vocoders built upon the Liljencrants–
Fant pulse model [60,61], in our perceptive test. Rather than evaluating the auto-encoder
itself in that particular study, we compare the fully neural approach consisting of the
proposed auto-encoder and the mel-inverter from [43] with the PaN vocoder, which is
also a collection of different analysis and synthesis modules, itself. We show in Section 3.3
that f0 transformation based on mel-spectrograms using neural networks is a promising
approach. In Section 4.2, we provide several ideas for how future research could be built
upon the proposed method to yield further improvements.

The loss values for the models that we trained for this article can be found in Table 1.
We can see that for every configuration, the final loss decreases with the increase in bot-
tleneck size. For singing and speech, small dataset, we observe substantial overfitting due
to the smaller dataset size; however, while the validation error is significantly larger than
the training error, it does not increase over time. For the configurations trained on the full
speech dataset, almost no overfitting can be observed.

To allow the reader to obtain their own perceptive impression on the proposed method,
we created a website (see Supplementary Materials) with audio examples from the models
used in the studies discussed below.

Information 2022, 13, 102 8 of 19

Table 1. Final loss values (training (validation)) for the models used in Section 3. All values in dB.
Configurations compared in this table: singing: trained only on singing voice; speech: trained only
on speech; speech, small dataset: trained on the small speech dataset; speech + singing: trained on
both speech and singing; speech, #filters 256: trained on speech, the model has 256 filters in each
convolution layer instead of 512; speech, #filters 128: trained on speech, the model has 128 filters in
each convolution layer instead of 512.

Code Size Singing Speech Speech, Small Dataset Speech + Singing Speech, #Filters 256 Speech, #Filters 128

1 3.13 (3.46) 3.52 (3.55) 3.68 (3.79)
2 2.47 (2.91) 2.84 (2.89) 2.90 (3.36) 3.06 (3.17) 2.99 (3.03) 3.09 (3.12)
3 2.41 (2.70) 2.51 (2.55) 2.61 (2.72) 2.85 (2.84)
4 2.06 (2.44) 2.36 (2.39) 2.42 (2.74) 2.54 (2.64) 2.48 (2.51) 2.68 (2.68)
5 2.13 (2.45) 2.19 (2.21) 2.47 (2.46)
6 2.03 (2.29) 2.08 (2.11) 2.14 (2.38) 2.30 (2.39) 2.16 (2.19) 2.32 (2.33)
7 1.96 (1.99) 2.24 (2.24)
8 1.87 (1.90) 1.94 (2.17) 1.97 (2.00) 2.18 (2.21)
9 1.83 (1.85) 1.88 (2.14) 1.91 (1.93) 2.10 (2.10)

10 1.75 (1.76) 1.81 (1.98) 1.83 (1.85) 1.97 (1.96)
11 1.69 (1.71) 1.76 (1.77) 1.95 (1.95)
12 1.64 (1.66) 1.67 (1.87) 1.71 (1.73) 1.92 (1.92)
13 1.56 (1.58) 1.89 (1.89)
14 1.52 (1.54) 1.56 (1.75) 1.63 (1.65) 1.85 (1.85)
16 1.53 (1.54)

3. Results
3.1. F0 Accuracy

To check if the proposed method actually changes the f0, we apply the transposition
algorithm to our test sets and measure the difference between requested the f0 and the f0
extracted from the synthesized audio.

Figure 2 plots the mean absolute f0 error against the transposition in cent for speech
and singing separately for the selected models. As one might expect, the larger the transpo-
sition (in magnitude), the higher the mean f0 error in most of the cases, although the error
does not increase much for many of the presented models. In particular, for singing, for
models for which the bottleneck is sufficiently small, the error seems almost constant across
a range of about −2300 to +1300 cent, factors from 0.26 to 2.12. It is worth noting that for
singing, down-transpositions seem to work better, whereas for speech, up-transpositions
seem to be slightly more stable. The transposition seems to be more accurate for singing
in general.

The models which were trained on both speech and singing provide a special insight
into how speech and singing are treated inside the model, as they appear in both plots of
Figure 2. One might expect that they work similarly for both speech and singing, but this
is not at all the case for the model with bottleneck size 6, which seems to work relatively
well for speech but effectively fails for singing. In fact, for singing, bottleneck size 6 has
roughly the same f0 error, regardless of whether it was trained only on singing or on both
singing and speech. One might expect that due to the higher complexity of the problem,
the channel capacity needs to increase to properly accommodate all possibilities from the
presented data. Instead, the model operates differently on speech and singing, successfully
disentangling the former from the f0 while keeping the f0 in the latent code for the latter.

Information 2022, 13, 102 9 of 19

Information 2022, 1, 0 8 of 19

tleneck size. For singing and speech, small dataset, we observe substantial overfitting due
to the smaller dataset size; however, while the validation error is significantly larger than
the training error, it does not increase over time. For the configurations trained on the full
speech dataset, almost no overfitting can be observed.

To allow the reader to obtain their own perceptive impression on the proposed method,
we created a website http://recherche.ircam.fr/anasyn/bous/aef02021/ (accessed on
20 January 2022) with audio examples from the models used in the studies discussed below.

3. Results
3.1. F0 Accuracy

To check if the proposed method actually changes the f0, we apply the transposition
algorithm to our test sets and measure the difference between requested the f0 and the f0
extracted from the synthesized audio.

Figure 2 plots the mean absolute f0 error against the transposition in cent for speech
and singing separately for the selected models. As one might expect, the larger the transpo-
sition (in magnitude), the higher the mean f0 error in most of the cases, although the error
does not increase much for many of the presented models. In particular, for singing, for
models for which the bottleneck is sufficiently small, the error seems almost constant across
a range of about −2300 to +1300 cent, factors from 0.26 to 2.12. It is worth noting that for
singing, down-transpositions seem to work better, whereas for speech, up-transpositions
seem to be slightly more stable. The transposition seems to be more accurate for singing
in general.

Mean f0 error for speech

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500
0

50

100

150

200

transposition [cent]

m
ea

n
f 0

er
ro

r
[c

en
t]

nb = 3 (speech + singing)
nb = 6 (speech + singing)
nb = 1 (speech)
nb = 2 (speech)
nb = 3 (speech)
nb = 8 (speech)
nb = 11 (speech)
nb = 14 (speech)

Mean f0 error for singing

−2500 −2000 −1500 −1000 −500 0 500 1000 1500 2000 2500
0

50

100

150

200

transposition [cent]

m
ea

n
f 0

er
ro

r
[c

en
t]

nb = 3 (speech + singing)
nb = 6 (speech + singing)
nb = 1 (singing)
nb = 2 (singing)
nb = 3 (singing)
nb = 4 (singing)
nb = 5 (singing)
nb = 6 (singing)

Figure 2. Accuracy of the f0 transformation given as mean absolute error between target f0 and the
f0 extracted from the synthesized mel-spectrogram. Compared are models with different bottleneck
sizes nb and training datasets. (Top) mean f0 error for speech. (Bottom) mean f0 error for singing. sb:
bottleneck size.

Figure 2. Accuracy of the f0 transformation given as mean absolute error between target f0 and the
f0 extracted from the synthesized mel-spectrogram. Compared are models with different bottleneck
sizes nb and training datasets. (Top) mean f0 error for speech. (Bottom) mean f0 error for singing. sb:
bottleneck size.

3.2. Bottleneck Size Analysis

To choose the right dimensionality for the latent code, we measure the disentanglement
for various bottleneck sizes. Let ft be the target f0, fs be the f0 measured in the synthesized
signal and τ the transposition, then we define the normalized mean f0 error (NMFE) as

NMFE = E
[| log ft − log fs|

| log τ|

]
(1)

If the f0 is perfectly disentangled from the latent code, the auto-encoder will produce a
signal with the f0 provided to the decoder, and the NMFE will be zero. If, on the other hand,
the decoder only uses the f0 information contained in the latent code, then the f0 error will
be equal to the transposition, and thus the NMFE will be one. Any value in between should
give us a measure for the degree of entanglement.

We plot the NMFE against the bottleneck size for different configurations in Figure 3.
For all configurations on speech, we see a drastic increase in NMFE at around 8 or 9.

For the speech configuration with 512 filters per conv-layer (the default configuration), the
NMFE increases between 9 and 10 but drops again for 12 and 13 to almost the same value
as for the lower bottleneck sizes. At 14, the NMFE is finally multiple times worse. There is
no reason to believe that models with bottleneck size 12 or 13 should generally perform
better than bottleneck size 10 or 11 in terms of NMFE. This may be an effect of network
initialization since each of the data points is generated by training only one neural network
and by measuring its NMFE. It might well be that, here, for bottleneck size 13, the model
by chance did not find the way to entangle the f0 into the 14 dimensions, preserving the

Information 2022, 13, 102 10 of 19

small reconstruction error. Regardless of the explanation, for bottleneck sizes above 9, the
disentanglement becomes unlikely.

Information 2022, 1, 0 9 of 19

The models which were trained on both speech and singing provide a special insight
into how speech and singing are treated inside the model, as they appear in both plots of
Figure 2. One might expect that they work similarly for both speech and singing, but this
is not at all the case for the model with bottleneck size 6, which seems to work relatively
well for speech but effectively fails for singing. In fact, for singing, bottleneck size 6 has
roughly the same f0 error, regardless of whether it was trained only on singing or on both
singing and speech. One might expect that due to the higher complexity of the problem,
the channel capacity needs to increase to properly accommodate all possibilities from the
presented data. Instead, the model operates differently on speech and singing, successfully
disentangling the former from the f0 while keeping the f0 in the latent code for the latter.

3.2. Bottleneck Size Analysis

To choose the right dimensionality for the latent code, we measure the disentanglement
for various bottleneck sizes. Let ft be the target f0, fs be the f0 measured in the synthesized
signal and τ the transposition, then we define the normalized mean f0 error (NMFE) as

NMFE = E
[| log ft − log fs|

| log τ|

]
(1)

If the f0 is perfectly disentangled from the latent code, the auto-encoder will produce a
signal with the f0 provided to the decoder, and the NMFE will be zero. If, on the other hand,
the decoder only uses the f0 information contained in the latent code, then the f0 error will
be equal to the transposition, and thus the NMFE will be one. Any value in between should
give us a measure for the degree of entanglement.

We plot the NMFE against the bottleneck size for different configurations in Figure 3.

Normalized mean f0 error

2 4 6 8 10 12 14 16
0

5

10

15

20

bottleneck size

N
M
F
E

[%
]speech

speech, #filters 256
speech, #filters 128
speech, small dataset
singing

Figure 3. Normalized mean f0 error (NMFE) averaged over different transpositions, ±660 cent,
±1320 cent and ±1980 cent (ratios 0.32, 0.47, 0.68, 1.0, 1.46, 2.14 and 3.13). The NMFE is calculated
according to (1). The configurations can be found in Table 1.

For all configurations on speech, we see a drastic increase in NMFE at around 8 or 9.
For the speech configuration with 512 filters per conv-layer (the default configuration), the
NMFE increases between 9 and 10 but drops again for 12 and 13 to almost the same value
as for the lower bottleneck sizes. At 14, the NMFE is finally multiple times worse. There is
no reason to believe that models with bottleneck size 12 or 13 should generally perform
better than bottleneck size 10 or 11 in terms of NMFE. This may be an effect of network
initialization since each of the data points is generated by training only one neural network
and by measuring its NMFE. It might well be that, here, for bottleneck size 13, the model
by chance did not find the way to entangle the f0 into the 14 dimensions, preserving the
small reconstruction error. Regardless of the explanation, for bottleneck sizes above 9, the
disentanglement becomes unlikely.

Figure 3. Normalized mean f0 error (NMFE) averaged over different transpositions, ±660 cent,
±1320 cent and ±1980 cent (ratios 0.32, 0.47, 0.68, 1.0, 1.46, 2.14 and 3.13). The NMFE is calculated
according to (1). The configurations can be found in Table 1.

For speech, the critical point seems to be always the same, regardless of the modeling
capacity of the neural network of the size of the training dataset. This is counter to the
intuition that the computational capacity of the model is responsible for creating the
information bottleneck. However, as we do not actually measure the modeling capacities
of the neural networks, no clear conclusions can be drawn from this observation. It seems
that the critical point is rather stable for a wide range of neural networks with practical
size; the networks in the study here have 50, 12.5 and 3.13 M parameters, respectively.

For the singing voice, the NMFE behaves quite differently. The NMFE is much lower
for low bottleneck sizes (1–4) but already for an bottleneck size of 4, the NMFE is more than
twice as high as at the beginning.

Given that for speech, the critical point seems to be at about 8–9 regardless of the
network or dataset size, we can reasonably assume the same to hold for a variety of
different architectures; this should roughly translate to architectures based on RNNs and
transformers as well. Due to the auto-encoder’s receptive field, as we see in Section 3.4, the
auto-encoder is able to reuse redundant temporal information in the latent code. Therefore,
the sample rate of the residual code plays an important role in the required bottleneck size.
In this publication, the residual code has the same sample rate as the mel-spectrograms,
and thus, most of the phonemes are represented through multiple consecutive time steps.
In [14], on the other hand the residual code is down-sampled, resulting in a residual code of
1/32 of the mel-spectrogram’s sample rate. Consequently, there, one sample of the residual
code may contain multiple phonemes. It is no surprise that [14] works with a much larger
bottleneck size than we determine here, as an additional temporal bottleneck is used.

3.3. Synthesis Quality

A low mean f0 error for a wide range of transpositions implies disentanglement
between f0 and the latent code. This does not necessarily mean that the model is in fact
useful for performing actual transpositions. The accuracy of the f0 could be achieved by
generating an arbitrary signal with the target f0 unrelated to speech. In the case where the
bottleneck size is 1, the phonetic content is greatly reduced and the audio quality of the
resynthesized mel-spectrograms actually degrades quite noticeably. Therefore, to analyze
the synthesis quality, we conduct a perceptive test.

In the perceptive test, we asked 96 participants to rate the “degradation of the [. . .]
recordings by selecting one of the [following] options”:

Information 2022, 13, 102 11 of 19

Rating Score

Real recording 5
Perceptible but not annoying 4
Slightly annoying 3
Annoying degradation 2
Very annoying 1

The samples were randomly drawn from the test set, models, various transpositions,
and from the ground truth. The results are given in Table 2 for speech, Table 3 for singing
and Figure 4 as a plot over the transposition amount.

Tables 2 and 3 contain 46 and 45 data points, respectively. Thus, the coverage for each
of the data points is rather thin, despite the large number of participants. Consequently,
the confidence intervals are rather large.

For speech, the auto-encoder outperforms the classical vocoder with a strong margin
and for all transpositions. For singing, the classical PaN vocoder is not as bad. For
transpositions above +440 and +880 cent (factors 1.29 and 1.66) the classical vocoder
even slightly outperforms the auto-encoder, while for transpositions below −440 and
−880 cent (factors 0.78 and 0.60) the auto-encoder is slightly better. The auto-encoder
shows an approximately symmetric performance for up and down transpositions. For the
classical vocoder, the performance is asymmetric, which is due to the fact that, internally,
the vocoder preserves the spectral envelope (the formant structure) of the original signal.
For higher f0, the harmonics are spread further apart, which decreases the details in the
spectral envelope (the formant structure). Therefore, preserving the spectral envelope
for upward transpositions does not pose a problem. On the other hand, for lower f0,
the harmonics are spread more densely, and more information about the spectral envelope
(the formant structure) is perceptually expected. As the classical vocoder cannot create
more details, its perceptual result is worse. Note that the difference in this intermediate
range of transpositions remains below 1 point in the MOS scale, and it is smaller than the
95% confidence interval observed in the perceptual tests.

For transposition above ±880 cent (factors 0.60 and 1.66), the auto-encoder consider-
ably outperforms the classical vocoder by about 1 point on the MOS scale. Here, the signal
needs to change more dramatically to remain coherent: a change that the auto-encoder can
create, while the classical vocoder fails.

Averaging over all transpositions, as shown in the bottom row of Table 3, reveals
the significant dominance of the auto-encoder models over the classical vocoder (with a
confidence of over 95%). One weak point of the PaN vocoder is synthesizing consonants,
such as plosives and fricatives. Those are much more frequent in speech than in singing
and could explain the larger perceptual difference we found for speech.

As expected, the models tend to receive the highest rating for transposition 0, with
a few exceptions that lie within the 95% confidence interval. For speech, most of the
auto-encoder models manage to keep a perceptive rating above 3 by a large margin over
the interval [−1320, 1320] (factors 0.47 to 2.13). No auto-encoder model stands out among
the others. In the average ratings, bottleneck sizes 3 and 8 seem almost equally good. Only
the model with bottleneck size 2 has a significantly lower overall rating. In the same way,
for singing, there is no clear dominance of one model over all transpositions. Generally,
the model with bottleneck size 2 seems to perform better for smaller transpositions while
the model with bottleneck size 3 seems to perform better for larger transpositions. The
model with bottleneck size 3 manages to keep a perceptive rating above 3 for over an
interval of [−1760, 1320] (factors 0.36 to 2.13).

For both singing and speech, we can observe that the universal model (trained on both
speech and singing) generally performs worse than its domain specific counterpart with
the same bottleneck size.

Information 2022, 13, 102 12 of 19

Information 2022, 1, 0 12 of 19

Table 3. Mean opinion scores (MOS) for singing from the perceptive test on a scale from 1 to 5.
Transpositions are given in cent; MOS values are given with their 95% confidence interval. The best
value for each transposition (excluding ground truth) is highlighted in bold.

Transposition Ground Truth PaN Vocoder nb = 2 (Singing) nb = 3 (Speech + Singing) nb = 3 (Singing)

2200 2.00± 0.40 2.88± 0.68 2.41± 0.68 2.36± 0.74
1760 2.00± 0.61 2.40± 0.60 2.73± 0.59 2.80± 0.58
1320 2.65± 0.58 2.65± 0.68 2.88± 0.61 3.31± 0.56

880 3.93± 0.68 3.47± 0.57 3.73± 0.51 3.53± 0.73
440 4.35± 0.43 4.00± 0.47 3.35± 0.70 4.06± 0.57

0 4.75± 0.11 3.91± 0.48 4.25± 0.39 3.94± 0.46 4.09± 0.35
−440 3.67± 0.72 4.13± 0.45 3.87± 0.57 3.93± 0.47
−880 3.18± 0.69 3.35± 0.66 3.62± 0.65 3.47± 0.77
−1320 2.20± 0.61 2.80± 0.76 2.53± 0.53 3.36± 0.68
−1760 2.18± 0.62 2.56± 0.73 2.62± 0.77 3.12± 0.70
−2200 2.60± 0.66 2.87± 0.78 2.13± 0.60 2.57± 0.68
average 4.75± 0.11 3.06± 0.21 3.31± 0.19 3.14± 0.19 3.41± 0.19

Mean opinion score for speech

−2,000 −1,500 −1,000 −500 0 500 1,000 1,500 2,000
1

2

3

4

5

transposition [cent]

M
ea

n
op

in
io

n
sc

or
e

Ground truth
PaN Vocoder
nb = 2 (speech)
nb = 3 (speech)
nb = 3 (speech + singing)
nb = 8 (speech)

Mean opinion score for singing

−2000 −1500 −1000 −500 0 500 1000 1500 2000
1

2

3

4

5

transposition [cent]

M
ea

n
op

in
io

n
sc

or
e

Ground truth
PaN Vocoder
nb = 2 (singing)
nb = 3 (speech + singing)
nb = 3 (singing)

Figure 4. Mean opinion score plotted against transposition amount. The curves are slightly offset
horizontally to prevent overlapping of the error bars. The error bars denote the 95% confidence
interval. All data points are integer multiples of 440 cent (integer powers of 1.29 on a linear scale).
The exact values can be read from Tables 2 and 3. nb: bottleneck size.

Figure 4. Mean opinion score plotted against transposition amount. The curves are slightly offset
horizontally to prevent overlapping of the error bars. The error bars denote the 95% confidence
interval. All data points are integer multiples of 440 cent (integer powers of 1.29 on a linear scale).
The exact values can be read from Tables 2 and 3. nb: bottleneck size.

Table 2. Mean opinion scores (MOS) for speech from the perceptive test on a scale from 1 to 5.
Transpositions are given in cent; MOS values are given with their 95% confidence interval. The best
value for each transposition (excluding ground truth) is highlighted in bold.

Transposition Ground Truth PaN Vocoder nb = 2 (Speech) nb = 3 (Speech) nb = 3 (Speech + Singing) nb = 8 (Speech)

1760 1.41± 0.31 2.28± 0.54 2.50± 0.65 2.61± 0.62 2.11± 0.40
1320 1.74± 0.32 3.17± 0.52 3.65± 0.49 3.26± 0.46 3.00± 0.46

880 2.50± 0.53 3.72± 0.52 3.61± 0.50 3.33± 0.62 3.47± 0.42
440 2.48± 0.55 3.73± 0.50 3.41± 0.53 3.55± 0.48 4.09± 0.44

0 4.79± 0.09 2.90± 0.37 3.67± 0.37 4.10± 0.22 3.83± 0.31 4.10± 0.38
−440 3.06± 0.56 3.28± 0.49 3.83± 0.56 3.50± 0.60 4.18± 0.51
−880 2.22± 0.42 3.17± 0.57 3.41± 0.48 3.35± 0.58 3.61± 0.47
−1320 1.65± 0.43 2.83± 0.63 3.39± 0.58 3.72± 0.54 3.61± 0.53
−1760 1.61± 0.35 2.50± 0.53 2.68± 0.51 2.82± 0.53 2.50± 0.51
average 4.79± 0.09 2.25± 0.16 3.21± 0.18 3.47± 0.16 3.38± 0.17 3.48± 0.17

Information 2022, 13, 102 13 of 19

Table 3. Mean opinion scores (MOS) for singing from the perceptive test on a scale from 1 to 5.
Transpositions are given in cent; MOS values are given with their 95% confidence interval. The best
value for each transposition (excluding ground truth) is highlighted in bold.

Transposition Ground Truth PaN Vocoder nb = 2 (Singing) nb = 3 (Speech + Singing) nb = 3 (Singing)

2200 2.00± 0.40 2.88± 0.68 2.41± 0.68 2.36± 0.74
1760 2.00± 0.61 2.40± 0.60 2.73± 0.59 2.80± 0.58
1320 2.65± 0.58 2.65± 0.68 2.88± 0.61 3.31± 0.56
880 3.93± 0.68 3.47± 0.57 3.73± 0.51 3.53± 0.73
440 4.35± 0.43 4.00± 0.47 3.35± 0.70 4.06± 0.57

0 4.75± 0.11 3.91± 0.48 4.25± 0.39 3.94± 0.46 4.09± 0.35
−440 3.67± 0.72 4.13± 0.45 3.87± 0.57 3.93± 0.47
−880 3.18± 0.69 3.35± 0.66 3.62± 0.65 3.47± 0.77
−1320 2.20± 0.61 2.80± 0.76 2.53± 0.53 3.36± 0.68
−1760 2.18± 0.62 2.56± 0.73 2.62± 0.77 3.12± 0.70
−2200 2.60± 0.66 2.87± 0.78 2.13± 0.60 2.57± 0.68
average 4.75± 0.11 3.06± 0.21 3.31± 0.19 3.14± 0.19 3.41± 0.19

3.4. Visualization of the Latent Code

Since the model with bottleneck size 2 has achieved a rather good rating for singing
voice in both mean f0 error and mean opinion score, we can reasonably assume that two
dimensions suffice to represent singing voice signals. Since the latent code in that model is
only two-dimensional, we can visualize it with a 2D plot. This allows an investigation on
how the model uses its two dimensions to represent the features of human voice internally.

In one of our singing datasets, we have recordings from one singer with isolated notes
for each vowel of the French language and for five different dynamics (pp, mp, mf, f, and ff).
Plotting the latent code of these notes allows us to see how the dynamics and the phonemes
are encoded in the latent code.

Typically latent codes are bounded with a Euclidean norm of below 4; outliers with a
Euclidean norm above 10 are extremely rare. However, for better visualization, we train a
special model with a tanh activation at the end of the encoder to force all the samples into
the unit square. Loss wise, and in terms of objective (f0) and perceptual accuracy, there is
no difference with the equivalent model that uses no activation at the output of the encoder.

Figure 5 shows the latent codes for each frame in a scatter plot with each vowel in a
different color. The subplots show only the codes of frames of a fixed intensity. Figure 6
shows the latent codes for each frame with each intensity in a different color and with a
subplot for each individual vowel. From both figures, we can clearly see that intensity is
ordered along a diagonal axis.

From Figure 6, we can see that the phonemes are arranged in clusters. However,
each phoneme forms more than one cluster, typically three to four. Looking at each
code as a temporal sequence as plotted in Figure 7, we notice that the code values hop
periodically from one cluster to the other. More specifically, each phoneme is represented
by a specific gesture usually repeating with a periodicity of 3 to 4 time steps. We trace this
phenomenon back to the large receptive fields in the encoder and the decoder, 11 and 13
time steps, respectively, which translates to 138 ms and 163 ms. As the human voice (and
especially singing) normally does not change that quickly over time, there is also a lot of
redundancy between consecutive frames. Using their large receptive fields the networks
in the auto-encoder seem to be able to discard this redundancy under the large pressure
of the information bottleneck: in addition to the two feature dimensions, they also take
advantage of the temporal dimension to represent phonemes.

Information 2022, 13, 102 14 of 19

All intensities

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

pp

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

mp

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

mf

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ff

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5. Visualization of voiced frames of singing voice in the latent code for bottleneck size nb = 2.
The 2d points of the latent code for singing recordings of different isolated vowels are plotted in
scatter plots with subplots for each of the intensities, each vowel is given a different color.

all vowels

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/E/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/e/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/i/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/o/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/u/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/y/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/9~/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6. Visualization of voiced frames of singing voice in the latent code for bottleneck size nb = 2.
The 2D points of the latent code for singing recordings of different isolated vowels are plotted in
scatter plots with subplots for selected vowels used in the French language, each intensity is given a
different color. Color intensity translates to acoustic intensity: dark blue is pp, yellow is ff. Phonetic
transcription in the titles in X-SAMPA.

Information 2022, 13, 102 15 of 19

Information 2022, 1, 0 14 of 19

redundancy between consecutive frames. Using their large receptive fields the networks
in the auto-encoder seem to be able to discard this redundancy under the large pressure
of the information bottleneck: in addition to the two feature dimensions, they also take
advantage of the temporal dimension to represent phonemes.

all vowels

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/E/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/e/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/i/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/o/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/u/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/y/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

/9~/

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6. Visualization of voiced frames of singing voice in the latent code for bottleneck size nb = 2.
The 2D points of the latent code for singing recordings of different isolated vowels are plotted in
scatter plots with subplots for selected vowels used in the French language, each intensity is given a
different color. Color intensity translates to acoustic intensity: dark blue is pp, yellow is ff. Phonetic
transcription in the titles in X-SAMPA.

/E/ /i/ /y/ /9~/

−0.2 −0.1 0

−0.2

−0.1

0

0.1

−0.2−0.15−0.1

−0.4

−0.2

0

−0.3 −0.2 −0.1

−0.2

0

−0.4 −0.2

−0.2

0

0.2

Figure 7. A few consecutive steps of latent code for a fixed vowel in each subplot. The steps are
represented by arrows pointing from one value in the latent code to the next value. Temporal
evolution is indicated by color, merging from dark blue to bright yellow. For each vowel, we can
see repeating patterns of three to four steps. Every vowel has its own specific gesture occurring in
different locations of the latent code.

4. Discussion
4.1. Conclusions

In this work, we applied an auto-encoder with an information bottleneck [10] to speech
and singing voices to disentangle the f0 from the latent code. With this auto-encoder, we
were able to perform high quality transpositions of speech and singing voices.

Figure 7. A few consecutive steps of latent code for a fixed vowel in each subplot. The steps are
represented by arrows pointing from one value in the latent code to the next value. Temporal
evolution is indicated by color, merging from dark blue to bright yellow. For each vowel, we can
see repeating patterns of three to four steps. Every vowel has its own specific gesture occurring in
different locations of the latent code.

4. Discussion
4.1. Conclusions

In this work, we applied an auto-encoder with an information bottleneck [10] to speech
and singing voices to disentangle the f0 from the latent code. With this auto-encoder, we
were able to perform high quality transpositions of speech and singing voices.

Since it is possible to measure the f0 in the transposed samples, we were able to define
a disentanglement measure and perform a study over the required size of the information
bottleneck. We observed that for disentangling the singing voice, a much smaller bottleneck
(bottleneck size 3 at most) is required, whereas speech disentanglement with a much larger
bottleneck (i.e., 9) is still possible. With the appropriate encoder dimension, we were able
to perform coherent transpositions over a range of more than an octave for both speech
and singing voices.

A perceptive test was carried out to study the quality of the transposed audio. While
there was still a substantial difference between the ground truth and transposed audio, the
proposed method surpassed the state-of-the-art classical PaN vocoder [59] in perceptual
ratings for both singing and speech. For speech, the difference between the auto-encoder
and classical vocoder was severe.

Finally, we performed a deeper analysis of the latent code for the case where the
bottleneck size is 2. We observed that, while voice intensity corresponds to a clear direction
in the latent space, the phonetic content is not only encoded in position, but rather through
temporal gestures within the latent code.

4.2. Future Work

While the auto-encoder disentangled the f0 from the latent code successfully, the
resynthesized audio quality was still not on par with the original audio. For the singing
voice, this is partly due to the small dataset size, and we indeed noticed overfitting for
the singing models. Audio quality could thus be improved by training on a large singing
dataset. For speech, we saw almost no overfitting when training the model on the 54 h
large combined dataset. This means that improving the audio quality here is not as
straightforward as for singing.

An adversarial approach could help improve the audio quality by applying a dis-
criminator either on the latent space as in fader networks [33] or on the output mel-
spectrograms. To obtain the raw audio of the transposed mel-spectrograms we relied on
our mel-inversion [43]. Adapting the mel-inverter to the synthetic mel-spectrograms could
help to remove artifacts in the audio coming from inconsistencies in the mel-spectrogram,
either by training the mel-inverter on the resynthesized mel-spectrograms, or by simultane-
ously training both systems in an end-to-end approach.

Information 2022, 13, 102 16 of 19

The models analyzed in Section 3 all used non-causal filters. However, informal
listening tests showed that the quality does not degrade much if causal filters are used
instead. A causal model would even allow for real-time processing, as the only delay
would come from buffering the audio frames to compute the mel-spectrograms.

As a side-effect, the proposed method is able to compress mel-spectrograms to as little
as 2–8 features per frame. It produces an efficient and visually interpretable representation
of speech. A more thorough analysis of the latent code may allow manipulation of the
embedding directly in the latent space, potentially leading to artistic applications in sound
design. Currently, the model with bottleneck size 2 compresses human voice to a data rate
of 7.76 kB · s−1. Concentrating on the compression could further reduce the data rate and
produce a highly compressed high-quality speech codex.

Supplementary Materials: Audio samples are available at http://recherche.ircam.fr/anasyn/bous/
aef02021/.

Author Contributions: Conceptualization, F.B. and A.R.; methodology, F.B. and A.R.; software, F.B.;
validation, F.B. and A.R.; formal analysis, F.B. and A.R.; writing—original draft preparation, F.B.;
visualization, F.B.; supervision, A.R.; funding acquisition, A.R. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was funded partly by the ANR project ARS (ANR-19-CE38-0001-01). This work
was granted access to the HPC resources of IDRIS under the allocations 2020-AD011011378R1 and
2021-AD011011177R1 made by GENCI.

Institutional Review Board Statement: Ethical review and approval were waived for this study,
due to the fact that perceptional tests have been performed online using the dedicated web service
provided by prolific https://www.prolific.co/ (accessed on 28 December 2021). The service of prolific
implies that participants contribute online, fully anonymously, and voluntarily. Moreover it implies
that participants are free to choose the studies they want to participate in from a list of online surveys,
and that they can opt out at any time.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
By means of a text presented during the announcement of the test participants have been informed
before the study starts about: the general goals and duration of the online survey; the payment that
can be expected when finishing the survey; and the fact that their answers will be used to establish
average responses to the questions for a scientific publication on audio quality.

Data Availability Statement: Datasets used in this paper: The singing dataset used in this paper was
created by combining CREL Research Database (SVDB) [52], NUS sung and spoken lyrics corpus [53],
the Byzantine singing from the i-Treasures Intangible Cultural Heritage dataset [54], PJS phoneme-
balanced Japanese singing-voice corpus [55], JVS-MuSiC [56], Tohoku Kiritan and Itako singing
database [57], as well as internal singing databases used for the IRCAM Singing Synthesizer [59] and
other projects. For speech we use a combined dataset of VCTK [50] and Att-HACK [51].

Acknowledgments: We are thankful to Léane Salais and Daniel Wolff for their helpful comments on
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

http://recherche.ircam.fr/anasyn/bous/aef02021/
http://recherche.ircam.fr/anasyn/bous/aef02021/
https://www.prolific.co/

Information 2022, 13, 102 17 of 19

Appendix A. Network Architecture

Table A1. List of layers in the encoder.

Layer Inputs Output #Filters Kernel Size Stride Activation Out Shape

Conv2DTranspose f0 f ′0 2 (1, 80) (1, 80) none (t, 80, 2)
Concat mel, f ′0 h0 (t, 80, 3)
Conv2D h0 h1 512 (1, 2) (1, 2) ReLU (t, 40, 512)
Conv2D h1 h2 512 (3, 3) ReLU (t, 40, 512)
Conv2D h2 h3 512 (1, 2) (1, 2) ReLU (t, 20, 512)
Conv2D h3 h4 512 (3, 3) ReLU (t, 20, 512)
Conv2D h4 h5 512 (1, 2) (1, 2) ReLU (t, 10, 512)
Conv2D h5 h6 512 (3, 3) ReLU (t, 10, 512)
Conv2D h6 h7 512 (1, 2) (1, 2) ReLU (t, 5, 512)
Conv2D h7 h8 512 (3, 3) ReLU (t, 5, 512)
Conv2D h8 h9 512 (1, 5) (1, 5) ReLU (t, 1, 512)
Conv2D h9 code nb (3, 1) none (t, 1, nb)

Table A2. List of layers in the decoder:

Layer Inputs Output #Filters Kernel Size Stride Activation Out Shape

Concat code, f0 h′0 (t, 1, nb + 2)
Conv2D h′0 h′1 512 (3, 3) ReLU (t, 1, 512)
Conv2DTranspose h′1 h′2 512 (1, 5) (1, 5) ReLU (t, 5, 512)
Conv2D h′2 h′3 512 (3, 3) ReLU (t, 5, 512)
Conv2DTranspose h′3 h′4 512 (1, 2) (1, 2) ReLU (t, 10, 512)
Conv2D h′4 h′5 512 (3, 3) ReLU (t, 10, 512)
Conv2DTranspose h′5 h′6 512 (1, 2) (1, 2) ReLU (t, 20, 512)
Conv2D h′6 h′7 512 (3, 3) ReLU (t, 20, 512)
Conv2DTranspose h′7 h′8 512 (1, 2) (1, 2) ReLU (t, 40, 512)
Conv2D h′8 h′9 512 (3, 3) ReLU (t, 40, 512)
Conv2DTranspose h′9 h′10 512 (1, 2) (1, 2) ReLU (t, 80, 512)
Conv2D h′10 mel’ 1 (3, 3) none (t, 80, 1)

References
1. Dudley, H. Remaking speech. J. Acoust. Soc. Am. 1939, 11, 169–177. [CrossRef]
2. Flanagan, J.L.; Golden, R.M. Phase vocoder. Bell Syst. Technol. J. 1966, 45, 1493–1509. [CrossRef]
3. Moulines, E.; Charpentier, F. Pitch-synchronous waveform processing techniques for text-to-speech synthesis using diphones.

Speech Commun. 1990, 9, 453–467. [CrossRef]
4. Quatieri, T.F.; McAulay, R.J. Shape invariant time-scale and pitch modification of speech. IEEE Trans. Signal Process. 1992,

40, 497–510. [CrossRef]
5. Roebel, A. A shape-invariant phase vocoder for speech transformation. In Proceedings of the Digital Audio Effects (DAFx), Graz,

Austria , 6–10 September 2010.
6. Kawahara, H. STRAIGHT, exploitation of the other aspect of VOCODER: Perceptually isomorphic decomposition of speech

sounds. Acoust. Sci. Technol. 2006, 27, 349–353. [CrossRef]
7. Morise, M.; Yokomori, F.; Ozawa, K. World: A vocoder-based high-quality speech synthesis system for real-time applications.

Ieice Trans. Inf. Syst. 2016, 99, 1877–1884. [CrossRef]
8. Degottex, G.; Lanchantin, P.; Roebel, A.; Rodet, X. Mixed source model and its adapted vocal tract filter estimate for voice

transformation and synthesis. Speech Commun. 2013, 55, 278–294. [CrossRef]
9. Huber, S.; Roebel, A. On glottal source shape parameter transformation using a novel deterministic and stochastic speech analysis

and synthesis system. In Proceedings of the 16th Annual Conference of the International Speech Communication Association
(Interspeech ISCA), Dresden, Germany , 6–10 September 2015.

10. Qian, K.; Jin, Z.; Hasegawa-Johnson, M.; Mysore, G.J. F0-consistent many-to-many non-parallel voice conversion via conditional
autoencoder. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020.

11. Desai, S.; Raghavendra, E.V.; Yegnanarayana, B.; Black, A.W.; Prahallad, K. Voice conversion using artificial neural networks.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, 19–24
April 2009.

http://doi.org/10.1121/1.1916020
http://dx.doi.org/10.1002/j.1538-7305.1966.tb01706.x
http://dx.doi.org/10.1016/0167-6393(90)90021-Z
http://dx.doi.org/10.1109/78.120793
http://dx.doi.org/10.1250/ast.27.349
http://dx.doi.org/10.1587/transinf.2015EDP7457
http://dx.doi.org/10.1016/j.specom.2012.08.010

Information 2022, 13, 102 18 of 19

12. Kameoka, H.; Kaneko, T.; Tanaka, K.; Hojo, N. Stargan-vc: Non-parallel many-to-many voice conversion using star generative
adversarial networks. In Proceedings of the 2018 IEEE Spoken Language Technology Workshop (SLT), Athens, Greece, 18–21
December 2018.

13. Zhang, J.X.; Ling, Z.H.; Dai, L.R. Non-parallel sequence-to-sequence voice conversion with disentangled linguistic and speaker
representations. Trans. Audio Speech Lang. Process. 2019, 28, 540–552. [CrossRef]

14. Qian, K.; Zhang, Y.; Chang, S.; Yang, X.; Hasegawa-Johnson, M. Autovc: Zero-shot voice style transfer with only autoencoder
loss. In Proceedings of the International Conference on Machine Learning (ICML). PMLR, Long Beach, CA, USA, 9–15 June 2019.

15. Ferro, R.; Obin, N.; Roebel, A. CycleGAN Voice Conversion of Spectral Envelopes using Adversarial Weights. In Proceedings of
the European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021.

16. Robinson, C.; Obin, N.; Roebel, A. Sequence-to-sequence modelling of f0 for speech emotion conversion. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019.

17. Le Moine, C.; Obin, N.; Roebel, A. Towards end-to-end F0 voice conversion based on Dual-GAN with convolutional wavelet
kernels. In Proceedings of the European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021.

18. Zhao, G.; Sonsaat, S.; Levis, J.; Chukharev-Hudilainen, E.; Gutierrez-Osuna, R. Accent conversion using phonetic posteriorgrams.
In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20
April 2018.

19. Umbert, M.; Bonada, J.; Goto, M.; Nakano, T.; Sundberg, J. Expression control in singing voice synthesis: Features, approaches,
evaluation, and challenges. IEEE Signal Process. Mag. 2015, 32, 55–73. [CrossRef]

20. Umbert, M.; Bonada, J.; Blaauw, M. Generating singing voice expression contours based on unit selection. In Proceedings of the
Stockholm Music Acoustics Conference (SMAC), Stockholm, Sweden, 30 July–3 August 2013.

21. Ardaillon, L.; Chabot-Canet, C.; Roebel, A. Expressive control of singing voice synthesis using musical contexts and a parametric
f0 model. In Proceedings of the 17th Annual Conference of the International Speech Communication Association (INTERSPEECH),
ISCA, San Francisco, CA, USA, 8–12 September 2016.

22. Ardaillon, L.; Degottex, G.; Roebel, A. A multi-layer F0 model for singing voice synthesis using a B-spline representation
with intuitive controls. In Proceedings of the 16th Annual Conference of the International Speech Communication Association
(INTERSPEECH), ISCA, Dresden, Germany, 6–10 September 2015.

23. Bonada, J.; Umbert Morist, M.; Blaauw, M. Expressive singing synthesis based on unit selection for the singing synthesis challenge
2016. In Proceedings of the 17th Annual Conference of the International Speech Communication Association (INTERSPEECH),
ISCA, San Francisco, CA, USA, 8–12 September 2016.

24. Roebel, A.; Bous, F. Towards Universal Neural Vocoding with a Multi-band Excited WaveNet. arXiv 2021, arXiv:2110.03329.
25. Veaux, C.; Rodet, X. Intonation conversion from neutral to expressive speech. In Proceedings of the Twelfth Annual Conference

of the International Speech Communication Association (INTERSPEECH), ISCA, Florence, Italy, 27–31 August 2011.
26. Farner, S.; Roebel, A.; Rodet, X. Natural transformation of type and nature of the voice for extending vocal repertoire in

high-fidelity applications. In Proceedings of the Audio Engineering Society Conference: 35th International Conference: Audio for
Games, London, UK, 11–13 February 2009.

27. Arias, P.; Rachman, L.; Liuni, M.; Aucouturier, J.J. Beyond correlation: Acoustic transformation methods for the experimental
study of emotional voice and speech. Emot. Rev. 2021, 13, 12–24. [CrossRef]

28. Degottex, G.; Roebel, A.; Rodet, X. Pitch transposition and breathiness modification using a glottal source model and its adapted
vocal-tract filter. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague,
Czech Republic, 22–27 May 2011.

29. Gatys, L.A.; Ecker, A.S.; Bethge, M. Image style transfer using convolutional neural networks. In Proceedings of the Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

30. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

31. He, Z.; Zuo, W.; Kan, M.; Shan, S.; Chen, X. Attgan: Facial attribute editing by only changing what you want. Trans. Image Process.
2019, 28, 5464–5478. [CrossRef]

32. Lange, S.; Riedmiller, M. Deep auto-encoder neural networks in reinforcement learning. In Proceedings of the The 2010
International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8.

33. Lample, G.; Zeghidour, N.; Usunier, N.; Bordes, A.; Denoyer, L.; Ranzato, M. Fader networks: Manipulating images by sliding
attributes. In Proceedings of the International Conference on Neural Information Processing Systems (NeurIPS), Long Beach, CA,
USA, 4–9 December 2017.

34. Qian, K.; Zhang, Y.; Chang, S.; Hasegawa-Johnson, M.; Cox, D. Unsupervised speech decomposition via triple information
bottleneck. In Proceedings of the International Conference on Machine Learning (ICML). PMLR, Virtual, 13–18 July 2020.

35. Rabiner, L.; Cheng, M.; Rosenberg, A.; McGonegal, C. A comparative performance study of several pitch detection algorithms.
IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 399–418. [CrossRef]

36. De Cheveigné, A.; Kawahara, H. YIN, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am. 2002,
111, 1917–1930. [CrossRef]

37. Mauch, M.; Dixon, S. pYIN: A fundamental frequency estimator using probabilistic threshold distributions. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014.

http://dx.doi.org/10.1109/TASLP.2019.2960721
http://dx.doi.org/10.1109/MSP.2015.2424572
http://dx.doi.org/10.1177/1754073920934544
http://dx.doi.org/10.1145/3422622
http://dx.doi.org/10.1109/TIP.2019.2916751
http://dx.doi.org/10.1109/TASSP.1976.1162846
http://dx.doi.org/10.1121/1.1458024

Information 2022, 13, 102 19 of 19

38. Camacho, A.; Harris, J.G. A sawtooth waveform inspired pitch estimator for speech and music. J. Acoust. Soc. Am. 2008,
124, 1638–1652. [CrossRef]

39. Babacan, O.; Drugman, T.; d’Alessandro, N.; Henrich, N.; Dutoit, T. A comparative study of pitch extraction algorithms on a large
variety of singing sounds. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, BC, Canada, 26–31 May 2013.

40. Kadiri, S.R.; Yegnanarayana, B. Estimation of Fundamental Frequency from Singing Voice Using Harmonics of Impulse-like
Excitation Source. In Proceedings of the 19 Annual Conference of the International Speech Communication Association
(INTERSPEECH), ISCA, Hyderabad, India, 2–6 September 2018.

41. Kim, J.W.; Salamon, J.; Li, P.; Bello, J.P. Crepe: A convolutional representation for pitch estimation. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

42. Ardaillon, L.; Roebel, A. Fully-convolutional network for pitch estimation of speech signals. In Proceedings of the 20th Annual
Conference of the International Speech Communication Association (INTERSPEECH), ISCA, Graz, Austria, 15–19 September 2019.

43. Roebel, A.; Bous, F. Neural Vocoding for Singing and Speaking Voices with the Multi-band Excited WaveNet. Information 2022.
44. Shen, J.; Pang, R.; Weiss, R.J.; Schuster, M.; Jaitly, N.; Yang, Z.; Chen, Z.; Zhang, Y.; Wang, Y.; Skerrv-Ryan, R.; et al. Natural tts

synthesis by conditioning wavenet on mel spectrogram predictions. In Proceedings of the International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.

45. Ping, W.; Peng, K.; Gibiansky, A.; Arik, S.Ö.; Kannan, A.; Narang, S.; Raiman, J.; Miller, J. Deep Voice 3: Scaling Text-to-Speech
with Convolutional Sequence Learning. In Proceedings of the 7th International Conference on Learning Representations (ICLR),
Vancouver, BC, Canada, 30 April–3 May 2018.

46. Jang, W.; Lim, D.; Yoon, J. Universal MelGAN: A Robust Neural Vocoder for High-Fidelity Waveform Generation in Multiple
Domains. arXiv 2020, arXiv:2011.09631.

47. Bous, F.; Roebel, A. Analysing deep learning-spectral envelope prediction methods for singing synthesis. In Proceedings of the
European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019.

48. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the International
Conference on Machine Learning (ICML), PMLR, Haifa, Israel, 25 June 2010.

49. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning
Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

50. Yamagishi, J.; Veaux, C.; MacDonald, K. CSTR VCTK Corpus: English Multi-Speaker Corpus for CSTR Voice Cloning Toolkit (version
0.92); The Centre of Speech Technology Research (CSTR), University of Edinburgh: Edinburgh, Scotland, 2019.

51. Le Moine, C.; Obin, N. Att-HACK: An Expressive Speech Database with Social Attitudes. arXiv 2020, arXiv:2004.04410.
52. Tsirulnik, L.; Dubnov, S. Singing Voice Database. In Proceedings of the International Conference on Speech and Computer (ICSC),

Noida, India, 7–9 March 2019.
53. Duan, Z.; Fang, H.; Li, B.; Sim, K.C.; Wang, Y. The NUS sung and spoken lyrics corpus: A quantitative comparison of singing and

speech. In Proceedings of the 6th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), Kaohsiung, Taiwan, 29 October–1 November 2013.

54. Grammalidis, N.; Dimitropoulos, K.; Tsalakanidou, F.; Kitsikidis, A.; Roussel, P.; Denby, B.; Chawah, P.; Buchman, L.; Dupont,
S.; Laraba, S.; et al. The i-treasures intangible cultural heritage dataset. In Proceedings of the 3rd International Symposium on
Movement and Computing (MOCO), Thessaloniki, Greece, 5–6 July 2016.

55. Koguchi, J.; Takamichi, S.; Morise, M. PJS: Phoneme-balanced Japanese singing-voice corpus. In Proceedings of the Asia-Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Auckland, New Zealand, 7–10
December 2020.

56. Tamaru, H.; Takamichi, S.; Tanji, N.; Saruwatari, H. JVS-MuSiC: Japanese multispeaker singing-voice corpus. arXiv 2020,
arXiv:2001.07044.

57. Ogawa, I.; Morise, M. Tohoku Kiritan singing database: A singing database for statistical parametric singing synthesis using
Japanese pop songs. Acoust. Sci. Technol. 2021, 42, 140–145. [CrossRef]

58. Wilkins, J.; Seetharaman, P.; Wahl, A.; Pardo, B. VocalSet: A Singing Voice Dataset. In Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), ISMIR, Paris, France, 23–27 September 2018.

59. Ardaillon, L. Synthesis and expressive transformation of singing voice. Ph.D. Thesis, Université Pierre et Marie Curie, Paris,
France, 2017. Available online: https://hal.archives-ouvertes.fr/tel-01710926/document (accessed on 20 January 2022).

60. Fant, G.; Liljencrants, J.; Lin, Q.G. A four-parameter model of glottal flow. STL-QPSR 1985, 4, 1–13.
61. Fant, G. The LF-model revisited. Transformations and frequency domain analysis. Speech Trans. Lab. Q. Rep. R. Inst. Tech. Stockh.

1995, 2, 40.

http://dx.doi.org/10.1121/1.2951592
http://dx.doi.org/10.1250/ast.42.140
https://hal.archives-ouvertes.fr/tel-01710926/document

	Introduction
	Related Work
	F0 Analysis
	Voice Transformation on Mel-Spectrograms
	Auto-Encoders

	Contributions

	Materials and Methods
	Problem Formulation
	Proposed Model
	Input Data
	Network Architecture
	Training Procedure

	Datasets
	Experimental Setup

	Results
	F0 Accuracy
	Bottleneck Size Analysis
	Synthesis Quality
	Visualization of the Latent Code

	Discussion
	Conclusions
	Future Work

	Network Architecture
	References

