
����������
�������

Citation: Azeroual, O.; Nikiforova, A.

Apache Spark and MLlib-Based

Intrusion Detection System or How

the Big Data Technologies Can Secure

the Data. Information 2022, 13, 58.

https://doi.org/10.3390/

info13020058

Academic Editor: Giovanni Russello

Received: 22 December 2021

Accepted: 21 January 2022

Published: 24 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Apache Spark and MLlib-Based Intrusion Detection System or
How the Big Data Technologies Can Secure the Data
Otmane Azeroual 1,* and Anastasija Nikiforova 2,3

1 German Centre for Higher Education Research and Science Studies (DZHW), 10117 Berlin, Germany
2 “Innovative Information Technologies” Laboratory, Programming Department, Faculty of Computing,

University of Latvia, Raina Boulevard 19, LV-1050 Riga, Latvia; Nikiforova.Anastasija@gmail.com
3 European Open Science Cloud (EOSC) Task Force “FAIR Metrics and Data Quality”, 1050 Brussels, Belgium
* Correspondence: azeroual@dzhw.eu; Tel.: +49-30-206417738

Abstract: Since the turn of the millennium, the volume of data has increased significantly in both
industries and scientific institutions. The processing of these volumes and variety of data we
are dealing with are unlikely to be accomplished with conventional software solutions. Thus, new
technologies belonging to the big data processing area, able to distribute and process data in a scalable
way, are integrated into classical Business Intelligence (BI) systems or replace them. Furthermore,
we can benefit from big data technologies to gain knowledge about security, which can be obtained
from massive databases. The paper presents a security-relevant data analysis based on the big
data analytics engine Apache Spark. A prototype intrusion detection system is developed aimed at
detecting data anomalies through machine learning by using the k-means algorithm for clustering
analysis implemented in Sparks MLlib. The extraction of features to detect anomalies is currently
challenging because the problem of detecting anomalies is not actively and exhaustively monitored.
The detection of abnormal data can be effectuated by using relevant data that are already in companies’
and scientific organizations’ possession. Their interpretation and further processing in a continuous
manner can sufficiently contribute to anomaly and intrusion detection.

Keywords: big data; machine learning; k-means; clustering; data anomaly; security; intrusion;
intrusion detection; IDS

1. Introduction

Today, during the fourth industrial revolution, also known as Industry 4.0, closely
linked with the Internet of Things (IoT) forming its core, more and more data are being
produced, collected, processed and analyzed [1]. These data, which may be critical for
decision-making, forecasting, marketing-related competition etc., are exposed to constant
dangers. The data are not only a lucrative target for criminals, but they are also of high
desirability in industrial espionage specialized in the tapping and manipulating of com-
pany data [2]. However, the threats to companies and research institutions are complex.
Therefore, the protection of these data is an essential factor not only for IT departments
but for the whole entity, i.e., a company or research institution. In particular, security
goals of protecting against unauthorized access and data manipulation are essential for all
organizations. These and other security objectives are often endangered by breaches of the
facility’s IT infrastructure. Therefore, the main objective of each security department is to
prevent intrusion into the IT infrastructure.

Employees of organizations are in constant contact with the respective systems—they
work with them and are generally the most important source of added value in organiza-
tions. However, at the same time, they are a great threat to data and systems they deal with.
The use of weak passwords, unsafe and/or insecure hardware and software, unthought-
through behavior, etc., are the most common sources of IT security problems. Therefore,
people, as the central interface of the IT systems of an organization, are potentially also the

Information 2022, 13, 58. https://doi.org/10.3390/info13020058 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13020058
https://doi.org/10.3390/info13020058
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5225-389X
https://orcid.org/0000-0002-0532-3488
https://doi.org/10.3390/info13020058
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13020058?type=check_update&version=1

Information 2022, 13, 58 2 of 18

greatest risk and even threat. In order to improve IT security of organizations, all people
involved should, and even must, be aware of the potential dangers in advance.

Today, the term of big data in our perception is typically related to data management,
i.e., the production or collection of data and their further use, with potential derivation of
benefit from their reuse. However, in addition to a variety of value-adding analyses, big
data technologies can also be used for safety-related calculations/activities [3]. In general,
the term big data refers to valuable, complex and poorly structured and/or fast-changing
data sets, particularly in the corporate environment [4]. More precisely, big data is typically
described as data compliant with an nV set of properties, where n is the number of those
properties, which can vary. Models 3V and 5V are generally accepted and widely used, and
they describe big data with a set of features, such as volume, velocity, variety, veracity and
value. They are also characterized by multifaceted interpretation, where big data covers
different areas, such as technologies, analytical methods, modeling and design processes,
commercial concepts and legal frameworks [5].

Big data analytics is perhaps one of the most obvious big data-related areas of research,
attracting both practitioners and researchers. Their advantages are widely recognized in
different areas. Furthermore, big data, and more precisely big data analytics techniques, are
also seen as a tool to help in crisis management and combating epidemics and pandemics,
such as the current COVID-19 pandemic, and are characterized by a great capacity to
predict, map, track, monitor and raise awareness of these emergencies. Here, one of the
recent studies [6,7] found that the main sources of data come from social media and internet
search engines. This applies to both the identification of first “signs” of emergency, as the
first news of COVID-19 was found in Twitter messages, and combating it. The latter relates
to the most common techniques for analyzing these data, which involve the use of statistics,
such as correlation and regression, combined with other techniques, which can potentially
(and have already proved to be such) play a key role in combating the emergency and
crisis management, allowing for a variety of studies and experiments that have not been
conceived until now. This makes big data very attractive to health and (bio)medical areas.

However, big data storage is also known for its lower level of data protection and
considerably higher interest from attackers [8]. More precisely, NoSQL databases often
have a large number of data leaks.

Due to the importance of security and the potential of big data with respect to this
issue, our paper aims to develop a prototype to improve the security of IT systems by means
of big data analysis methods. The prototype focuses on the systematic detection of threats
and attacks on data, using machine learning (ML) with the help of big data technologies. In
particular, the open-source big data analysis framework Apache Spark is used to develop
an intrusion detection system. It is not a secret that current security information and event
management systems (SIEM) already sometimes use big data analytics technologies [9].
Using these multidimensional security analyses, organizations can automatically define
the “normal state” of their data or network, thereby comparing individual actions with this
“base” and thus recognizing potential risks and threats. Thus, we explore and demonstrate
the capabilities provided by Apache products and services and draw conclusions on their
appropriateness for pattern-based analyses utilizing unsupervised machine learning aimed
at improving protection of databases in use. This is conducted on the basis of covering
these approaches and presenting the prototype developed based on them. This is followed
by the validation of the tool by applying it to the real systems and assessing the results.

To meet these aims, the paper is structured as follows: Section 2 refers to the back-
ground and provides the reader with the general understanding on the topic; Section 3
covers materials and methods used; Section 4 provides description of the solution provided;
while Sections 5 and 6 provide discussion and results.

Information 2022, 13, 58 3 of 18

2. Background: General Understanding of Security, Intrusion Detection and Prevention

Data protection describes the setting of security measures to achieve security goals,
which should be the highest priority, particularly in an open-communication infrastruc-
ture, such as the internet. As an example, recent studies [10,11] have presented an
IoTSE—Internet of Things Search Engines—Shodan and Binary Edge-based tool for non-
intrusive testing of open data sources to detect their vulnerabilities and the extent thereof.
Although it referred to the analysis of open databases only, the authors’ observation showed
some interesting results, i.e., although the total number of open databases accessible outside
the organization was less than 2% of the data sources scanned, there were data sources
with low security features where it was possible to connect to nearly all IP addresses by
retrieving data and information from them, i.e., which may pose risks to organizations.
What is more, in some cases, the databases that did not use security mechanisms, by which
NoSQL databases are mainly characterized, have already been compromised. This was the
case for such popular data sources as MongoDB, followed by PostgreSQL, ElasticSearch
and Memcached.

The internal network of the organization should also be viewed as an open-communication
structure, since it is potentially possible that each terminal within the network has access to
communication channels. The basic security objectives, mainly mentioned in the literature,
are described by the terms “Confidentiality, Integrity, Availability” (CIA) [11]. Informa-
tion security is typically, or should be, accompanied by data protection. These security
objectives are [12]:

• the protection of data against unauthorized access;
• the protection of data against unintentional changes;
• maximizing the likelihood that system or service requirements will be met within a

specified time frame.

The prevention of break-ins by setting security objectives therefore plays an important
role in every organization. The best way to protect a network or sources of information
systems is to detect attacks as early as possible and protect the artifact against them, even be-
fore they can cause harm/damage. In recent years, organizations have invested significant
resources, both financial, time and human, into defining and implementing new security
products to protect against attacks [12,13]. Here, the intrusion detection systems (IDS) enter.
An intrusion detection system mainly consists of three components providing the relevant
functionality [14], i.e., it works in three stages: (1) the system should collect the data, where
the data collection source may vary from one case to another or be a combination of various
sources, and prepare them for analysis; (2) the accumulated data should be investigated;
(3) in case of an intrusion or anomaly detected, the administrators should be informed
and take action. To sum up, intrusion detection is a process of monitoring events in an
information system or network.

Event monitoring, however, is used to analyze “signs”/characteristics of potential
security incidents that violate computer security guidelines, usage guidelines or stan-
dard security practices [15]. They, however, can be complemented with ad-hoc guidelines
depending on the particular case. Moreover, the avoidance of intrusion refers to the recogni-
tion and the attempt to prevent it. Accordingly, intrusion detection and prevention systems
(IDPS) are software solutions that combine the detection and prevention of incidents [16].
They primarily focus on identifying and logging possible security incidents, preventing
intrusions/breaches and informing security administrators about them. In some cases,
organizations also use IDPS for other purposes, such as identifying problems related to
existing security policies, documenting existing threats and preventing individuals from
bypassing security policies [17]. Therefore, almost all organizations should consider it
necessary to supplement the security infrastructure through IDPSs [18]. Another important
component that complements IDPS is Security Information and Event Management (SIEM)
solutions, which offer a combination of software products and services, which were previ-
ously presented under two separate terms, i.e., Security Information Management (SIM)
and Security Event Management (SEM) [19]. SIEM technologies enable real-time analysis

Information 2022, 13, 58 4 of 18

of security warnings generated by network hardware and applications by using the data
received from the IDPS and other relevant data [9]. They also use data from correlating
events logged by different technologies, displaying data from many event sources and
providing supporting information from other sources to help users verify the accuracy of
IDPS alerts [20].

Overall, data protection should be an ongoing priority. It is important to regularly
review information systems as sources and to be vigilant in the case of suspicious changes.
This is particularly important because threats are evolving at an unprecedented pace, and
data about organizations’ networks and servers are the preferred target. IDPSs are very
suitable for detecting and stopping network attacks, including those aimed at vulnera-
bilities in the application and operating system, and provide IT administrators with an
additional layer of protection of their infrastructures. They ensure that attempted attacks
and undesired data transfers and/or manipulations with them are reported quickly and
preferably also prevented. The type of IDPS that is ultimately used depends on the size and
architecture of the network concerned, as well as on the requirements of the IT department
and management with regard to the functions of the product [20].

In this paper, we present a prototype of the intrusion detection system developed on
the basis of Apache Spark. Therefore, let us provide some motivation for this choice by
elaborating on the applicability and appropriateness of Apache Spark.

3. Materials and Methods: Big Data Approach with Apache Spark and MLlib

Apache Spark is an open-source big data analysis framework that allows computing
of huge amounts of data [21]. Spark is able to process databases that are distributed
across a large number of machines. This project was launched in 2010 at the University
of California, Berkeley, and became an Apache project in 2013. Since then, Spark has
proliferated and evolved immensely. In the meantime, Apache Spark has developed
into a de facto open-source standard in the big data world and is traded as a successor
to Apache Hadoop MapReduce technology, mainly due to its outstanding processing
speed [22]. With advanced resource management and resource utilization (such as in-
memory computing), Apache Spark enables this world-class speed. In addition, it can also
be easily integrated into existing Apache Hadoop systems; for example, native support for
the Hadoop Distributed File System (HDFS) is built into Spark [23].

Another benefit and key for success of the Spark framework is the fact that it provides
interface to a variety of programing languages, including Java, Python and R, while Apache
Spark itself has been developed in Scala. Therefore, for pragmatic reasons, the source code
of the prototype proposed in this study has also been developed in Scala. In addition,
the Scala programing language offers a variety of contemporary and easy-to-implement
concepts, such as optional parameters, immutable objects, pattern-based searches, etc. In
particular, anonymous functions are widespread in Scala and are also widely used in this
work. Scala programs—and thus Spark—are compiled in Java bytecode and executed in
the Java Runtime Environment.

Each Spark application consists of a driver program that starts and manages various
parallel operations on a computer network. The driver includes the main function and de-
fines data records distributed by the SparkContext instance, on which arithmetic operations
are then carried out. These operations are divided into individual tasks and are processed
by executors on nodes in the computer network. Figure 1 shows general relationships of
the components for the distributed execution in Spark.

Information 2022, 13, 58 5 of 18
Information 2022, 13, x FOR PEER REVIEW 5 of 19

Figure 1. Components of Distributed Execution in Spark.

An essential core element and one of the most fundamental data structures of Spark
is the Resilient Distributed Dataset (RDD) [24]. This is an abstraction of a database that is
partitioned and therefore redistributable over a computer network. All data, e.g., data
from log files or network streams, are converted to a generic RDD, which in turn is used
by Spark as a processing medium. This layer of abstraction allows developers to keep data
in the cluster node’s memory during their processing. In this way, the costs of recalculat-
ing or outsourcing to slow data carriers can be avoided in the subsequent analysis. Thus,
Spark can be considered sufficiently flexible and fault tolerant. For example, computer
network node’s failures or memory bottlenecks are automatically recognized during cal-
culation and treated with different strategies without interrupting processing [25].

Another component recognized as important and beneficial for developers is Spark
Machine Learning Library (MLlib). MLlib is a machine learning (ML) library optimized
for use in a cluster [26]. MLlib aims to implement ML algorithms and techniques in a scal-
able and simple manner in Spark applications [27]. It has many pre-implemented ML al-
gorithms, including classification, regression, clustering and others, to be re-used in de-
veloped Spark applications. Generally, the Spark Framework consists of five components,
as shown in Figure 2. In light of the objectives of our paper, we are focusing and further
using Spark Core and MLlib.

In computer science, machine learning (ML) is known as the sub-discipline of the
generation of synthetic/artificial knowledge from data. The artificial knowledge gained
allows the ML systems to make certain predictions. There are various ML algorithms that,
once learned, are able to distinguish between normal/ordinary and uncommon data. If it
is known in a data record or set which entries are considered “normal”, and the system is
informed that training can take place, for example in the form of a flag, this is called “su-
pervised learning”. The used algorithm is assigned to work in a specific predefined man-
ner, based on known input and output data. This process is also known as training in the
context of ML. Statistical classification methods are mainly used in this form of machine
learning. With this method, the algorithm is able to develop decision trees to be able to
prepare predictions for new data with similar patterns by means of regression analysis.
Most algorithms that make predictions are based on classification and regression.

Figure 1. Components of Distributed Execution in Spark.

An essential core element and one of the most fundamental data structures of Spark
is the Resilient Distributed Dataset (RDD) [24]. This is an abstraction of a database that
is partitioned and therefore redistributable over a computer network. All data, e.g., data
from log files or network streams, are converted to a generic RDD, which in turn is used by
Spark as a processing medium. This layer of abstraction allows developers to keep data in
the cluster node’s memory during their processing. In this way, the costs of recalculating or
outsourcing to slow data carriers can be avoided in the subsequent analysis. Thus, Spark
can be considered sufficiently flexible and fault tolerant. For example, computer network
node’s failures or memory bottlenecks are automatically recognized during calculation and
treated with different strategies without interrupting processing [25].

Another component recognized as important and beneficial for developers is Spark
Machine Learning Library (MLlib). MLlib is a machine learning (ML) library optimized
for use in a cluster [26]. MLlib aims to implement ML algorithms and techniques in a
scalable and simple manner in Spark applications [27]. It has many pre-implemented
ML algorithms, including classification, regression, clustering and others, to be re-used in
developed Spark applications. Generally, the Spark Framework consists of five components,
as shown in Figure 2. In light of the objectives of our paper, we are focusing and further
using Spark Core and MLlib.

In computer science, machine learning (ML) is known as the sub-discipline of the
generation of synthetic/artificial knowledge from data. The artificial knowledge gained
allows the ML systems to make certain predictions. There are various ML algorithms that,
once learned, are able to distinguish between normal/ordinary and uncommon data. If it
is known in a data record or set which entries are considered “normal”, and the system
is informed that training can take place, for example in the form of a flag, this is called
“supervised learning”. The used algorithm is assigned to work in a specific predefined
manner, based on known input and output data. This process is also known as training in
the context of ML. Statistical classification methods are mainly used in this form of machine
learning. With this method, the algorithm is able to develop decision trees to be able to
prepare predictions for new data with similar patterns by means of regression analysis.
Most algorithms that make predictions are based on classification and regression.

Information 2022, 13, 58 6 of 18Information 2022, 13, x FOR PEER REVIEW 6 of 19

Figure 2. Apache Spark Framework.

At the same time, there are data sets for which it is previously not known which data
should be considered normal or ordinary. For example, if new types of attack attempts
are identified in the data, attack patterns may not be known. In this case, it is not possible
to apply classification in advance. The system should rather use input data to identify
independently which patterns are represented in a data record and thus evaluate which
data do not match these patterns. “Unsupervised learning” can be a solution to these kinds
of problems. In other words, unsupervised learning techniques are not trained on the basis
of defined target data, as they are not available during the learning process. Rather, unsu-
pervised learning algorithms capture structures in data and find groups of similar inputs
or determine and learn which types of inputs might occur and which might not. Thus, in
light of this, the intrusion detection system to be developed will be developed on the basis
of unsupervised learning, by using the k-means clustering method implemented in MLlib
from Spark.

The k-means clustering method is probably the best-researched and most widely
used method of unsupervised learning. In this context, the term “cluster” should not be
confused with the computer network. Cluster analysis tends to identify similarities in
structures in large databases, where object groups or records that are structurally similar
are called clusters. Clusters created from input data can then be used to compare new or
unknown data with existing clusters. If the data to be checked exceeds a certain distance
from the given clusters, i.e., the threshold value for the distance to existing clusters is ex-
ceeded, this data is referred to as an anomaly.

Figure 2. Apache Spark Framework.

At the same time, there are data sets for which it is previously not known which data
should be considered normal or ordinary. For example, if new types of attack attempts
are identified in the data, attack patterns may not be known. In this case, it is not possible
to apply classification in advance. The system should rather use input data to identify
independently which patterns are represented in a data record and thus evaluate which
data do not match these patterns. “Unsupervised learning” can be a solution to these kinds
of problems. In other words, unsupervised learning techniques are not trained on the
basis of defined target data, as they are not available during the learning process. Rather,
unsupervised learning algorithms capture structures in data and find groups of similar
inputs or determine and learn which types of inputs might occur and which might not.
Thus, in light of this, the intrusion detection system to be developed will be developed on
the basis of unsupervised learning, by using the k-means clustering method implemented
in MLlib from Spark.

The k-means clustering method is probably the best-researched and most widely used
method of unsupervised learning. In this context, the term “cluster” should not be confused
with the computer network. Cluster analysis tends to identify similarities in structures
in large databases, where object groups or records that are structurally similar are called
clusters. Clusters created from input data can then be used to compare new or unknown
data with existing clusters. If the data to be checked exceeds a certain distance from the
given clusters, i.e., the threshold value for the distance to existing clusters is exceeded, this
data is referred to as an anomaly.

Information 2022, 13, 58 7 of 18

4. Results: Prototype of Apache Spark and MLlib-Based Intrusion Detection System
from A to Z

In contrast to signature-based IDS solutions that prevail in the market, the prototype
solution developed in this article is based on machine learning with the help of the big data
cluster framework Apache Spark. Figure 3 shows a system framework diagram modeled
in Business Process Model and Notation (BPMN) to understand the overall image of the
actions performed in the system. In short, the developed system should be able to determine
from the data set used, which parts of the data set are to be classified as harmless or regular,
and which are conspicuous or irregular, and can quickly identify anomalies in the data. The
k-means algorithm is used for cluster analysis, which is implemented in the Sparks MLlib
component. The anomalies can be intentional or involuntary. The premeditated ones are
malicious, and it is important to identify and discover them. The causes of anomalies vary,
and if the anomaly was alerted in the solution, clustering techniques are used to perform
the action that ML algorithms, such as K-means, use to divide data into groups. Instances
far from all groups are identified as outliers.

Information 2022, 13, x FOR PEER REVIEW 7 of 19

4. Results: Prototype of Apache Spark and MLlib-Based Intrusion Detection System
from A to Z

In contrast to signature-based IDS solutions that prevail in the market, the prototype
solution developed in this article is based on machine learning with the help of the big
data cluster framework Apache Spark. Figure 3 shows a system framework diagram mod-
eled in Business Process Model and Notation (BPMN) to understand the overall image of
the actions performed in the system. In short, the developed system should be able to
determine from the data set used, which parts of the data set are to be classified as harm-
less or regular, and which are conspicuous or irregular, and can quickly identify anoma-
lies in the data. The k-means algorithm is used for cluster analysis, which is implemented
in the Sparks MLlib component. The anomalies can be intentional or involuntary. The
premeditated ones are malicious, and it is important to identify and discover them. The
causes of anomalies vary, and if the anomaly was alerted in the solution, clustering tech-
niques are used to perform the action that ML algorithms, such as K-means, use to divide
data into groups. Instances far from all groups are identified as outliers.

Figure 3. System Framework Diagram.

For the purposes of our experiments, we have created a database, in which we have
created our own computer network for Spark and Hadoop applications. The cluster con-
sists of a total of 24 processors and is equipped with 96 gigabytes of RAM. Spark version
1.3 is installed on the cluster. The database is available as a text file researchdatacup.data,
which part is made available at https://github.com/OtmaneAzeroualDZHW/IDS-proto-
type/blob/main/researchdatacup.data (last accessed 21 January 2022). It is over 700 mega-
bytes and consists of almost five million data records. Each data record consists of 42 at-
tributes, with one data record per line, separated by commas (in a CSV-like format). The
database used is sufficient both for building a rapid prototyping and as a big data exam-
ple, since processing this database requires a large number of gigabytes of RAM. For this
reason, a large part of the calculations was carried out within the computer cluster. In
addition, feature names and feature types are listed in a further text file (research-
datacup.names). Interestingly, the organizers of the research data cup identified the type
of connection or attack in each data set. There are labels such as buffer_overflow, smurf
or normal. This marking could serve as a target definition of a supervised learning
method. However, the main focus of the prototype under development is on detecting
anomalies and potentially unknown attacks. Therefore, a method of independent, unsu-

Figure 3. System Framework Diagram.

For the purposes of our experiments, we have created a database, in which we have
created our own computer network for Spark and Hadoop applications. The cluster consists
of a total of 24 processors and is equipped with 96 gigabytes of RAM. Spark version 1.3 is
installed on the cluster. The database is available as a text file researchdatacup.data, which
part is made available at https://github.com/OtmaneAzeroualDZHW/IDS-prototype/
blob/main/researchdatacup.data (accessed on 20 December 2022). It is over 700 megabytes
and consists of almost five million data records. Each data record consists of 42 attributes,
with one data record per line, separated by commas (in a CSV-like format). The database
used is sufficient both for building a rapid prototyping and as a big data example, since
processing this database requires a large number of gigabytes of RAM. For this reason,
a large part of the calculations was carried out within the computer cluster. In addition,
feature names and feature types are listed in a further text file (researchdatacup.names).
Interestingly, the organizers of the research data cup identified the type of connection or
attack in each data set. There are labels such as buffer_overflow, smurf or normal. This
marking could serve as a target definition of a supervised learning method. However, the
main focus of the prototype under development is on detecting anomalies and potentially
unknown attacks. Therefore, a method of independent, unsupervised learning is used, and
the characteristics of the type of attack are deliberately ignored for actual processing. In

https://github.com/OtmaneAzeroualDZHW/IDS-prototype/blob/main/researchdatacup.data
https://github.com/OtmaneAzeroualDZHW/IDS-prototype/blob/main/researchdatacup.data

Information 2022, 13, 58 8 of 18

the course of this paper, it will also be found that some connections in the database are
considered normal and are marked as such, but they represent anomalies in the sense of
the analysis and are therefore to be classified as potentially dangerous.

In almost all cases of analysis, it is necessary to adapt the input data to a certain
extent, so that the analysis system can process these data adequately. This process is
called transformation. Therefore, the first step of any analysis is to review the data. For
this purpose, we have used the Spark Shell, which offers a convenient tool for quick
initial database analysis. It initializes the Spark context, which is essential for calculations
(instance of the SparkContext class). In the following examples, the Spark Framework
should be equipped with at least eight gigabytes of RAM. Therefore, Spark Shell is used on
a Unix-like operating system with a parameter—driver-memory 8 g. Once the Spark context
(identified in the following by the variable sc) is available, the data record may be read into
an RDD (see Figure 1).

In the first line of the code provided in Figure 4, the data record is read in as RDD
and in the unchangeable variable rawData, while line four transforms an array of strings
of each comma-separated data record. The map() function of the RDD class is used here,
which expects a function that is applied to each data record as a parameter. It should
be noted that the mapped variable references a new RDD instance and that the map()
method has not yet processed the data. When using RDDs, there are typically two types of
instructions—transformations and actions.

Information 2022, 13, x FOR PEER REVIEW 8 of 19

pervised learning is used, and the characteristics of the type of attack are deliberately ig-
nored for actual processing. In the course of this paper, it will also be found that some
connections in the database are considered normal and are marked as such, but they rep-
resent anomalies in the sense of the analysis and are therefore to be classified as potentially
dangerous.

In almost all cases of analysis, it is necessary to adapt the input data to a certain ex-
tent, so that the analysis system can process these data adequately. This process is called
transformation. Therefore, the first step of any analysis is to review the data. For this pur-
pose, we have used the Spark Shell, which offers a convenient tool for quick initial data-
base analysis. It initializes the Spark context, which is essential for calculations (instance
of the SparkContext class). In the following examples, the Spark Framework should be
equipped with at least eight gigabytes of RAM. Therefore, Spark Shell is used on a Unix-
like operating system with a parameter—driver-memory 8 g. Once the Spark context (iden-
tified in the following by the variable sc) is available, the data record may be read into an
RDD (see Figure 1).

In the first line of the code provided in Figure 4, the data record is read in as RDD
and in the unchangeable variable rawData, while line four transforms an array of strings
of each comma-separated data record. The map() function of the RDD class is used here,
which expects a function that is applied to each data record as a parameter. It should be
noted that the mapped variable references a new RDD instance and that the map() method
has not yet processed the data. When using RDDs, there are typically two types of instruc-
tions—transformations and actions.

Figure 4. Analysis of data set in the Spark Shell.

Transformations enrich abstract RDD with meta-information, such as how RDD
should be converted. However, only if there is an action Spark performs an actual, dis-
tributed calculation on an RDD and then takes into account and optimizes the previously
defined transformations. The map() is a transformation (“convert every data set using the
following function”), while the first() method is an action (“return the first line of a calcu-
lated RDD”). Therefore, only when first() is called in line seven the RDD is actually trans-
formed, and the first data record of the transformed RDD is returned.

The first data set extracted by first() reveals the TCP connection to the HTTP service.
In this particular case, 215 bytes were sent, and 45,076 bytes were received. All other fea-
tures are listed in the researchdatacup.names text file.

Using the length method, we can determine that the data record in firstItem consists
of 42 elements (also called columns, parameters). These 42 columns will be used as 42-
dimensional vector features for clustering in the following steps. It is also important to
note that the elements are not only numeric, i.e., some features are represented in Boolean
(as 0 or 1), some take real values between 0 and 1, while others are symbolic (e.g., tcp).

As we have briefly mentioned above, map() expects a definition of the function. Here,
we use a method provided in line four of the code provided in Figure 1, where the short-
ened notation for the definition of the map() is given. Such a notation is possible due to the
flexible Scala syntax and combines the concepts of anonymous functions and an implied
parameter (_). Both concepts are widespread in the Scala world and can save a lot of pro-
graming code—but mostly at the expense of legibility. The fourth line corresponds to the
call provided in the code shown in Figure 5.

Figure 4. Analysis of data set in the Spark Shell.

Transformations enrich abstract RDD with meta-information, such as how RDD should
be converted. However, only if there is an action Spark performs an actual, distributed
calculation on an RDD and then takes into account and optimizes the previously defined
transformations. The map() is a transformation (“convert every data set using the following
function”), while the first() method is an action (“return the first line of a calculated RDD”).
Therefore, only when first() is called in line seven the RDD is actually transformed, and the
first data record of the transformed RDD is returned.

The first data set extracted by first() reveals the TCP connection to the HTTP service. In
this particular case, 215 bytes were sent, and 45,076 bytes were received. All other features
are listed in the researchdatacup.names text file.

Using the length method, we can determine that the data record in firstItem consists
of 42 elements (also called columns, parameters). These 42 columns will be used as
42-dimensional vector features for clustering in the following steps. It is also important to
note that the elements are not only numeric, i.e., some features are represented in Boolean
(as 0 or 1), some take real values between 0 and 1, while others are symbolic (e.g., tcp).

As we have briefly mentioned above, map() expects a definition of the function. Here,
we use a method provided in line four of the code provided in Figure 1, where the shortened
notation for the definition of the map() is given. Such a notation is possible due to the
flexible Scala syntax and combines the concepts of anonymous functions and an implied
parameter (_). Both concepts are widespread in the Scala world and can save a lot of
programing code—but mostly at the expense of legibility. The fourth line corresponds to
the call provided in the code shown in Figure 5.

Information 2022, 13, 58 9 of 18Information 2022, 13, x FOR PEER REVIEW 9 of 19

Figure 5. Map() method.

In the code of Figure 5, an anonymous function is transferred to map() (line =
>line.split(’,’)). The underscore in the code available in Figure1, line four, on the other
hand, is implicitly interpreted by Scala as a line parameter and thus, in turn, shortens the
long form of the anonymous function.

In the database analysis, data records were transformed into the RDD, separated by
commas. However, this is not enough to process the data in a meaningful way, i.e., sym-
bolic features must be converted into numeric ones. The reason for this is that the later
calculation of the distances between feature values and clusters can only be performed
using numerical values. For this reason, the parsing of the data records must be optimized
by encoding categorical (symbolic) features into numerical ones. For example, to find out
which symbolic values the protocol_type feature assumes, the following Spark statement
available in Figure 6 can be used.

Figure 6. Values for protocol_type property.

The expression _.split(’,’)(1) splits as before using a comma and takes only the second
column (index (1)), while the countByValue() action counts all occurrences. It can be seen
here that protocol_type takes on the values Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP). One-hot coding
is used here to numerically represent these characteristic values. Due to the one-hot cod-
ing, each categorical characteristic takes on n possible numerical characteristics, with a
value for each placeholder of 0 or 1. In the case of the log type or data type, the feature
may have three different values, hence n = 3. For example, if a data record has a TCP log
type, the one-hot representation is “1,0,0”—analogously “0,1,0” for UDP and “0,0,1” for
ICMP. Features two through four are categorical; they are transformed into one-hot. It
should be noted that in order to do this, all possible value options need to be known be-
forehand.

After the calculation performed by Spark, the symbolData variable references an in-
stance of the Map type, which itself references three Map instances (see Figure 7). In Scala,
Map is an iterable collection consisting of key–value pairs (see dictionaries or hashes in
other programing languages). symbolData(”protocols”), symbolData(”services”) and sym-
bolData(”states”) contain [String, Int]-maps with all possible occurrences of value variants
assigned to the index. The distinct method returns only one-time occurrences, while collect
returns all (calculated) elements. zipWithIndex creates a tuple with a value and an index
number for each element, and toMap converts the array to a map. A representation of sym-
bolData(“services”) output shows the exemplary result of the transformation. Using this
information, the numerical feature vectors can then be developed.

Figure 7. Transformation of categorical characteristics into three indexed map instances.

The getFeatureVectors() function in provided in Figure 8 transforms rawData and the
data from symbolData into an RDD of feature vectors with exclusively numerical values.
In order to increase the performance of the program, symbolData is not recalculated every

Figure 5. Map() method.

In the code of Figure 5, an anonymous function is transferred to map() (line =>line.split(‘,’)).
The underscore in the code available in Figure 1, line four, on the other hand, is implicitly
interpreted by Scala as a line parameter and thus, in turn, shortens the long form of the
anonymous function.

In the database analysis, data records were transformed into the RDD, separated by
commas. However, this is not enough to process the data in a meaningful way, i.e., symbolic
features must be converted into numeric ones. The reason for this is that the later calcu-
lation of the distances between feature values and clusters can only be performed using
numerical values. For this reason, the parsing of the data records must be optimized by
encoding categorical (symbolic) features into numerical ones. For example, to find out
which symbolic values the protocol_type feature assumes, the following Spark statement
available in Figure 6 can be used.

Information 2022, 13, x FOR PEER REVIEW 9 of 19

Figure 5. Map() method.

In the code of Figure 5, an anonymous function is transferred to map() (line =
>line.split(’,’)). The underscore in the code available in Figure1, line four, on the other
hand, is implicitly interpreted by Scala as a line parameter and thus, in turn, shortens the
long form of the anonymous function.

In the database analysis, data records were transformed into the RDD, separated by
commas. However, this is not enough to process the data in a meaningful way, i.e., sym-
bolic features must be converted into numeric ones. The reason for this is that the later
calculation of the distances between feature values and clusters can only be performed
using numerical values. For this reason, the parsing of the data records must be optimized
by encoding categorical (symbolic) features into numerical ones. For example, to find out
which symbolic values the protocol_type feature assumes, the following Spark statement
available in Figure 6 can be used.

Figure 6. Values for protocol_type property.

The expression _.split(’,’)(1) splits as before using a comma and takes only the second
column (index (1)), while the countByValue() action counts all occurrences. It can be seen
here that protocol_type takes on the values Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP). One-hot coding
is used here to numerically represent these characteristic values. Due to the one-hot cod-
ing, each categorical characteristic takes on n possible numerical characteristics, with a
value for each placeholder of 0 or 1. In the case of the log type or data type, the feature
may have three different values, hence n = 3. For example, if a data record has a TCP log
type, the one-hot representation is “1,0,0”—analogously “0,1,0” for UDP and “0,0,1” for
ICMP. Features two through four are categorical; they are transformed into one-hot. It
should be noted that in order to do this, all possible value options need to be known be-
forehand.

After the calculation performed by Spark, the symbolData variable references an in-
stance of the Map type, which itself references three Map instances (see Figure 7). In Scala,
Map is an iterable collection consisting of key–value pairs (see dictionaries or hashes in
other programing languages). symbolData(”protocols”), symbolData(”services”) and sym-
bolData(”states”) contain [String, Int]-maps with all possible occurrences of value variants
assigned to the index. The distinct method returns only one-time occurrences, while collect
returns all (calculated) elements. zipWithIndex creates a tuple with a value and an index
number for each element, and toMap converts the array to a map. A representation of sym-
bolData(“services”) output shows the exemplary result of the transformation. Using this
information, the numerical feature vectors can then be developed.

Figure 7. Transformation of categorical characteristics into three indexed map instances.

The getFeatureVectors() function in provided in Figure 8 transforms rawData and the
data from symbolData into an RDD of feature vectors with exclusively numerical values.
In order to increase the performance of the program, symbolData is not recalculated every

Figure 6. Values for protocol_type property.

The expression _.split(‘,’)(1) splits as before using a comma and takes only the second
column (index (1)), while the countByValue() action counts all occurrences. It can be seen
here that protocol_type takes on the values Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP). One-hot coding
is used here to numerically represent these characteristic values. Due to the one-hot coding,
each categorical characteristic takes on n possible numerical characteristics, with a value
for each placeholder of 0 or 1. In the case of the log type or data type, the feature may
have three different values, hence n = 3. For example, if a data record has a TCP log type,
the one-hot representation is “1,0,0”—analogously “0,1,0” for UDP and “0,0,1” for ICMP.
Features two through four are categorical; they are transformed into one-hot. It should be
noted that in order to do this, all possible value options need to be known beforehand.

After the calculation performed by Spark, the symbolData variable references an in-
stance of the Map type, which itself references three Map instances (see Figure 7). In Scala,
Map is an iterable collection consisting of key–value pairs (see dictionaries or hashes in
other programing languages). symbolData(“protocols”), symbolData(“services”) and symbol-
Data(“states”) contain [String, Int]-maps with all possible occurrences of value variants
assigned to the index. The distinct method returns only one-time occurrences, while collect
returns all (calculated) elements. zipWithIndex creates a tuple with a value and an index
number for each element, and toMap converts the array to a map. A representation of
symbolData(“services”) output shows the exemplary result of the transformation. Using this
information, the numerical feature vectors can then be developed.

Information 2022, 13, x FOR PEER REVIEW 9 of 19

Figure 5. Map() method.

In the code of Figure 5, an anonymous function is transferred to map() (line =
>line.split(’,’)). The underscore in the code available in Figure1, line four, on the other
hand, is implicitly interpreted by Scala as a line parameter and thus, in turn, shortens the
long form of the anonymous function.

In the database analysis, data records were transformed into the RDD, separated by
commas. However, this is not enough to process the data in a meaningful way, i.e., sym-
bolic features must be converted into numeric ones. The reason for this is that the later
calculation of the distances between feature values and clusters can only be performed
using numerical values. For this reason, the parsing of the data records must be optimized
by encoding categorical (symbolic) features into numerical ones. For example, to find out
which symbolic values the protocol_type feature assumes, the following Spark statement
available in Figure 6 can be used.

Figure 6. Values for protocol_type property.

The expression _.split(’,’)(1) splits as before using a comma and takes only the second
column (index (1)), while the countByValue() action counts all occurrences. It can be seen
here that protocol_type takes on the values Transmission Control Protocol (TCP), User
Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP). One-hot coding
is used here to numerically represent these characteristic values. Due to the one-hot cod-
ing, each categorical characteristic takes on n possible numerical characteristics, with a
value for each placeholder of 0 or 1. In the case of the log type or data type, the feature
may have three different values, hence n = 3. For example, if a data record has a TCP log
type, the one-hot representation is “1,0,0”—analogously “0,1,0” for UDP and “0,0,1” for
ICMP. Features two through four are categorical; they are transformed into one-hot. It
should be noted that in order to do this, all possible value options need to be known be-
forehand.

After the calculation performed by Spark, the symbolData variable references an in-
stance of the Map type, which itself references three Map instances (see Figure 7). In Scala,
Map is an iterable collection consisting of key–value pairs (see dictionaries or hashes in
other programing languages). symbolData(”protocols”), symbolData(”services”) and sym-
bolData(”states”) contain [String, Int]-maps with all possible occurrences of value variants
assigned to the index. The distinct method returns only one-time occurrences, while collect
returns all (calculated) elements. zipWithIndex creates a tuple with a value and an index
number for each element, and toMap converts the array to a map. A representation of sym-
bolData(“services”) output shows the exemplary result of the transformation. Using this
information, the numerical feature vectors can then be developed.

Figure 7. Transformation of categorical characteristics into three indexed map instances.

The getFeatureVectors() function in provided in Figure 8 transforms rawData and the
data from symbolData into an RDD of feature vectors with exclusively numerical values.
In order to increase the performance of the program, symbolData is not recalculated every

Figure 7. Transformation of categorical characteristics into three indexed map instances.

The getFeatureVectors() function in provided in Figure 8 transforms rawData and the
data from symbolData into an RDD of feature vectors with exclusively numerical values.
In order to increase the performance of the program, symbolData is not recalculated every
time this function is called but is instead transferred as a parameter because symbolData
can, for example, be transferred to all cluster nodes (via sc.broadcast()) to avoid time-
consuming recalculations.

Information 2022, 13, 58 10 of 18

Information 2022, 13, x FOR PEER REVIEW 10 of 19

time this function is called but is instead transferred as a parameter because symbolData
can, for example, be transferred to all cluster nodes (via sc.broadcast()) to avoid time-con-
suming recalculations.

It should be noted that getFeatureVectors() supplies an RDD from vector instances re-
quired for the k-means algorithm. In general, the getFeatureVectors() function parses a da-
tabase from rawData together with the data from symbolData, which can be used for further
processing in the form of an RDD from the feature vectors.

Figure 8. getFeatureVectors() for creating purely numerical feature vectors.

The k-means algorithm is already implemented in Apache Spark, and the first model
can be created with lines of source code. The first k-means model is developed using the
code provided in Figure 9.

Figure 9. k-means model generation.

The RDD from feature vectors in line two (Figure 9) is cached with the cache() function
after the first action has been carried out. This can be performance enhancing if Spark
would recalculate the RDD internally in later use, for example, when calculating the k-
means cluster. With cache() the state of the RDD is explicitly recorded after the next action.
In this first model, kMeansModel, the number of clusters is k = 2. In order to achieve good
results by means of k-means, it is essential to choose the value for k that is appropriate for
the database. However, the number of possible connection types is significantly higher
than 2, so the value for k is not yet optimal.

After the next cluster focus has been assigned to a feature vector of a data record, and
the distance between these vectors has been calculated, possible attacks or intrusions may
be detected. However, the k-means model used should be optimized to be able to achieve
the most accurate anomaly detection possible.

Potentially suspicious data deviate from previously trained patterns. The distance
between the data points of unnatural connection attempts exceeds the distance of ordinary
connections—the distance threshold is exceeded. If the feature vector exceeds the thresh-
old value, an anomaly is identified. However, the optimal threshold is determined by re-
ferring to the average distance to cluster centers (see Figure 10).

Figure 10. Calculation of the average distance threshold of a vector RDD.

It should be noted that distanceThreshold depends on the calculated k-means model
(particularly the number of clusters, i.e., k) and can also deviate from the above-men-

Figure 8. getFeatureVectors() for creating purely numerical feature vectors.

It should be noted that getFeatureVectors() supplies an RDD from vector instances
required for the k-means algorithm. In general, the getFeatureVectors() function parses a
database from rawData together with the data from symbolData, which can be used for
further processing in the form of an RDD from the feature vectors.

The k-means algorithm is already implemented in Apache Spark, and the first model
can be created with lines of source code. The first k-means model is developed using the
code provided in Figure 9.

Information 2022, 13, x FOR PEER REVIEW 10 of 19

time this function is called but is instead transferred as a parameter because symbolData
can, for example, be transferred to all cluster nodes (via sc.broadcast()) to avoid time-con-
suming recalculations.

It should be noted that getFeatureVectors() supplies an RDD from vector instances re-
quired for the k-means algorithm. In general, the getFeatureVectors() function parses a da-
tabase from rawData together with the data from symbolData, which can be used for further
processing in the form of an RDD from the feature vectors.

Figure 8. getFeatureVectors() for creating purely numerical feature vectors.

The k-means algorithm is already implemented in Apache Spark, and the first model
can be created with lines of source code. The first k-means model is developed using the
code provided in Figure 9.

Figure 9. k-means model generation.

The RDD from feature vectors in line two (Figure 9) is cached with the cache() function
after the first action has been carried out. This can be performance enhancing if Spark
would recalculate the RDD internally in later use, for example, when calculating the k-
means cluster. With cache() the state of the RDD is explicitly recorded after the next action.
In this first model, kMeansModel, the number of clusters is k = 2. In order to achieve good
results by means of k-means, it is essential to choose the value for k that is appropriate for
the database. However, the number of possible connection types is significantly higher
than 2, so the value for k is not yet optimal.

After the next cluster focus has been assigned to a feature vector of a data record, and
the distance between these vectors has been calculated, possible attacks or intrusions may
be detected. However, the k-means model used should be optimized to be able to achieve
the most accurate anomaly detection possible.

Potentially suspicious data deviate from previously trained patterns. The distance
between the data points of unnatural connection attempts exceeds the distance of ordinary
connections—the distance threshold is exceeded. If the feature vector exceeds the thresh-
old value, an anomaly is identified. However, the optimal threshold is determined by re-
ferring to the average distance to cluster centers (see Figure 10).

Figure 10. Calculation of the average distance threshold of a vector RDD.

It should be noted that distanceThreshold depends on the calculated k-means model
(particularly the number of clusters, i.e., k) and can also deviate from the above-men-

Figure 9. k-means model generation.

The RDD from feature vectors in line two (Figure 9) is cached with the cache() function
after the first action has been carried out. This can be performance enhancing if Spark
would recalculate the RDD internally in later use, for example, when calculating the k-
means cluster. With cache() the state of the RDD is explicitly recorded after the next action.
In this first model, kMeansModel, the number of clusters is k = 2. In order to achieve good
results by means of k-means, it is essential to choose the value for k that is appropriate for
the database. However, the number of possible connection types is significantly higher
than 2, so the value for k is not yet optimal.

After the next cluster focus has been assigned to a feature vector of a data record, and
the distance between these vectors has been calculated, possible attacks or intrusions may
be detected. However, the k-means model used should be optimized to be able to achieve
the most accurate anomaly detection possible.

Potentially suspicious data deviate from previously trained patterns. The distance
between the data points of unnatural connection attempts exceeds the distance of ordinary
connections—the distance threshold is exceeded. If the feature vector exceeds the threshold
value, an anomaly is identified. However, the optimal threshold is determined by referring
to the average distance to cluster centers (see Figure 10).

Information 2022, 13, x FOR PEER REVIEW 10 of 19

time this function is called but is instead transferred as a parameter because symbolData
can, for example, be transferred to all cluster nodes (via sc.broadcast()) to avoid time-con-
suming recalculations.

It should be noted that getFeatureVectors() supplies an RDD from vector instances re-
quired for the k-means algorithm. In general, the getFeatureVectors() function parses a da-
tabase from rawData together with the data from symbolData, which can be used for further
processing in the form of an RDD from the feature vectors.

Figure 8. getFeatureVectors() for creating purely numerical feature vectors.

The k-means algorithm is already implemented in Apache Spark, and the first model
can be created with lines of source code. The first k-means model is developed using the
code provided in Figure 9.

Figure 9. k-means model generation.

The RDD from feature vectors in line two (Figure 9) is cached with the cache() function
after the first action has been carried out. This can be performance enhancing if Spark
would recalculate the RDD internally in later use, for example, when calculating the k-
means cluster. With cache() the state of the RDD is explicitly recorded after the next action.
In this first model, kMeansModel, the number of clusters is k = 2. In order to achieve good
results by means of k-means, it is essential to choose the value for k that is appropriate for
the database. However, the number of possible connection types is significantly higher
than 2, so the value for k is not yet optimal.

After the next cluster focus has been assigned to a feature vector of a data record, and
the distance between these vectors has been calculated, possible attacks or intrusions may
be detected. However, the k-means model used should be optimized to be able to achieve
the most accurate anomaly detection possible.

Potentially suspicious data deviate from previously trained patterns. The distance
between the data points of unnatural connection attempts exceeds the distance of ordinary
connections—the distance threshold is exceeded. If the feature vector exceeds the thresh-
old value, an anomaly is identified. However, the optimal threshold is determined by re-
ferring to the average distance to cluster centers (see Figure 10).

Figure 10. Calculation of the average distance threshold of a vector RDD.

It should be noted that distanceThreshold depends on the calculated k-means model
(particularly the number of clusters, i.e., k) and can also deviate from the above-men-

Figure 10. Calculation of the average distance threshold of a vector RDD.

It should be noted that distanceThreshold depends on the calculated k-means model
(particularly the number of clusters, i.e., k) and can also deviate from the above-mentioned
value (around 3423) with k = 2. The reason is that when the k-means model is initialized,
randomly selected cluster priorities are set that are only adjusted by real values in the
course of the calculation. The anomalies can now be calculated immediately.

Information 2022, 13, 58 11 of 18

In the code provided in Figure 11, an RDD is created with tuples of the original data
records and their respective feature vectors. This RDD is then filtered using the feature
vectors that exceed the distance threshold. Using Scala’s pattern-matching mechanism
(case (data, featureVector)), an RDD can be elegantly filtered from the tuples using individual
tuple objects. Since we are interested in only the anomalies in original data sets, mapping
ends with the keys method, which in turn discards the feature vectors of the tuple RDD.
The anomaly rate is calculated as a percentage, where, on the basis of the given k-means
model, around four percent (4%) of the database can be assessed as abnormal, i.e., having
anomalies. Figure 12 shows the code to be used to get an overview of detected anomalies.

Information 2022, 13, x FOR PEER REVIEW 11 of 19

tioned value (around 3423) with k = 2. The reason is that when the k-means model is ini-
tialized, randomly selected cluster priorities are set that are only adjusted by real values
in the course of the calculation. The anomalies can now be calculated immediately.

In the code provided in Figure 11, an RDD is created with tuples of the original data
records and their respective feature vectors. This RDD is then filtered using the feature
vectors that exceed the distance threshold. Using Scala’s pattern-matching mechanism
(case (data, featureVector)), an RDD can be elegantly filtered from the tuples using individ-
ual tuple objects. Since we are interested in only the anomalies in original data sets, map-
ping ends with the keys method, which in turn discards the feature vectors of the tuple
RDD. The anomaly rate is calculated as a percentage, where, on the basis of the given k-
means model, around four percent (4%) of the database can be assessed as abnormal, i.e.,
having anomalies. Figure 12 shows the code to be used to get an overview of detected
anomalies.

Figure 11. Detection of anomalies in the vector RDD.

Figure 12. Output of the first five anomalies.

What we have identified here is that the connections with the categorical character-
istic normal were clearly identified as anomalies. These relationships may refer to attacks
that are not known during categorization or false identifications due to the unoptimized
k-means model.

For the latter case, in order to optimize the number k of clusters in the model, a clus-
tering analysis can be rated as sufficient if each data point is relatively close to the assigned
cluster center of gravity. To determine an improved k-value, a number of different k-
means models are created, and the resulting average distance thresholds are compared
with each other.

For this purpose, the code provided in Figure 13 is used, which output is shown in
Table 1.

Figure 11. Detection of anomalies in the vector RDD.

Information 2022, 13, x FOR PEER REVIEW 11 of 19

tioned value (around 3423) with k = 2. The reason is that when the k-means model is ini-
tialized, randomly selected cluster priorities are set that are only adjusted by real values
in the course of the calculation. The anomalies can now be calculated immediately.

In the code provided in Figure 11, an RDD is created with tuples of the original data
records and their respective feature vectors. This RDD is then filtered using the feature
vectors that exceed the distance threshold. Using Scala’s pattern-matching mechanism
(case (data, featureVector)), an RDD can be elegantly filtered from the tuples using individ-
ual tuple objects. Since we are interested in only the anomalies in original data sets, map-
ping ends with the keys method, which in turn discards the feature vectors of the tuple
RDD. The anomaly rate is calculated as a percentage, where, on the basis of the given k-
means model, around four percent (4%) of the database can be assessed as abnormal, i.e.,
having anomalies. Figure 12 shows the code to be used to get an overview of detected
anomalies.

Figure 11. Detection of anomalies in the vector RDD.

Figure 12. Output of the first five anomalies.

What we have identified here is that the connections with the categorical character-
istic normal were clearly identified as anomalies. These relationships may refer to attacks
that are not known during categorization or false identifications due to the unoptimized
k-means model.

For the latter case, in order to optimize the number k of clusters in the model, a clus-
tering analysis can be rated as sufficient if each data point is relatively close to the assigned
cluster center of gravity. To determine an improved k-value, a number of different k-
means models are created, and the resulting average distance thresholds are compared
with each other.

For this purpose, the code provided in Figure 13 is used, which output is shown in
Table 1.

Figure 12. Output of the first five anomalies.

What we have identified here is that the connections with the categorical characteristic
normal were clearly identified as anomalies. These relationships may refer to attacks
that are not known during categorization or false identifications due to the unoptimized
k-means model.

For the latter case, in order to optimize the number k of clusters in the model, a
clustering analysis can be rated as sufficient if each data point is relatively close to the
assigned cluster center of gravity. To determine an improved k-value, a number of different
k-means models are created, and the resulting average distance thresholds are compared
with each other.

For this purpose, the code provided in Figure 13 is used, which output is shown
in Table 1.

Table 1. Distance thresholds with values for k between 10 and 100.

k Distance Threshold

10 1612.208842642998
20 1072.0327584689705
30 916.5280722240193
40 430.3117062907457
50 464.47441715464714
60 349.7187930452894
70 299.64043177835646
80 200.98089018688424
90 234.49320063282278

100 112.83995725918483

Information 2022, 13, 58 12 of 18
Information 2022, 13, x FOR PEER REVIEW 12 of 19

.

Figure 13. Calculation of the distance thresholds for different k-means models.

Table 1. Distance thresholds with values for k between 10 and 100.

k Distance Threshold
10 1612.208842642998
20 1072.0327584689705
30 916.5280722240193
40 430.3117062907457
50 464.47441715464714
60 349.7187930452894
70 299.64043177835646
80 200.98089018688424
90 234.49320063282278

100 112.83995725918483

It can be seen that the increase in clusters’ numbers leads to a decrease in the average
distance threshold, i.e., an improvement in the result. However, the k should not be too
large, as otherwise, a meaningful clustering analysis cannot be performed. For example,
if k is set to the number of data records (rawData.count), the distance will shrink to 0 be-
cause each data record will form its own cluster. What is more, the output shows that the
distance thresholds do not change proportionally to k. In addition, the result with k = 50,
for example, is worse than that with k = 40. This result, which is something unexpected, is
also justified by the fact that the k-means method uses random initial clusters. Therefore,
the choice of the number of clusters can be further improved if the model for a specific k
is created several times with different random initial clusters, and then the best model
resulting therefrom is adopted. The Apache Spark Framework offers the setRuns() method
for objects of the k-means type for this purpose. Another potential improvement to the
model is the lengthening of the iteration of the algorithm. K-means uses a threshold value
that controls from when the movement of the cluster centers of gravity is considered to
have converged, and the cluster centers of gravity therefore change. This threshold value
can be adjusted with the setEpsilon() method.

Table 2 provides the results of this action, i.e., the values of the distance threshold
with the adjusted parameters for the number of runs and epsilon. In this case, the runs
were set to 10 (default: 1) and epsilon was set to 1.0 × 10−7 (default: 1.0 × 10−4), used as a
sample. What is important here is that experiments with multiple different values should
be carried out to achieve better results.

Figure 13. Calculation of the distance thresholds for different k-means models.

It can be seen that the increase in clusters’ numbers leads to a decrease in the average
distance threshold, i.e., an improvement in the result. However, the k should not be too
large, as otherwise, a meaningful clustering analysis cannot be performed. For example, if
k is set to the number of data records (rawData.count), the distance will shrink to 0 because
each data record will form its own cluster. What is more, the output shows that the distance
thresholds do not change proportionally to k. In addition, the result with k = 50, for
example, is worse than that with k = 40. This result, which is something unexpected, is
also justified by the fact that the k-means method uses random initial clusters. Therefore,
the choice of the number of clusters can be further improved if the model for a specific
k is created several times with different random initial clusters, and then the best model
resulting therefrom is adopted. The Apache Spark Framework offers the setRuns() method
for objects of the k-means type for this purpose. Another potential improvement to the
model is the lengthening of the iteration of the algorithm. K-means uses a threshold value
that controls from when the movement of the cluster centers of gravity is considered to
have converged, and the cluster centers of gravity therefore change. This threshold value
can be adjusted with the setEpsilon() method.

Table 2 provides the results of this action, i.e., the values of the distance threshold with
the adjusted parameters for the number of runs and epsilon. In this case, the runs were set
to 10 (default: 1) and epsilon was set to 1.0 × 10−7 (default: 1.0 × 10−4), used as a sample.
What is important here is that experiments with multiple different values should be carried
out to achieve better results.

Table 2. Distance thresholds with setRuns() and setEpsilon() of the k-means model.

k Distance Threshold

10 1673.4592273822652
20 1314.1118189071337
30 888.5934838435937
40 740.1572895242036
50 339.5696447982709
60 308.62695126344164
70 262.08132872357226
80 175.89086069939748
90 148.64064822065643

100 121.79488890567019

Information 2022, 13, 58 13 of 18

Here we can observe an improvement compared to standard. In addition, this time the
values are constantly decreasing the higher the parameter k is selected. Further optimization
can be achieved by normalizing each feature through standardization (also known as
z-transformation), which is a statistical function typically used when differently distributed
random variables, e.g., the values of the characteristics, should be compared [28]. The
z-transformation is given by the following function:

Zi =
Xi − µi

σi
(1)

Equation (1). Z-transformation.
Z-transformation shall be carried out following the formula provided in Equation (1),

where Zi is the z-transformed sample; Xi is the original value of the sample; µi is the mean
value of the sample; and σi is the standard deviation of the sample. In the case of a feature,
the feature is standardized by subtracting the feature value with the arithmetically average
mean value of the feature and dividing the result by the standard deviation.

The generation of k-means models from Figure 14 with the epsilon and runs parameters,
specified in Table 2 on the feature vectors standardizedVectorRdd (instead of vectorRdd), allows
for achieving better distance threshold values. At first glance, they differ significantly from
the values given in Table 2. This is due to z-transformation but does not have a negative
effect on the accuracy of detection of anomaly; rather, it improves the result of their
recognition, if standardized feature vectors are also used.

Information 2022, 13, x FOR PEER REVIEW 14 of 19

175 0.003462104571261407
190 0.004934244635581448
205 0.003173765003862672
220 0.003787212788242129
235 0.002787838315775503

Figure 14. Normalization of the feature vectors through standardization.

As can be seen in Table 4, even after adapting the k-means models and applying nor-
malization, there is a certain amount of leeway for interpretation and improvement. From
the data we have obtained, it is possible to predict volumes of data arose from attacks
based on the anomaly rates, where the arithmetic mean of the anomaly rates is 16.4 per-
cent, with the median of 18.9 percent. There is, therefore, sufficient evidence that 15 to 20
percent of the entire database can be attributed to the attempted attacks. This means that
the parameters of IDS in production, in which we suppose the proposed solution to be in-
built, should always be adjusted with the following monitoring of the results, particularly
in the introductory phase.

Table 4. Anomaly rates after optimizations.

k Anomaly Rate (in Percent)
10 4.575403838494408
20 6.116815772234007
30 7.215065395429679
40 7.412065393429679
50 8.62727692010973
60 8.821620637302026
70 9.283646130771261
80 16.541010784881934
90 17.692563190131697
100 18.892396361202188
110 22.17444728730485
120 36.08357451600319
130 23.480151093278646
140 21.05892682779445
150 22.29485318870471
160 19.1206531234185
170 20.949830670269726

Figure 14. Normalization of the feature vectors through standardization.

Table 3 shows that the standardized distance thresholds continuously improve up to
k = 175. Thus, the above optimizations can now be incorporated into the anomaly detection.
The following results have now been calculated.

Information 2022, 13, 58 14 of 18

Table 3. Distance thresholds optimized by normalization.

k Normalized Distance Threshold

10 0.09991613251731102
25 0.08518438371789444
40 0.0682862780277426
55 0.053834029418180274
70 0.03348989872873735
85 0.02167286233830281

100 0.016910185699185214
115 0.012838884998591945
130 0.008406800382889148
145 0.008095400982023805
160 0.00617585994122557
175 0.003462104571261407
190 0.004934244635581448
205 0.003173765003862672
220 0.003787212788242129
235 0.002787838315775503

As can be seen in Table 4, even after adapting the k-means models and applying
normalization, there is a certain amount of leeway for interpretation and improvement.
From the data we have obtained, it is possible to predict volumes of data arose from attacks
based on the anomaly rates, where the arithmetic mean of the anomaly rates is 16.4 percent,
with the median of 18.9 percent. There is, therefore, sufficient evidence that 15 to 20 percent
of the entire database can be attributed to the attempted attacks. This means that the
parameters of IDS in production, in which we suppose the proposed solution to be in-built,
should always be adjusted with the following monitoring of the results, particularly in the
introductory phase.

Table 4. Anomaly rates after optimizations.

k Anomaly Rate (in Percent)

10 4.575403838494408
20 6.116815772234007
30 7.215065395429679
40 7.412065393429679
50 8.62727692010973
60 8.821620637302026
70 9.283646130771261
80 16.541010784881934
90 17.692563190131697

100 18.892396361202188
110 22.17444728730485
120 36.08357451600319
130 23.480151093278646
140 21.05892682779445
150 22.29485318870471
160 19.1206531234185
170 20.949830670269726
180 20.31542344885536
190 17.538350545307264
200 19.67231956518322

Figure 15 illustrates an abbreviated extract of detected anomalies with a k = 100 model.

Information 2022, 13, 58 15 of 18

Information 2022, 13, x FOR PEER REVIEW 15 of 19

180 20.31542344885536
190 17.538350545307264
200 19.67231956518322

Figure 15 illustrates an abbreviated extract of detected anomalies with a k = 100
model.

Figure 15. Extract of recognized anomalies with k = 100.

The sample() function returns a random sample of an RDD. Since no replacement is
to be made, the first parameter is set to false. The second parameter, however, defines the
size of the sample, i.e., in this case, 0.00001 of all anomalies should be detected.

Sufficiently high result is also possible using the randomized initial clusters of the k-
means algorithm, but a relatively precise approximation is certainly possible. In the end,
the question always remains: which connections are to be classified as irregular and po-
tentially dangerous and which are to be classified as normal? The algorithm cannot make
a final decision, but it can support decision makers. However, an optimization of the k-
means models is necessary in any case, to avoid very falsified results, as in Figure 8. In
addition, it is important to monitor the detection of anomalies and to carefully investigate
possible outliers.

To this end, visualized results may be an opportunity for simple monitoring. Apache
Spark does not provide libraries for visualizing results; other tools should be used to cre-
ate representations. We, however, have used Apache Zeppelin, and Figure 16 shows vis-
ualized anomaly rates from Table 4 using Apache Zeppelin. Although the export of the
results from Spark and their visualization using something akin to R3 is also an option, in
practice, when selecting an adequate k-means model, anomalies could be represented in
data sets.

Figure 15. Extract of recognized anomalies with k = 100.

The sample() function returns a random sample of an RDD. Since no replacement is to
be made, the first parameter is set to false. The second parameter, however, defines the size
of the sample, i.e., in this case, 0.00001 of all anomalies should be detected.

Sufficiently high result is also possible using the randomized initial clusters of the
k-means algorithm, but a relatively precise approximation is certainly possible. In the
end, the question always remains: which connections are to be classified as irregular and
potentially dangerous and which are to be classified as normal? The algorithm cannot
make a final decision, but it can support decision makers. However, an optimization of the
k-means models is necessary in any case, to avoid very falsified results, as in Figure 8. In
addition, it is important to monitor the detection of anomalies and to carefully investigate
possible outliers.

To this end, visualized results may be an opportunity for simple monitoring. Apache
Spark does not provide libraries for visualizing results; other tools should be used to create
representations. We, however, have used Apache Zeppelin, and Figure 16 shows visualized
anomaly rates from Table 4 using Apache Zeppelin. Although the export of the results
from Spark and their visualization using something akin to R3 is also an option, in practice,
when selecting an adequate k-means model, anomalies could be represented in data sets.

Information 2022, 13, x FOR PEER REVIEW 16 of 19

Figure 16. Anomaly rates.

The anomaly rates are included in an RDD anomalyRates, which consists of (k, Rate)
–tuples, and are converted to a Spark Data Frame. The data frame is based on the RDDs
but also has a scheme. The scheme (see Figure 16) is defined by the class rates. Unlike
simple RDDs, data frames can be easily queried using Spark SQL. Zeppelin is able to vis-
ualize result sets directly from Spark SQL queries.

5. Discussion
To sum up, the prototype developed is able to detect anomalies in the database that

can be used as additional mechanisms for data protection. In other words, we are not
proposing a “silver bullet” but rather demonstrate how a complementary service can be
added to the system in use to enhance the level of its security. What is more, our study
explored capabilities provided by Apache products and services, which resulted in a con-
clusion that they are worthwhile to be used for protecting databases in use. There are
several additional takeaways.

First, it is clear that the topic we have elaborated on is of fundamental importance in
a real-world system, i.e., production environment. Therefore, not only the involvement of
a data protection mechanism should take place but also the analysis of how the system
reacts when an anomaly is detected. For example, an email could be sent to the IT security
officer, or a ticket could be created in a corresponding system, thereby signaling about the
detected anomaly. However, other options can also be used, such as destroying data iden-
tified as malicious or canceling the connection, thereby preventing data manipulation.
However, it is clear that, in this particular case, the accuracy of the algorithm should be
well tested. Another more advanced option could be not only the identification of anom-
alies or even intrusion, but also the recovery of data if changes have been made with data
stored in the system.

Taking a step back to the accuracy of detection of anomalies, where optimization of
the anomaly detection is crucial, the prototype achieved a detection rate of 65% in identi-
fying anomalies in the test data set. In other words, it is important not only to achieve the
detection of as many anomalies as possible, but also their relevance and compliance with
actual anomalies, avoiding false positive results. These misdetections can lead to high
costs in terms of both money and time spent on their inspection. This, in turn, can nega-
tively affect the acceptance of the system and overall satisfaction level. For this reason,
monitoring and optimization must be given high priority, starting with the introductory
phase and beyond. There are several studies whose authors have tried to use methods
such as the K-means Gaussian Interval Type 2 Fuzzy Set Prediction Method and models
such as the Collaborative Intrusion Detection Model to improve network security and

Figure 16. Anomaly rates.

Information 2022, 13, 58 16 of 18

The anomaly rates are included in an RDD anomalyRates, which consists of (k, Rate)-tuples,
and are converted to a Spark Data Frame. The data frame is based on the RDDs but also
has a scheme. The scheme (see Figure 16) is defined by the class rates. Unlike simple RDDs,
data frames can be easily queried using Spark SQL. Zeppelin is able to visualize result sets
directly from Spark SQL queries.

5. Discussion

To sum up, the prototype developed is able to detect anomalies in the database that can
be used as additional mechanisms for data protection. In other words, we are not proposing
a “silver bullet” but rather demonstrate how a complementary service can be added to
the system in use to enhance the level of its security. What is more, our study explored
capabilities provided by Apache products and services, which resulted in a conclusion
that they are worthwhile to be used for protecting databases in use. There are several
additional takeaways.

First, it is clear that the topic we have elaborated on is of fundamental importance in a
real-world system, i.e., production environment. Therefore, not only the involvement of a
data protection mechanism should take place but also the analysis of how the system reacts
when an anomaly is detected. For example, an email could be sent to the IT security officer,
or a ticket could be created in a corresponding system, thereby signaling about the detected
anomaly. However, other options can also be used, such as destroying data identified as
malicious or canceling the connection, thereby preventing data manipulation. However,
it is clear that, in this particular case, the accuracy of the algorithm should be well tested.
Another more advanced option could be not only the identification of anomalies or even
intrusion, but also the recovery of data if changes have been made with data stored in
the system.

Taking a step back to the accuracy of detection of anomalies, where optimization of the
anomaly detection is crucial, the prototype achieved a detection rate of 65% in identifying
anomalies in the test data set. In other words, it is important not only to achieve the
detection of as many anomalies as possible, but also their relevance and compliance with
actual anomalies, avoiding false positive results. These misdetections can lead to high costs
in terms of both money and time spent on their inspection. This, in turn, can negatively
affect the acceptance of the system and overall satisfaction level. For this reason, monitoring
and optimization must be given high priority, starting with the introductory phase and
beyond. There are several studies whose authors have tried to use methods such as the
K-means Gaussian Interval Type 2 Fuzzy Set Prediction Method and models such as the
Collaborative Intrusion Detection Model to improve network security and identify attacks
and anomalies to be prevented [29,30]. As stated in [29], intrusion detection is becoming
increasingly important as primary defense technology, because network security is one of
the most critical issues. In addition, attacks and anomalies are often serious and can range
from misuse of the systems to production downtimes and failure of vital control systems.

Given that some above-mentioned implications concern people, it should be noted
that the person who interacts with the system, i.e., the user, remains one of the critical
factors, and therefore their education and digital literacy, or security literacy, to be more
precise, is crucial. This was also proved by the statistics provided by the recent Data Breach
Investigations Report, according to which 85% of breaches in 2021 involved a human
element, while social engineering was recognized as the most popular pattern [31]. The
reason for this is that even in the case of highly mature mechanisms of data and system
protection involved and maintained, the human factor remains to be seen as very difficult
to control. Therefore, the training, instruction and education of system users, as well as
defining, introducing and maintaining security policies should be complementary to the
various technical advances.

Information 2022, 13, 58 17 of 18

6. Conclusions

The big data Apache Spark Framework offers extensive capabilities for analyzing
massive amounts of data. Without further adjustments (out-of-the-box), Spark is able to
distribute the calculations to (theoretically) any number of machines in a fault-tolerant
manner. The outstanding flexibility and speed of execution thus provides a solid basis for a
large number of data analyses. In this paper, we have provided an example of how the big
data technologies and above-mentioned services can be used not only for everyday tasks
but also for the protection of the data produced, collected, processed and transferred.

This paper explored and demonstrated capabilities of MLlib components and its
appropriateness for pattern-based analyses, utilizing unsupervised machine learning aimed
at improving IT security. However, the use of a big data system to detect security-critical
anomalies must not be carried out by installing and configuring the solution on a one-time
basis, but rather as a process that has to be continuously monitored and optimized.

In addition to [32], our solution offers the opportunity to gain valuable knowledge
from large-scale structured, unstructured and rapidly changing data, thereby providing
users with support for decision making. It is also clear that different solutions, which have
different goals and requirements, were discussed in the literature. Unfortunately, we could
not compare this to our solution because the Apache Spark Framework lacks extensive test
support. This is particularly interesting when processing big data, as it should be possible
to define certain test scenarios to check the respective processing algorithms. This remains
an open question for future study.

In addition to Spark, there are other solutions that are suitable for big data applications.
One particularly interesting subject for our future research is the open-source project
Apache Flink. Although relatively small compared to Spark, Flink, like Spark, focuses on
distributed processing of large amounts of data. In contrast to Hadoop or Spark, Flink is
not primarily focused on fast batch processing, but rather on processing of data streams.

As we have mentioned, the developed service is a prototype. We are continuing
our work on it and expect to advance it in the future by our own forces or by means of
co-creation, where every interested person is welcome to contribute to the prototype by
referring to the source code (https://github.com/OtmaneAzeroualDZHW/IDS-prototype)
(accessed on 20 December 2022), thereby supporting the open science movement.

Author Contributions: O.A. and A.N. contributed to the design and implementation of the research,
to the analysis of the results and to the writing of the manuscript. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request from the authors. The source code and
input data are available at https://github.com/OtmaneAzeroualDZHW/IDS-prototype, accessed on
20 December 2022.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, F.; Gu, S. Industry 4.0, a revolution that requires technology and national strategies. Complex Intell. Syst. 2021, 7, 1311–1325.

[CrossRef]
2. Jang-Jaccard, J.; Nepal, S. A survey of emerging threats in cybersecurity. J. Comput. Syst. Sci. 2014, 80, 973–993. [CrossRef]
3. Beall, J. Metadata and Data Quality Problems in the Digital Library. J. Digit. Inf. 2005, 6, 1–20.
4. Yu, S.; Guo, S. Big Data Concepts, Theories, and Applications; Springer: Berlin/Heidelberg, Germany, 2016.
5. Dorsche, J. Praxishandbuch Big Data; Springer: Berlin/Heidelberg, Germany, 2015.
6. Corsi, A.; de Souza, F.F.; Pagani, R.N.; Kovaleski, J.L. Big data analytics as a tool for fighting pandemics: A systematic review of

literature. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 9163–9180. [CrossRef] [PubMed]

https://github.com/OtmaneAzeroualDZHW/IDS-prototype
https://github.com/OtmaneAzeroualDZHW/IDS-prototype
http://doi.org/10.1007/s40747-020-00267-9
http://doi.org/10.1016/j.jcss.2014.02.005
http://doi.org/10.1007/s12652-020-02617-4
http://www.ncbi.nlm.nih.gov/pubmed/33144892

Information 2022, 13, 58 18 of 18

7. Özgüven, Y.M.; Eken, S. Distributed messaging and light streaming system for combating pandemics. J. Ambient. Intell. Humaniz.
Comput. 2021, 1–15. [CrossRef]

8. Yang, P.; Xiong, N.; Ren, J. Data security and privacy protection for cloud storage: A survey. IEEE Access 2020, 8, 131723–131740.
[CrossRef]

9. González-Granadillo, G.; González-Zarzosa, S.; Diaz, R. Security Information and Event Management (SIEM): Analysis, Trends,
and Usage in Critical Infrastructures. Sensors 2021, 21, 4759. [CrossRef] [PubMed]

10. Daskevics, A.; Nikiforova, A. ShoBeVODSDT: Shodan and Binary Edge based vulnerable open data sources detection tool or
what Internet of Things Search Engines know about you. In Proceedings of the International Conference on Intelligent Data
Science Technologies and Applications (IDSTA2021), Tartu, Estonia, 15–16 November 2021.

11. Daskevics, A.; Nikiforova, A. IoTSE-based Open Database Vulnerability inspection in three Baltic Countries: ShoBEVODSDT sees
you. In Proceedings of the 8th International Conference on Internet of Things: Systems, Management and Security (IOTSMS),
Valencia, Spain, 6–9 September 2021.

12. Popescul, D. The Confidentiality–Integrity–Accessibility Triad into the Knowledge Security. A Reassessment from the Point of
View of the Knowledge Contribution to Innovation. In Proceedings of the 16th International Business Information Management
Association Conference (Innovation and Knowledge Management, A Global Competitive Advantage), Kuala Lumpur, Malaysia,
29–30 June 2011; pp. 1338–1345.

13. Zuech, R.; Khoshgoftaar, T.M.; Wald, R. Intrusion detection and Big Heterogeneous Data: A Survey. J. Big Data. 2015, 2, 3.
[CrossRef]

14. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 20. [CrossRef]

15. Borky, J.M.; Bradley, T.H. Protecting Information with Cybersecurity. In Effective Model-Based Systems Engineering; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 345–404.

16. Sanders, C. The Practice of Applied Network Security Monitoring. In Applied Network Security Monitoring; Sanders, C.,
Smith, J., Eds.; Syngress: Rockland, MA, USA, 2014; pp. 1–24. ISBN 9780124172081. [CrossRef]

17. Caballero, A. Information Security Essentials for IT Managers: Protecting Mission-Critical Systems. In Computer and Information
Security Handbook; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–45.

18. Johnson, L. Chapter 11—Security component fundamentals for assessment. In Security Controls Evaluation, Testing, and Assessment
Handbook, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 471–536. [CrossRef]

19. Kakareka, A. Chapter 1—Detecting System Intrusions. In Network and System Security, 2nd ed.; Syngress: Rockland, MA, USA,
2014; pp. 1–27. [CrossRef]

20. Scarfone, K.; Mell, P. Guide to Intrusion Detection and Prevention Systems (IDPS); NIST Special Publication: Gaithersburg, MD, USA,
2007; 127p. [CrossRef]

21. Salloum, S.; Dautov, R.; Chen, X.; Peng, P.X.; Huang, J.Z. Big data analytics on Apache Spark. Int. J. Data Sci. Anal. 2016,
1, 145–164. [CrossRef]

22. Liu, X.; Iftikhar, N.; Xie, X. Survey of real-time processing systems for big data. In Proceedings of the 18th International Database
Engineering & Applications Symposium (IDEAS ’14), Porto, Portugal, 7–9 July 2014; Association for Computing Machinery:
New York, NY, USA, 2014; pp. 356–361.

23. White, T. Hadoop: The Definitive Guide; O’Reilly Media Inc.: Sebastopol, CA, USA, 2012.
24. Sakr, S. General-purpose big data processing systems. In Big Data 2.0 Processing Systems; Springer: Cham, Switzerland, 2016; pp. 15–39.
25. Van Steen, M.; Tanenbaum, A.S. A brief introduction to distributed systems. Computing 2016, 98, 967–1009. [CrossRef]
26. Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.B.; Amde, M.; Owen, S. MLlib: Machine

Learning in Apache Spark. J. Mach. Learn. Res. 2016, 17, 1235–1241.
27. Qolomany, B.; Al-Fuqaha, A.; Gupta, A.; Benhaddou, D.; Alwajidi, S.; Qadir, J.; Fong, A.C. Leveraging Machine Learning and Big

Data for Smart Buildings: A Comprehensive Survey. IEEE Access 2019, 7, 90316–90356. [CrossRef]
28. Simon, M.K. Probability Distributions Involving Gaussian Random Variables. A Handbook for Engineers and Scientists; Springer: Boston,

MA, USA, 2002. [CrossRef]
29. Teng, S.; Wu, N.; Zhu, H.; Teng, L.; Zhang, W. SVM-DT-based adaptive and collaborative intrusion detection. IEEE/CAA J. Autom.

Sin. 2018, 5, 108–118. [CrossRef]
30. Li, R.; Huang, Y.; Wang, J. Long-term traffic volume prediction based on K-means Gaussian interval type-2 fuzzy sets. IEEE/CAA

J. Autom. Sin. 2019, 6, 1344–1351. [CrossRef]
31. Verizon. 2021 Data Breach Investigations Report (DBIR). 2021. 119 Pages. Available online: https://www.verizon.com/business/

resources/reports/2021/2021-data-breach-investigations-report.pdf (accessed on 20 December 2021).
32. Azeroual, O.; Fabre, R. Processing Big Data with Apache Hadoop in the Current Challenging Era of COVID-19. Big Data Cogn.

Comput. 2021, 5, 12. [CrossRef]

http://doi.org/10.1007/s12652-021-03328-0
http://doi.org/10.1109/ACCESS.2020.3009876
http://doi.org/10.3390/s21144759
http://www.ncbi.nlm.nih.gov/pubmed/34300500
http://doi.org/10.1186/s40537-015-0013-4
http://doi.org/10.1186/s42400-019-0038-7
http://doi.org/10.1016/B978-0-12-417208-1.00001-5
http://doi.org/10.1016/B978-0-12-818427-1.00011-2
http://doi.org/10.1016/B978-0-12-416689-9.00001-0
http://doi.org/10.6028/NIST.SP.800-94
http://doi.org/10.1007/s41060-016-0027-9
http://doi.org/10.1007/s00607-016-0508-7
http://doi.org/10.1109/ACCESS.2019.2926642
http://doi.org/10.1007/978-0-387-47694-0
http://doi.org/10.1109/JAS.2017.7510730
http://doi.org/10.1109/JAS.2019.1911723
https://www.verizon.com/business/resources/reports/2021/2021-data-breach-investigations-report.pdf
https://www.verizon.com/business/resources/reports/2021/2021-data-breach-investigations-report.pdf
http://doi.org/10.3390/bdcc5010012

	Introduction
	Background: General Understanding of Security, Intrusion Detection and Prevention
	Materials and Methods: Big Data Approach with Apache Spark and MLlib
	Results: Prototype of Apache Spark and MLlib-Based Intrusion Detection System from A to Z
	Discussion
	Conclusions
	References

