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Abstract: To estimate the pose of satellites in space, the docking ring component has strong rigid 

body characteristics and can provide a fixed circular feature, which is an important object. However, 

due to the need for additional constraints to estimate a single spatial circle pose on the docking ring, 

practical applications are greatly limited. In response to the above problems, this paper proposes a 

pose solution method based on a single spatial circle. First, the spatial circle is discretized into a set 

of 3D asymmetric specific sparse points, eliminating the strict central symmetry of the circle. Then, 

a two-stage pose estimation network, Hvnet, based on Hough voting is proposed to locate the 2D 

sparse points on the image. Finally, the position and orientation of the spatial circle are obtained by 

the Perspective-n-Point (PnP) algorithm. The effectiveness of the proposed method was verified 

through experiments, and the method was found to achieve good solution accuracy under a com-

plex lighting environment. 
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1. Introduction 

As a result of the rapid development of space technology, an increasing number of 

spacecraft have been launched into space, occupying limited orbital resources. Some mal-

functioning or invalid satellites cannot autonomously provide effective orbital attitude 

parameters, nor can they provide effective cooperative markers. To achieve the sustaina-

ble development of space activities, the need for on-orbit services, such as acquisition and 

maintenance of these satellites, is becoming increasingly urgent. Estimating the relative 

position and orientation between the satellite and the service spacecraft is a prerequisite 

and the key to realizing the abovementioned on-orbit service mission. 

The authors of previous literature [1–10] studied the use of geometric features, such 

as solar panels, windsurfing boards, and communication antennas, and proposed a solu-

tion method based on point features and straight-line features to solve the issue of the 

target pose. However, the strength of the above components is not strong enough to be 

captured by space robots. In the actual space environment, because the target satellite 

state is unknown, it is difficult to distinguish the position of the extracted point features 

or linear features on the satellite, and it is difficult to obtain the corresponding relationship. 

Most satellites have docking ring components that are used to mechanically connect with 

the rocket during launch. The docking ring assembly can provide a typical circular feature 

for the pose solution and has a strong gripping rigidity. NASA’s OSAM-1 on-orbit service 

mission plan captures an on-orbit satellite by grabbing the docking ring for fuel replen-

ishment to extend its lifespan. Additionally, it passed ground verification in 2020 [11]. The 

deorbit plan proposed by the German OHB company is expected to be launched in 2023 

to rescue the Envisat satellite, and the target is also the docking ring [12]. Therefore, using 
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the docking ring target to estimate the relative pose has great practical value. The concept 

of measuring and grasping the docking ring is shown in the Figure 1. 

Satellite

Service spacecraft

Robotic arm 

Docking ring

Spatial circle

 

Figure 1. The concept of measuring and grasping the docking ring. 

Miao and Zhu et al. calculated two solutions of the spatial circle pose based on the 

projection of the spatial circle on the docking ring on the image. They used the distance 

from a reference point outside the docking ring plane to the center of the circle, which 

remained unchanged as a constraint to eliminate false solutions and obtain the pose of the 

docking ring [13]. Cai and Li et al. proposed a pose solution method based on circular 

features and straight-line features to solve the roll angle and eliminate the ambiguity of 

the solution [14]. Liu and Zhao et al. proposed a method for deriving pitch, roll, and yaw 

angles based on circular features. This method required accurate diameter features to cal-

culate the orientation angle [15]. Liu and Xie et al. proposed a method for estimating cir-

cular feature poses based on binocular stereo vision. Although this method did not require 

other constraints, it had high requirements for the matching results of image features in 

two different cameras. Thus, the accuracy was easily affected by the matching result [16]. 

Wang and Zhang proposed an ellipse feature extraction method through texture bound-

ary detection, which provided a new idea for detecting elliptical features on the docking 

ring, but it still needed to introduce other constraints to solve the pose [17]. Li and Hao et 

al. proposed a method for solving the position and orientation of the docking ring based 

on line structured light. By introducing a line structured light device, the relative position 

and orientation of the docking ring were calculated using the feature of the intersection 

formed by the actively projected line structured light and the docking ring [18]. To solve 

the ambiguity of the pose solution caused by the imaging characteristics of the single spa-

tial circle, the above methods required additional external image features, accurate image 

matching results, or the introduction of other auxiliary measurement devices, in addition 

to the maintenance of accurate calibration relationships, which are likely to introduce ad-

ditional measurement errors. Therefore, the above methods have certain limitations in 

practical applications. 

In the actual space environment, the qualitative difference between the image fea-

tures of the docking ring on the satellite and the background is small, and because the 

satellite itself is covered with a heat-controlled coating material, the material has a strong 

reflective effect, and thus, there are more interference features when reflecting light. The 

lighting conditions in space vary greatly, and the contrast between the target and the back-

ground changes with changes in lighting conditions. Second, because the target satellite’s 

orbital motion state is unknown, it may be three-axis stable or spinning irregularly, which 

may cause the original docking ring circular feature to be degraded and missing to vary-

ing degrees, making it difficult to extract. 

In response to the above problems, first, the imaging characteristics of a single spatial 

circle in the camera model and the reasons for the ambiguity are analyzed. The spatial 
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circle position and orientation are then derived and modeled to recover the pose of the 

target object from a single RGB image. 

This paper proposes a specific discrete point selection method, which discretizes the 

spatial circle into a set of 3D specific sparse points, eliminates the strict central symmetry 

of the circle, and then handles the high fusion of the foreground and the background in 

the image under complex lighting conditions caused by many interference features. Tra-

ditional methods have difficulty extracting the 2D sparse points of the feature circle ob-

tained by spatial circle projection. A two-stage pose solving neural network, Hvnet, based 

on Hough voting, is proposed to extract the features and determine the pose parameters. 

The first stage of the network learns the direction vector field of each pixel in the docking 

ring area in the image pointing to the sparse point of the feature circle in the image. The 

second stage learns the Gaussian heatmap of the sparse point position of the feature circle 

in the image, and then uses the obtained sparse point direction information and position 

information to vote pixel-by-pixel to obtain the coordinates of each sparse point of the 

feature circle. Finally, the spatial circle pose parameters are obtained by the EPnP algo-

rithm [19]. The experimental results show the effectiveness of the method and that it has 

strong robustness in complex lighting conditions. 

2. Definition of Coordinate Frame and Ambiguity Elimination 

2.1. Coordinate Frame Definition 

To facilitate the analysis, the camera coordinate frame �� − ������  as shown in the 

Figure 2 is established. The docking ring plane coordinate frame �� − ������ is defined 

at the center of the spatial circle. Image coordinate frame u − v and image plane coordi-

nate frame o − xy can also be defined. �� is the camera center point, Q is the spatial cir-

cle with radius R on the target of the docking ring, �� is its center, and q is the Q pro-

jection on the image coordinate frame. The position and orientation of the spatial circle 

are derived in the camera coordinate frame. 

 

Figure 2. Coordinate frame definition. 
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With the exception of extreme cases (the spatial circle is depicted as a straight line), 

the projection of the spatial circle on the image plane is a circle or an ellipse. When the 

projection of the spatial circle on the image plane � is an ellipse, the optical center of the 

camera ��  and the spatial circle � form an elliptical cone г. Additionally, the elliptical 

cone will also project an image through it. Determining the position and the orientation 

of the spatial circle is equivalent to finding a cutting plane that cuts the elliptical cone in 

space Thus, after the plane cuts the elliptical cone, it intersects the elliptical cone to form 

a circle with a radius of R. Due to the imaging characteristics, the final solution results in 

two spatial circles with different positions and orientations, one of which is a false solu-

tion. 

According to the literature [13], the position of the center of the spatial circle and the 

orientation of the spatial circle in the camera coordinate frame can be obtained as follows: 

3 1 2 1 2 3

1 1 3 3 1 3

( ) ( )
,0,

( ) ( )

T

iO P R R
        

   
           

(1)
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1 3 1 3
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T

in P
      

    
         

(2)

��, ��, �� elliptical cone parameters are the elements of the diagonal matrix of the 

matrix formed by the parameters of the elliptic general equation. P is the orthogonal ma-

trix of the matrix formed by the parameters of the elliptic general equation, � = 1,2. From 

the above equation, when the spatial circle is depicted as an ellipse, there are two sets of 

feasible solutions for the position and orientation of the spatial circle, and they are only 

related to their own projection characteristics. Therefore, when using a single spatial circle 

to derive poses, the traditional method cannot directly obtain the true solution and needs 

additional constraints. 

In the image coordinate frame, the two spatial circles are depicted as ellipses with the 

same shape and size. However, when the spatial circle is in the plane of the docking ring, 

there is only one set of correspondences between the position of the ellipse in the image 

coordinate frame and the position of the spatial circle in the docking ring plane coordinate 

frame. The pose relationship of the spatial circle relative to the camera coordinate frame 

is uniquely determined at this time. Therefore, determining the spatial circle pose restores 

the target object pose from a single RGB image, and then the true solution can be directly 

obtained from the image. In recent years, deep learning technology has developed rap-

idly. For this problem, many current methods have two stages. First, the key points of the 

target object are detected, and then the EPnP algorithm is used to derive the pose [19]. 

This two-stage method has achieved the most advanced results [20–25]. Inspired by these 

methods, the spatial circle is first discretized into a set of asymmetric specific sparse 

points. 

2.2. Sparse Point Selection 

To avoid ambiguity between discrete points, it is necessary to obtain a set of discrete 

points that do not have a symmetric relationship. In the polar coordinate system, the fol-

lowing judgments are made. Symmetrical discrete points are equivalent to at least a pair 

of equal central angles. Therefore, any two central angles that are not equal must be asym-

metric. To prove this below, we suppose there are k discrete points. 

First, the axis of symmetry is the vertical bisector of two points on the circle, and thus, 

it must pass through the center of the circle. Then, all k points are connected to the center 

of the circle, and the central angle is considered. Next, the symmetry proves to be equiv-

alent to the existence of at least a pair of equal central angles. 

(1) Symmetry can be obtained if the central angles are equal 
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In case 1, the two angles have a common edge, as shown in the Figure 3 below. The 

angle α and the angle β are equal, and points A, B, and C are symmetrical regarding the 

symmetry axis passing through point B. 

 

Figure 3. Two angles have a common edge. 

In case 2, the two angles do not have a common edge; as shown in the Figure 4 below, 

angle α and angle β are equal, and points A, B, C, and D are symmetrical regarding the 

vertical bisector of BD. 

 

Figure 4. Two angles do not have a common edge. 

(2) At least one pair of equal central angles can be obtained if there is symmetry 

In case 1, the three points are symmetrical. As shown in the Figure 5 below, points A, 

B, C, and the axis of symmetry must pass through a point. The angles formed by this point 

and the remaining two points are equal; the angle α and the angle β in the Figure are 

equal. 
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Figure 5. Three points are symmetrical. 

In case 2, the four points are symmetrical, and points A, B, C, and D are shown in the 

Figure below. There are two situations as follows. In the first case, the axis of symmetry 

passes through the point itself, as shown in Figure 6. The angle α and the angle β are 

equal, and the angle θ and the angle γ are equal. In the second case, the axis of symmetry 

does not pass through the point itself, as shown in Figure 7. The same can be obtained 

where the angle α and the angle β are equal and the angle θ and the angle γ are equal. 

 

Figure 6. Four points are symmetrical (case 1).  

 

Figure 7. Four points are symmetrical (case 2). 

In case 3, if more than five points are symmetrical, there must be more than two sym-

metric point groups. As shown in Figure 8 below, points A, B, C, D, and E are symmetrical. 

Points A, C and D, E are symmetrical point groups, and then there are angles α and β, 

which are equal. As shown in Figure 9 below, points A, B, C, D, E, and F are symmetrical. 

Points A, D and E, F are symmetrical point groups, and also angles α and β are equal to 

each other. 

 

Figure 8. Five points are symmetrical. 
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Figure 9. Six points are symmetrical. 

From Case (1) and (2), point symmetry is equivalent to at least a pair of equal central 

angles. With this equivalence, the definition of symmetry here refers to any point of axis 

symmetry with more than two points. In addition, to avoid making the sum of two angles 

equal to the sum of the other two angles, resulting in partial point symmetry, all included 

angles less than 180° need to be considered. k points have ��
� angles, and do not consider 

angles greater than 180° because, in a circle, there cannot be two angles greater than 180° 

that will be equal. Thus, there are ��
� angles, not only k angles. This is the proof of the k 

points. Then, the ones that are not equal are selected and are arranged by the angle value. 

The angle selection method in this paper shows that in the polar coordinate frame, 

the initial angle α is set first, in addition to the initial central angle value β. Then α plus β 

enables us to obtain the next angle. We let β continue to increase, and the increment is 

obtained from the arithmetic sequence, such as {1:2:3:…:n}. If the increment obtained at a 

certain time does not meet the condition, the next position of the arithmetic sequence is 

continued to be used as the increment. Through experiments k = 8, α = 60°, and β = 32°, 

we can make the sparse points uniformly distributed on the circle and achieve the best 

performance. Finally, the angle value of the sparse point is {60,92,125,160,198,240,287,342}, 

and the distribution of the point cloud model in the docking ring is shown in the Figure 

10 below. 

XD

YD

ZD

OD

. 

Figure 10. Sparse point distribution. 
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3. Pose Estimation Network, Hvnet, Based on Hough Voting 

At present, the mainstream methods for locating key points are divided into two 

types. One type is directly based on the heatmap to return the key point position coordi-

nates; this requires a deep feature extraction network, which has difficulty meeting the 

requirements of lightweight networks [26–28]. The other type of method involves learning 

the vector field representation of the pixels of the target area pointing to the key points. 

Thus, the direction of each pixel can be predicted to the key points of the target, and fi-

nally, the key point position coordinates are obtained through the intersection point as-

sumption, which can meet the needs of lightweight networks, although the final solution 

accuracy is not high [29–31]. The early work used direct regression to predict key points; 

however, directly letting the network output two-dimensional coordinates for optimiza-

tion learning is an extremely nonlinear process, the loss function has weak constraints on 

weights, and the model has poor generalization ability. The advantage of this method is 

that the output is the coordinate point, the training and forward speed can be very fast, 

and it is end-to-end full differential training [32,33]. 

Based on the vector field representation method, the key points are located by the 

assumption of the intersection point, which is actually a method of using the rigid body 

characteristics of the object to return to the key point coordinates. Each key point is solved 

independently, and the mutual positional relationship between the key points is missing. 

Therefore, the accuracy of the solution is limited, and the method based on the heatmap 

can not only learn the mutual positional relationship between the key points but can also 

suppress the response of the non-key points. Aiming at the task of estimating the pose of 

the docking ring target on the satellite, this paper describes using the method based on 

the heatmap to improve the previous method based on vector field representation. A 

lightweight 6D pose solution framework, Hvnet, is also proposed. By inputting an RGB 

image, we can detect the target in real time and solve its 6D pose at the same time. The 6D 

pose(R; t) is transformed from the docking ring coordinate frame to the camera coordinate 

frame. R represents three-dimensional rotation and t represents three-dimensional trans-

lation. 

The overall framework of the network is shown in the Figure 11 below, which con-

sists of the backbone feature extraction network in the first stage and the heatmap regres-

sion network in the second stage. The backbone feature extraction network learns the di-

rection information of the sparse points on the image, and the heatmap regression net-

work learns the probability distribution of the sparse point position. Finally, by the vote 

method based on Hough voting, the 2D position coordinates of the sparse points of the 

spatial circle projected into the image coordinate frame are obtained [34]. The method de-

scribed in this paper uses a pixel-level voting network to detect 2D sparse points in a tra-

versal manner. This method maintains the dense detection of sparse point positioning. It 

combines the advantages of the two methods and is a dense detection method based on 

key points that can achieve higher solution accuracy. 

3.1. Backbone Feature Extraction Network 

As shown in the Figure above, the backbone feature extraction network performs two 

tasks: predicting the semantic segmentation mask and the direction vector field [29]. The 

input size of the network is H × W × 3 , the output size of the vector field is 

H × W × (2 × k), and the output size of semantic segmentation is H × W × 1. For each 

pixel of the image, the semantic label belonging to the docking ring target is output and 

the direction vector pointing to the 2D sparse point is ��. In this paper, k = 9, including 8 

sparse points and the center of the spatial circle, H = 480, W = 640. The direction vector is 

defined as follows [29]: 

2

( ) k
k

k

x p
v p

x p





 (3)
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Due to the high real-time requirements of the pose estimation task and the memory 

limitation of the onboard computer, such as the Beckhoff C6015-0010 industrial computer 

commonly found on commercial satellites, this paper does not use the HRnet high-reso-

lution network, which is currently the most advanced feature extraction network [35]. The 

backbone feature extraction network uses ResNet18 as the encoding structure. In the en-

coding stage, a series of convolution and pooling operations are carried out to reduce the 

feature spatial dimension. When the size of the feature map of the network is equal 

to 1/8(H, W), the feature map is no longer processed and downsampled. 

In the decoding stage, the target details are gradually restored through three upsam-

pling operations and multiple feature fusions. Additionally, residual blocks are embed-

ded to prevent network overfitting. Skip connection between the main network coding 

layer and the decoding layer is used to realize the fusion of the deep and shallow features 

of the network, reducing the loss of positioning information and improving the position-

ing accuracy. 

The loss function of the direction vector is as follows: 

 *
1 1

v ( ) ( )vf k k
k K p M

L l p v p
 

  
 

(4)

The loss function of semantic segmentation is as follows: 

( ) ( )sg
p

L predict p label p 
 

(5)

3.2. Heatmap Regression Network 

In the second stage, a heatmap regression network, confidence net, is introduced. The 

confidence net network structure is shown in Figure 11 above. It is a symmetric encoder-

decoder structure. The input size is H×W×(2×k + 1) and the output size is H×W×k. Three 

downsampling operations are performed to make the feature map become the original 

1/8(H,W). After two residual blocks, three upsampling operations are performed until the 

output is H×W, and skip connection is introduced. This structure is more convenient for 

feature fusion of the same resolution and fusion of more low-level features. 

The heatmap label is generated using a Gaussian filter, where the response value of 

each point represents the probability that the point is a sparse point, and the maximum 

probability value point represents the sparse point predicted by the network. To facilitate 

the calculation of the loss, Gaussian filtering is used on the true value to obtain the 

heatmap [26]: 

2
*

2

( )
( ) exp( )i

k

p x
H p


 


 (6)

where k represents the k-th sparse point, ��
∗(�) represents the probability that the k-th 

sparse point in the heatmap of the true value is at the position of the pixel point p, the 

probability of the pixel on the sparse point is 1, and the surrounding pixels spread accord-

ing to the distance in Gaussian distribution—the farther the distance, the lower the prob-

ability; the closer the distance, the higher the probability. 

�� represents the real coordinates of sparse point k, and  is the standard deviation 

of the Gaussian filter, which is a fixed parameter used to adjust the width of the Gaussian 

function. In this study, we conducted the experiment with   = 0.3. 

This study used the L2 loss function. The losses of all sparse points are calculated for 

a certain prediction result. The equation for calculation is as follows: 

*
hm

k 1

( ) ( )
K

k k k
p

L H p H p


   
 

(7)
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where ��(�) represents the probability of sparse point k at position p, ��
∗ (�) is the 

heatmap generated by the true value, and the �� value is 0 or 1. If the sparse point is not 

visible, then �� = 0, which does not participate in the calculation of the loss. The heatmap 

generated by the real label value is shown in the Figure 12, which displays the heatmap 

of three sparse points, and the position of the largest response value in the heatmap cor-

responds to the position of the sparse point. 

3D Key points

2D Key 
points

Conv+BN+ReLU Max Pooling Residual Block

Residual Block 
(Strided Conv)

Bilinear 
Upsampling

lnput image

pnp

Vector field

Object segmentation

Confidence map

Backbone feature extraction net Confidence net Hough
Voting

Pose(R:t) Key points map 

Residual Block 
(Dilated Conv)

Average Pooling

 

Figure 11. The network structure Figure. 

   

Figure 12. Position response heatmap. 

The total loss function of Hvnet is as follows. During training, the Adam optimizer 

was used to set the initial learning rate to 0.001, which was halved every 20 epochs, and a 

total of 300 epochs were trained [36]. 

total vf sg hmL l l l  
 

(8)

3.3. Voting Strategy 

To obtain the coordinates of the center of the docking ring in the image and the posi-

tion coordinates of the sparse points in the image, a Hough voting layer was designed and 
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integrated into the network. The voting score of each position in the image is calculated, 

and the voting score indicates the probability that the corresponding image position is a 

sparse point. Voting process is shown in the Figure 13 below. Specifically, 

Step 1: In the image docking ring area, the farthest distributed seed point set B is 

obtained according to the farthest point sampling, B = {��, ��, ��, … , ��}, n = 10; 

Step 2: For a sparse point �� , we first calculate the direction vector set U =

{��, ��, ��, … , ��} of each point of the seed point set pointing to pixel �� of the docking 

ring area. Then, we calculate the cosine similarity between the vector set U and the pre-

dicted direction vector set V = {��, ��, ��, … , ��} of the seed point pointing to sparse point 

��  as the first part of the voting score. Higher scores indicate alignment with more direc-

tions. 

Step 3: The voting result of each position in the previous step is weighted by the 

position probability output by the confidence net, and after each pixel of the docking ring 

area is processed, the final voting score of all image positions is obtained. Then, we choose 

the sparse point ��  with the highest score. 

p1

p3p4

p5

p6

p7

p8 p9

p10

p2

 

p1

p2

p3p4

p5

p6
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p8 p9
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p2

p3p4

p5

p6

p7

p8 p9
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xk

xi

 
Step 1  Step 2 Step 3 

Figure 13. Voting process. 

The voting score is as follows: 

n
i

1 2 2

(p) ( )i
k

k K i i i

u v
score H p

u v 


 

 

(9)

4. Experiment 

To verify the effectiveness and feasibility of the proposed method, a pose measure-

ment platform based on the docking ring component was built. The experimental plat-

form mainly includes the docking ring model, spacecraft surface wrapping materials, 

RGB-D camera, laser tracker, high-power halogen lamp, and electric translation stage, as 

shown in the Figure 14 below. The docking ring model is a satellite backup part of a certain 

series, and the model diameter is 469 mm. The camera is Intel’s D435i camera, which is 

used to collect pictures and generate a pose estimation dataset. The resolution is 1920 × 

1280, the size is 90 mm × 25 mm × 25 mm, the effective working range of the depth camera 

is 0.1 to 10 m, and the camera was accurately calibrated in advance [37]. The movement 

accuracy of the translation stage is 0.1 mm, and the maximum movement distance is 1000 

mm. The wrapping material is covered around the docking ring to simulate the external 

environment of the satellite where the docking ring target is located. A halogen lamp is 

used as the light source to simulate the lighting conditions of the docking ring target in 

the space environment. 
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Spacecraft surface 
wrapping materials

Docking ring modelRGB-D camera

Halogen lamp

Electric translation stage

Laser tracker

 

Figure 14. Pose measurement platform. 

The above experimental platform is used to simulate the actual high reflection and 

many interference space lighting environments of the docking ring target. At different 

angles and distances, approximately 12,000 images of the docking ring with different 

poses were collected to generate the docking ring pose estimation dataset. The generation 

method refers to the LINEMOD dataset [38–40]. This dataset was used for training, and 

some pictures of the dataset are shown in the Figure 15 below. 

    

Figure 15. Part of the image of the dataset. 

4.1. Measurement Parameters 

Since the docking ring coordinate frame is defined at the center of the spatial circle, 

the position and orientation of the spatial circle is the relative position and orientation 

relationship between the docking ring coordinate frame �� − ������ and the camera co-

ordinate frame �� − ������. The specific equation is expressed as follows: 

pose( ; )C DP R t P
 

(10)

In general, when the target coordinate frame is the center coordinate frame of the 

docking ring, since the circle is strictly centrally symmetric, the roll angle cannot be ob-

tained when deriving the pose, but in this study the spatial circle is discretized into a set 

of 3D asymmetric sparse points. The strict central symmetry of the circle is eliminated. 

Therefore, when the docking ring model is not an ideal circle model (when rotating at any 

angle around the z-axis, there is no difference in the image feature), the roll angle can be 

obtained, and thus, a total of six pose parameters can be obtained. However, when the 

docking ring model is an ideal circle model, the roll angle cannot be obtained. 

For pose(R; t), the physical meaning of the definition is that the coordinate frame of 

the docking ring first rotates around three coordinate axes, and then the translation coin-

cides with the camera coordinate frame. The rotation sequence is around the X axis, Y axis, 

and Z axis. 
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The relative pose involved in this article includes the position amount and orienta-

tion angle. The orientation angle is defined as the rotation around X, Y, and Z. The posi-

tion amount refers to the translation from the origin of the camera coordinate frame to the 

origin of the docking ring coordinate frame. 

4.2. Analysis of the Results 

In the experiment, the camera was installed and fixed on the translation stage. The 

halogen lamp was set to the maximum power of 2000 watts for irradiation, the camera 

was simulated in a high light intensity, high reflection working environment in space, and 

then the translation stage was controlled to move the camera forward along the camera 

coordinate frame ��, each time moving 10 mm. It moved a total of 40 positions, bringing 

the camera closer to the docking ring. Because the camera was controlled to move along 

the Z axis of its coordinate frame, there was no relative rotation, only relative translation. 

Therefore, the direction of the docking ring relative to the camera remained unchanged, 

and the direction change should be zero. Finally, the relative movement of the docking 

ring in the camera coordinate frame was compared with the actual movement of the cam-

era in the translation stage, and the position error and the orientation error of the docking 

ring could be obtained. 

4.2.1. Analysis of the Experimental Results of the Position Error 

We adopted the method based on the vector field to locate the key points and the 

Hvnet method proposed in this paper to determine the pose. Considering the practical 

application scenario of the method in this paper, the network model needs to be light-

weight, the memory footprint must be small, and the pose should be estimated in real-

time. At present, the use of a single RGB image input can meet the above requirements, 

and PVNet is the most advanced method. The vector field method uses the most advanced 

lightweight pose estimation network, PVNet, under the same single RGB image input for 

comparison [29]. The calculated translation components in pose(R; t) are compared with 

the relative position components of the camera on the translation stage relative to the ini-

tial position, and the position error curve is obtained as shown in the Figure 16 below. 

  
(a) (b) 
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Figure 16. Position error Figure. (a) Error curve of X-axis direction. (b) Error curve of Y-

axis direction. (c) Error curve of Z-axis direction. 

The relevant position error experimental data are as follows: 

m= realT T     represents the absolute translation error, 

= / *100%realT   represents the relative error, realT
  

is the distance that the 

translation stage moves relative to the initial position, and 
mT is the distance that the 

docking ring moves relative to the initial position in the camera coordinate frame obtained 

according to the model. 

First, in the X-axis direction, observing the position error curve and Table 1, it can be 

seen that although the values are relatively close, the results predicted by Hvnet are 

smoother than those predicted by PVNet. It can also be seen in the Y-axis direction that 

Hvnet performs better. In the Z-axis direction of the real movement, there is not much 

difference between the mean value of the absolute translation error and the standard de-

viation of the absolute translation error, but the maximum absolute translation error of 

PVNet is 4.8 mm larger than that of Hvnet. The relative error performance is more obvi-

ous; the maximum relative error of PVNet is 28% larger than that of Hvnet. Reflecting the 

error curve, the prediction results of PVNet show obvious fluctuations, whereas Hvnet is 

relatively stable. From the above, Hvnet is better than PVNet when estimating the posi-

tion. 

Table 1. Position error data. 

No. Δ max Δ mean Δ std  max  mean  std 

Unit (mm) (mm) (mm) (%) (%) (%) 

pvnet (x) 16.7 8.9 4.9 - - - 

pvnet (y) 35.7 16.3 10.1 - - - 

pvnet (z) 15.1 8.1 3.8 46 5.3 7.2 

hvnet (x) 16.5 8.7 4.8 - - - 

hvnet (y) 34.6 16.2 9.9 - - - 

hvnet (z) 10.3 6.9 2.5 18 4.2 2.7 
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4.2.2. Analysis of Experimental Results of the Rotation Angle Error 

Based on the calculated rotation matrix in pose(R; t), according to Equation (11), the 

error curves of the rotation angles of the docking ring around the three axes of the camera 

coordinate frames X, Y, and Z were calculated, as shown in the Figure 17 below. 

  
(a) (b) 

 
(c) 

Figure 17. Rotation angle error Figure. (a) Pitch angle error curve. (b) Yaw angle error curve. (c) 

Roll angle error curve. 

The relevant angle error experimental data are as follows: 

0= i    represents the absolute value between the corresponding rotation an-

gle of the i-th position and the starting position, and represents the amount of angular 

error change during the movement. 

First, at the pitch angle, observing the error curve and Table 2, it can be seen that the 

Hvnet solution error variation range is small, the solution accuracy is higher, the maxi-

mum angle error is 3.4°, and the average value is 1.5°. The PVNet solution error variation 

range is larger. The solution accuracy is low, the maximum angle error is 18.6°, and the 

average value is only 6.6°. In the yaw angle, the difference between the two error values 

is small, and the maximum error, the mean error, and the standard deviation error are 

relatively close, but Hvnet is considerably more stable. Regarding the roll angle, Hvnet 

performs better in terms of solution accuracy and solution stability. 
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Table 2. Angle error data. 

No. Δ max Δ mean Δ std 

Unit ( ) ( ) ( ) 

pvnet (pitch) 18.6 6.6 4.8 

pvnet (yaw) 5.8 2.4 1.5 

pvnet (roll) 17.9 6.6 4.7 

hvnet (pitch) 3.4 1.5 0.8 

hvnet (yaw) 5.2 2.2 1.6 

hvnet (roll) 3.4 1.3 0.9 

Similar to the case of estimating the position quantity, Hvnet is also considerably 

better than PVNet when estimating the angle quantity. Based on the above analysis, using 

the heatmap regression network to learn the relationship between the key points is very 

effective for improving the location of the vector field key points result, and the stability 

and prediction accuracy of the key points prediction is improved under complex lighting 

environments. 

5. Conclusions 

Aiming at docking rings that are common in space satellite pose estimation tasks, a 

pose estimation method based on a single spatial circle is proposed. The spatial circle is 

first discretized into a set of specific sparse points, and then, when locating 2D sparse 

points in the image, a two-stage pose estimation network based on Hough voting is pro-

posed to solve the pose parameters. This method does not need to introduce other addi-

tional constraints to estimate the pose of the docking ring. Experiments were conducted 

to verify the effectiveness of the proposed method and achieve good solution accuracy in 

complex lighting environments. The method proposed in this paper not only realizes the 

pose solution of the docking ring target but also provides a new idea for estimating the 

pose of spacecraft, which can provide fixed circular features or symmetrical objects. The 

improvement in the solution accuracy mainly relates to the neural network model, which 

enables improving the feature learning ability without significantly increasing the 

model’s size. In the following step, we will attempt to use spatial and channel attention 

mechanisms. 
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