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Abstract: Recent work suggests knowledge sources can be added into the topic modeling process to
label topics and improve topic discovery. The knowledge sources typically consist of a collection of
human-constructed articles, each describing a topic (article-topic) for an entire domain. However,
these semisupervised topic models assume a corpus to contain topics on only a subset of a domain.
Therefore, during inference, the model must consider which article-topics were theoretically used
to generate the corpus. Since the knowledge sources tend to be quite large, the many article-topics
considered slow down the inference process. The increase in execution time is significant, with
knowledge source input greater than 103 becoming unfeasible for use in topic modeling. To increase
the applicability of semisupervised topic models, approaches are needed to speed up the overall
execution time. This paper presents a way of ranking knowledge source topics to satisfy the above
goal. Our approach utilizes a knowledge source ranking, based on the PageRank algorithm, to
determine the importance of an article-topic. By applying our ranking technique we can eliminate
low scoring article-topics before inference, speeding up the overall process. Remarkably, this ranking
technique can also improve perplexity and interpretability. Results show our approach to outperform
baseline methods and significantly aid semisupervised topic models. In our evaluation, knowledge
source rankings yield a 44% increase in topic retrieval f-score, a 42.6% increase in inter-inference topic
elimination, a 64% increase in perplexity, a 30% increase in token assignment accuracy, a 20% increase
in topic composition interpretability, and a 5% increase in document assignment interpretability over
baseline methods.

Keywords: topic modeling; PageRank; semisupervised learning

1. Introduction

The world is overflowing with text. This ever-growing resource has the ability to
capture thoughts, ideas, and understanding. To extract, connect, and summarize relevant
electronic text records has the potential for knowledge discovery and new understandings.
One example is the electronic health record which often contains important raw text
information regarding a patient as documented by a physician. The electronic health record
is increasing rapidly as technology is integrating itself into the patient physician interaction.
To be able to deliver information quickly and accurately to a physician can help ease the
burden and lesson the mistakes that a primary care physician can make when dealing with
the increasing pressure from seeing too many patients in too little time.

The enormous amount of textual data makes it impossible for people to manually
undertake the task of processing all the information. Computational techniques must be
developed that can overcome the challenges faced by working with a very large set of
free-text input. This work presents approaches that seek knowledge discovery from a large
input of text documents. We focus on the task of summarizing corpora to provide a set of
topics describing the general themes.

The task of extracting topics comprises the field topic modeling. In this domain differ-
ent approaches exist with similar aims. Matrix-based approaches such as latent semantic
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analysis (LSA) may be used to reduce dimensionality of corpus and highlight more im-
portant words [1]. A more Bayesian technique involves assuming a generative model over
the corpus and then discovering the component of the generative model through Bayesian
inference [2]. More recently, the focus shifted towards deep learning-based approaches
which seek to use neural networks for topic discovery. Undoubtedly combinations of these
subdomains will yield improved results over running any model in isolation [3]. For the
desiderata of using topic models to convey information to an application, it is paramount
that the topics be interpretable and helpful if the topics are labeled.

Although lately topic modeling research seems to be directed towards neural topic
modeling (NTM) [4–6], traditional Bayesian-based topic models (BTM) offer a viable
alternative to deep learning approaches. Bayes approaches may be preferable when
(1) using commodity or legacy hardware, as the NTM often requires a more complex
setup (such as utilizing a graphics processing unit [GPU]), (2) a document-to-topic (θ)
distribution is needed, since for the NTM, θ is often associated with a batch parameter
and reused for multiple documents [4–6], and (3) for more interpretable topics [7,8] since
the high perplexity of the NTM may lead to lower interpretability [8] and the recent work
challenges the goodness of traditional pointwise mutual information (PMI) based inter-
pretability scoring often reported in NTM results [7,9]. The latter scoring method [9] may
be the preferred approach to take for estimating interpretability of topic models, however
we take direct human-based scoring to be a stronger approach to evaluate interpretability.

The traditional probabilistic topic model outputs a distribution of numeric topics for
each document and a distribution of words for each numeric topic [2]. These latter distribu-
tions comprise the “topics” in topic modeling. As such, a “topic” is just a distribution over
words with a numeric label. However, the numeric label fails to summarize the distribution
semantically. Semantically labeling each topic gives the end user a quick understanding
of what each topic represents, improving the interpretability [10]. These labels can also
be used in downstream processes such as graph-based summarization systems [11,12],
consensus building [13] and scene identification [14]. However, assigning an accurate label
to a topic is no trivial task.

To assign semantic labels to topics, one can run an unsupervised topic model and then
choose labels after inference [15–21]. However, this can lead to problems with the topics
themselves as the clusters tend to combine two or more semantically different topics [10].
For example (Adapted from [10] with permission), suppose a news corpus that consists of
two articles is given by documents d1 and d1 each with three words:

d1—pencil, pencil, umpire
d2—ruler, ruler, baseball

Latent Dirichlet allocation (LDA) [2], with the traditionally used collapsed Gibbs
sampler, standard hyperparameters and the number of topics (K) set as two, would output
different results for different runs due to the inherent stochastic nature. It is possible to
obtain the following result of topic assignments:

d1—pencil1, pencil1, umpire2

d2—ruler2, ruler2, baseball1

But these assignments to topics differs from the ideal solution that involves knowing
the context of the topics in which these words come from. If the topic modeling was to
incorporate prior knowledge about the topics “School Supplies” and “Baseball”, then a
topic modeling process will more likely generate the ideal topic assignments of:

d1—pencil2, pencil2, umpire1

d2—ruler2, ruler2, baseball1

and assign a label of “School Supplies” to topic 1 and “Baseball” to topic 2.
A second approach to semantic topic labeling involves using a supervised input set

and showed the ability to label the topic as necessary [22–25]. This approach requires many
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labeled input that may be time-consuming or expensive to acquire. To allow for a labeled
input set that is easier to obtain, semisupervised topic models [10,26–29] use existing
knowledge sources as semisupervised input to label topics. The knowledge sources consist
of articles turned into distributions and can be transformed into knowledge source topics (ϕ̂).
Any generative model which utilizes ϕ̂ is dependent on a subset of labeled data, and thus we
refer to this type of topic modeling as semisupervised topic modeling. To further illustrate
the concepts of the knowledge source and semisupervised topic modeling, consider the
following simple example. At the time of this writing, if we open a web browser and
go to Wikipedia (https://en.wikipedia.org/w/index.php?title=Grape&oldid=908871054,
accessed on 1 December 2021) and search for “grape”, the returned article (Â) would start
with the following text:

A grape is a fruit, botanically. . .

If we take the above to be the full article, then the knowledge source topic (X̂) for
“grape” can be formed by taking a count of each word (ŵ) in the article and dividing each
word by the total number of words. For the “grape” example, the knowledge source topic
is the probability vector [ 2

6 , 1
6 , 1

6 , 1
6 , 1

6 ] with the index of the probability vector mapped to
the word vector [a, grape, is, fruit, botanically].

If we continue the above for a set of articles from Wikipedia, the set of articles becomes
the knowledge source (KS). We follow the above procedure from theknowledge source
to get a set of knowledge source topics. These knowledge source topics are then used
in the corpus’s theoretical generative model. During inference, the topic model takes as
input a set of knowledge source topics that may or may not be used in the final output of
topics. Because the output is dependent on a subset of labeled data, we refer to this type
of topic modeling as semisupervised topic modeling. One drawback of semisupervised
topic modeling is the excess knowledge source topics used as input. Since there is a more
relaxed constraint of not needing to know precisely which knowledge source topics are
relevant to a corpus, there tend to be many knowledge source topics ultimately discarded.
Existing approaches used to determine which topic to discard are based on counting or
some form of clustering. However, counting is problematic because it is too simple and
often discards importantknowledge source topics due to not having a high count. In this
context, we take important topics to be topics which are used in the generative model of
the corpus. Even worse is clustering, which only considers some distance metric between
the topics and does not consider how many assignments of words were made to the topic.
We illustrate these concepts using a simple case study.

1.1. Case Study

We are given the task of labeling patient notes from a small set of electronic health
records. Given that we know we are in the medical domain, we suppose all possible and
relevant topics for any patient note to be in the following set:

Â1—cancer, cancer, tumor, chemotherapy
Â2—heart attack, heart, attack chest
Â3—dementia, brain, memory, dementia
Â4—diabetes, blood, sugar, insulin

Next, we wish to obtain topics and corresponding labels for a corpus of two documents
d1 and d1, given as:

d1—cancer, chest, attack
d2—tumor, heart, chemotherapy

A good semisupervised topic model would start by considering the entire knowledge
source of (Â1, Â2, Â3, Â4) but would eventually end up with document-token to topic
assignments of:

https://en.wikipedia.org/w/index.php?title=Grape&oldid=908871054
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d1—cancer1, chest2, attack2

d2—tumor1, heart2, chemotherapy1

With topic 1 (after the topic model interference is complete) mapped to Â1 and topic 2
mapped to Â2. Since Â1 and Â2 are referenced in the final document-token assignment,
we consider these relevant or important topics. Additionally, since Â3 and Â4 were not refer-
enced by any document-token assignment to topic, we delegate these to be discarded topics.

It is essential for the semisupervised topic model to determine which topics are relevant
and which topics to discard. What is needed is some way to rank the topics by order of
importance to a corpus. A better ranking of topics can select the relevant topics and discard
the less important ones. Counting can be used for ranking, but this leads to the problems
discussed previously. One method for ranking which has already shown promising results
is PageRank [30]. PageRank finds the importance of a node by considering the importance
of the connecting neighbors in a recursive fashion. This approach helps determine the
importance of websites in the world wide web.

With the success of PageRank in the world wide web, it is a natural approach to
apply the techniques of PageRank to other ranking problems, such as the ranking of
article-topics. The main obstacle of using PageRank for knowledge source rankings is
representing the knowledge source as a graph consisting of nodes and edges. In most cases,
a knowledge source consists of a collection of articles, i.e., Wikipedia articles corresponding
to MedlinePlus (https://www.nlm.nih.gov/medlineplus/ (accessed on 1 December 2021))
headings. However, there are knowledge sources that already take the form of a graph, such
as the Unified Medical Language System (UMLS) (https://www.nlm.nih.gov/research/
umls/ (accessed on 1 December 2021)). Ontologies and other compendia exist that take the
form of entities as nodes and relationships among entities as edges. For these cases we still
need to determine a way to effectively rank the nodes and edges which is applicable in the
context of semisupervised topic modeling.

Still, with the desiderata to increase applicability, we must consider how to rank exist-
ing article-based knowledge sources. This paper presents a novel way to aid topic models
that already have a knowledge source associated with the corpus. Our technique applies
to both graph-based and article-based knowledge sources. When we have both a graph
and article-based knowledge source, we can take the topic labels from the article headings
and emphasize these nodes in the graph-based knowledge source. When comparing the
results after ranking, we can select the subset of nodes corresponding to article labels. We
also formulate similar approaches for article-only and graph-only knowledge sources.

As we show in the results section, knowledge source rankings represent a significant
improvement over counting for determining which topics to discard. However, even with a
perfect partitioning of important and discarded topics, we are still limited in the amount of
curated knowledge we can add into the semisupervised topic model [10]. At a knowledge
source size of just 1000 article-topics, the inference iteration times become too high to be
practical [10]. To further improve the applicability of our model, we aim to allow any input
knowledge source regardless of size. Our solution is to rank the article-topics using our
ranking method preinference and filter out low scoring article-topics. We can then input
the filtered knowledge source into the semisupervised topic model and proceed as usual.

Knowledge source rankings are not only limited to preprocess filtering. The rankings
are also applicable during topic modeling inference to help existing semisupervised algo-
rithms determine which topics should be removed. We can also use knowledge source
rankings in a stand-alone topic model or in the generative model alongside existing semisu-
pervised topic models.

The intuition behind our ranking approach is like that of TextRank [31]. This estab-
lished method ranks sentences in a document to determine a sentence used to summarize
the document. Similarly, and with some modifications, we should be able to develop
a technique to determine a ranking of article-topics relevant to a corpus. Additionally,
knowledge source preprocess filtering has already been shown to improve text-related
tasks [32]; and knowledge sources rankings utilize a graph representation to incorporate

https://www.nlm.nih.gov/medlineplus/
https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
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outside information. Similar outside is already established to be helpful in text classification
tasks [33,34], while graph representations can yield improved results as well [35].

1.2. Research Objectives

Semisupervised topic models showed the ability to improve upon traditional topic
modeling in two ways: (1) an increase in interpretability and while not significantly
impacting perplexity [10] and (2) the labeling of topics [10,26,27]. The first improvement
is particularly significant since it was previously thought that improving interpretability
ultimately leads to decreased perplexity [8]. So then why hasn’t semisupervised topic
models been widely adopted as a standard for every topic modeling? By design, the
semisupervised input is effortless to obtain for most corpora. With no significant impact on
perplexity, why not have more interpretable topics that are labeled? It seems that in most
applications of topic modeling, this could only help. One reason may be due to the high
execution time. At large semisupervised input sizes, the models become unfeasible. It is
our objective to resolve this inadequacy. By removing the burden of high execution times
while still maintaining the benefit of semisupervised models, we hope this topic modeling
technique takes a step toward being the approach used in all topic modeling. Additionally,
we seek to use the same techniques to speed up the execution of semisupervised topic
models to further improve the interpretability and perplexity of these models. At the end
the research paper, we hope to give existing consumers of semisupervised topic models
another tool that can improve execution time, perplexity and interpretability; and to
compel any topic modeler that semisupervised topic models are an effective enhancement
to existing topic models on just about every dataset.

1.3. Article Outline

The rest of this article is organized as follows: in Section 2 we give a few motivating
examples to help understand the intuition behind our ranking approach. In Section 3 a
more extensive overview of related works and background into our problem domain is
presented. Section 4 provides the details of our approaches named KnowledgeRank and
Rank-LDA.

The results of our approaches compared against various baseline methods and datasets
are given in Section 5. We provide a brief discussion of our approach, their results and
implications in Section 6. And finally we conclude the article in Section 7.

2. Motivating Examples

We provide a few small examples to help understand the intuition behind using
ranking algorithms for semisupervised topic models.

2.1. Graph-Based Knowledge Sources

The proposed ranking algorithm allows for the inclusion of graph-based knowledge
sources into the semisupervised topic modeling process. Current methods only allow for
article-based knowledge sources [10,26,27]. For example, suppose we are working with
a corpus of PubMed (https://www.ncbi.nlm.nih.gov/pubmed/ (accessed on 1 Decem-
ber 2021)). articles, and we observe the word acetylsalicylic acid (commonly known as
aspirin). We are now trying to classify this word as belonging to either Cerebral infarction
or Alzheimer’s disease using an article-based knowledge source derived from Wikipedia.
However, neither the article for Alzheimer’s disease https://en.wikipedia.org/w/index.
php?title=Alzheimer%27s_disease (accessed on 1 December 2021) nor Cerebral infarction
https://en.wikipedia.org/w/index.php?title=Cerebral_infarction (accessed on 1 Decem-
ber 2021) contains the word acetylsalicylic acid (as well as aspirin), leaving the model to
choose the topic assignment from outside the knowledge source. However, suppose we
were to leverage the graph-based knowledge source UMLS. In that case, we have a direct
connection (C0007785 RO/may_be_prevented_by C0004057) between Cerebral infarction
and acetylsalicylic acid—whereas none exists between acetylsalicylic acid and Alzheimer’s

https://www.ncbi.nlm.nih.gov/pubmed/
https://en.wikipedia.org/w/index.php?title=Alzheimer%27s_disease
https://en.wikipedia.org/w/index.php?title=Alzheimer%27s_disease
https://en.wikipedia.org/w/index.php?title=Cerebral_infarction
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disease. This extra information can help to classify acetylsalicylic acid to Cerebral infarction
over Alzheimer’s disease at a more accurate percentage (Based on a PubMed MeSH term
search of acetylsalicylic acid) and cerebral infarction versus acetylsalicylic acid and Alzheimers
disease, yielding 488 to 58 results respectively.

2.1.1. Overlapping Topics

Another advantage of semisupervised topic ranking comes from leveraging informa-
tion from overlapping topics. In this example, suppose we try to classify w1 as belonging
to t1 or t2, and w1 is not in either t1 or t2’s knowledge source article. However, a third topic,
t3, contains w1 and w2, which t1 shares. Furthermore, t2 does not share any words with
t3. Thus, ranking can help prefer t1 over t2 as the score is propagated based on distance.
However, other methods: counting, Gibbs-based, etc., cannot give such an advantage.

2.1.2. Discarding Topics

At some point, the topic model must choose to discard topics assumed not to be used
in the generative model. Existing methods use counting, assuming that if a topic was used
in the generative model, then there will be more word assignments to that topic than a
topic not used in the generative model. However, this may not be the best way to eliminate
topics. Consider the example shown in Figure 1. Here, we modeled assignments of words
to topics as a graph with a word having an outgoing edge to a topic if that word is assigned
to that topic. If we must discard one topic out of the existing topic set, counting would
choose t4. However, a better topic to discard would be t1 since the words assigned to t1 are
shared words that could easily be from other topics. Ranking would consider the context
of the words assigned to t4 to choose t4 over t1.

Figure 1. An example graph representation of word and topic assignments.

3. Background
3.1. Semisupervised Topic Modeling

A known weakness of traditional topic modeling (LDA) [2] is a lack of interpretabil-
ity [8]. Given a set of topics, a human annotator can often have difficulty identifying a label
for the topics. One solution to increase interpretability comes in the form of semisupervised
topic modeling.

Some forms of semisupervised topic modeling combine unsupervised models with
supervised models to classify documents [36,37]. Although an adoption could apply
to modeling topics [38], the supervised portion still requires an input set that may be
expensive or challenging to obtain. Other forms of semisupervised topic modeling take the
semisupervised input directly from the input itself [39]. While the approach is effective,
such as in the domain of sentiment classification, this may not apply to our domain since
they do not incorporate outside knowledge and may lead to problems when the input does
not contain enough information to form meaningful topics [10].
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We restrict our study to semisupervised topic modeling which contains some easy to
obtain superset of labeled topics given as input to latent Dirichlet allocation (LDA) [2]. This
labeled topics is often referred to as a knowledge source.

We formalize the knowledge source (KS) as:

ϕ̂j ∼ fϕ(X̂, KS, Âj, β) (1)

KS = (Â1, Â2, . . . , ÂB̂) (2)

X̂ j = fX̂(Âj) (3)

Âj = (L̂j, ŵ1,j, ŵ2,j, . . . , ŵĜj ,j
) (4)

With Ĝj being the word count of article-topic Âj, L̂j the article label, ŵi,j as the ith
word in Âj, β is a Dirichlet distribution hyperparameter and f being functions that the
model determines.

This labeled topic input is assumed to be part of the generative model. Before generat-
ing the corpus, we determine the total number of topics (K) and vocabulary size (V). For
each topic, we sample from a Dirichlet distribution that may or may not be influenced by
an individual knowledge source topic. If a knowledge source topic influences the topic, the
topic label becomes the article’s title from which the knowledge source topic was created
(L̂). Each document in the corpus is generated by first sampling a topic from a discrete
distribution of size K. After the topic is sampled, a word is chosen by sampling from the
topic’s discrete distribution (ϕ) of size V.

During the corpus generation, some topics are formed using the technique from
LDA, while a set of others are drawn from a function of the labeled input data. This
function can place a Dirichlet prior over the vocabulary [27,40]; however, this tends to
lose any semblance from the labeled input data. Since the labeled input data tend to
be highly interpretable, a more interpretable approach involves assuming the labeled
input data are topics themselves [26,41]. The labeled input often comes in the form of
documents describing a topic, referred to as a knowledge source. These documents are
formed into histograms and directly turned into distributions representing the histograms.
This approach increases interpretability but can be too rigid in representing a labeled
topic [10].

A third approach, Source-LDA, involves a compromise between the previous two
approaches [10]. Source-LDA draws its labeled set of distributions directly from the
knowledge source; however, it assumes these histogram counts to be the hyperparameters
to a Dirichlet distribution. By allowing the histogram counts as parameters into the
Dirichlet distribution, variance is allowed on the labeled topic set and is more adaptive to
the data. This balance between interpretability and adaptability allows for Source-LDA to
outperform existing methods of semisupervised topic modeling.

The plate diagram for Source-LDA is highlighted in Figure 2, and a similar adaption
can be imagined for any semisupervised input model [26,27]. The variables in Figure 2 are
explained in Table 1. Since the labeled topics are part of the generative model, the inference
must consider these new variables for any semisupervised topic model. A general Gibbs
sampler [42] can be built using the sampling condition given as:

P(zi=j|z⃗-i, w) ∝ dL(nw, nd, β, α, V, i, w, D) (5)

with dL representing a posterior sampling density [42,43] and for all i > T:

P(zi=j|z⃗-i, w) ∝ dS(nw, nd, β, α, V, i, w, D, KS) (6)

where z⃗ is a vector of topic assignments, i the current token, w is a matrix representation of
all the words, nw is a matrix of topic word counts. β is the symmetric hyperparameter for
the word to topic mixtures, V is the size of the vocabulary, dS is a posterior sampling density
specific to the model, nd represents the matrix of document topic counts, α is the symmetric
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hyperparameter for the topic to document mixture, K is the count of all nonlabeled topics,
and T is the total number of topics.

Figure 2. Plate notation for Rank-LDA. Dashed box represents Source-LDA.

Table 1. Notations used in Source-LDA.

Symbol Description

w A word in a document of size Nd
z The topic corresponding to w
θ A distribution over topics for each di ∈ D documents, parameterized by α
α The Dirichlet hyperparameters for each K topics
Nd The number of words in di ∈ D documents
D The number of documents in the corpus
ϕk A distribution over words for each k ∈ K topics, parameterized by β
β The Dirichlet hyperparameters for each w words
B The number of knowledge source topics
K The number of latent topics
ϕs A distribution over words for each b ∈ B topics, parameterized by δ

δ
The Dirichlet hyperparameters for each word in b ∈ B topics. The value is a result
of a function applied to X and λ

µ The mean to the normal distribution
KA An article-based knowledge source
X The count of each word in a ∈ KA knowledge source article

λ
A latent number that signifies how far ϕs deviates from the corresponding frequency
distribution

σ The standard deviation to the normal distribution

3.2. Pagerank

PageRank [30] uses an iterative algorithm to determine a ranking for a node. Ad-
ditional variables are added to the single-step calculation due to some nodes’ potential
to have no outbound edges or no inbound edges. These additional variables lead to the
calculation of a single step ranking (R) for a given node m as:

R(m) =
1 − d
|N| + d × ∑

n∈I(m)

R(n)
|O(n)| (7)

I(x) and O(x) return a set of all the inbound and outbound nodes connected to node
x, respectively, and N is the set of all nodes. The variable d represents the damping factor.
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An interpretation of PageRank can be that of a random surfer. The random surfer
starts at any one web page randomly in the world wide web and either clicks a random
link with a probability of d or goes to any other page randomly in the world wide web. The
result of the ranking is the probability that the random surfer will visit a page.

3.3. Ranking Algorithms

The original PageRank algorithm was used to determine the importance of a given
web page [30]. This ranking was shown to be an excellent way to rank the importance of a
word in a sentence [31] and determine trustworthy websites [44]; however, they are only
applicable to their respective domains. The integration of topics into PageRank can help
weight the edges used in PageRank. This weighting is accomplished using topic vectors
determined by topic lists [45]. This method, while effective in improving the results of
PageRank, yields no improvement in topic modeling. PageRank was also used to add
weighting to some classification and topic tasks [46–48]. As in TextRank, vanilla PageRank
works to find an importance ranking among connected components. These and other
approaches help form a motivation for our work, but they do not offer insights to how they
may rank knowledge sources.

3.4. Topic Labeling

Topic labeling can be done in the postprocessing stage [15,16] by comparing the
topic distributions with some predetermined knowledge source. The drawback of these
approaches is that the topics tend to cluster nonsemantically related words [10]. Supervised
approaches allow predetermined labels to be assigned to clustered topics [23–25]. These
approaches can assign an entire document a label [23,24] or assign multiple labels to a
document [25]. Supervised techniques are often dependent on an extensive collection of
labeled data that may be expensive or time-consuming to obtain.

A balance between after-inference topic labeling and supervised topic labeling comes
from semisupervised topic modeling, previously discussed in Section 3.1. These methods
use some form of labeled input, much like supervised topic modeling; however, the input
is much easier and cheaper to obtain.

Different approaches outside of Bayesian modeling can be performed to label topics or
similar tasks [49,50]. One example is mapping the vectorized tokens against the tokens of
the corpus [49]. After the corpus tokens are mapped to vectors, classification is run using a
deep learning model such as a neural network. This approach yields good results when the
input is labeled and enough training data exist to build a supervised model. When there is
not enough labeled data, the supervised model may yield poor results.

4. Methods

With the desiderata to leverage graph-based knowledge sources in topic modeling,
we must first model the semisupervised input in a way that maximizes the effectiveness
of the ranking. We introduce our approach, KnowledgeRank, for constructing a graph-
based representation of a knowledge source for ranking the appropriate nodes and edges.
Variables used in KnowledgeRank are summarized in Table 2.
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Table 2. Explanations for variables used to describe the methodology behind KnowledgeRank.

Symbol Description

Rg(n) The rank score for a node n in graph g
I(m) The set of all nodes with incoming edges into node m
O(n) The set of all nodes with incoming edges originating from node n
Cn The count of word n in a corpus
D̂ A corpus
d Damping factor
ζg An input parameter over the interval [0, 1] specifying the ranking importance of frequent

words in a corpus with corresponding knowledge source graph g
N The set of all nodes
P(wi|t) The probability of word wi given topic t
S(t, wi) The set of nodes in the shortest path from node t to node wi
X(m, n) The number of times word n appears in topic m’s knowledge source article
zi The ith topic assignment
z⃗−i A vector of all topic assignments minus the ith assignment
b A variable representing the draw from a Bernoulli distribution
nwi
−i,j The number of assignments of word i to topic j minus the current assignment

n(·)
−i,j The number of assignments to topic j minus the current assignment

4.1. Graph-Based Knowledge Sources

In cases where the only semisupervised input set is already in the form of a graph, we
can simply use the given structure as the model for KnowledgeRank. However, what is
not entirely clear is how to obtain the labels. Many ontologies or other compendia consist
of concept nodes that can be used as labels for topics and noisy word nodes that would
be inappropriate labels for a given topic. For example, in the neuroscience information
framework (NIF) ontology, a given node may correspond to the word “of” which obviously
would not be a good label for any topic. These less applicable words have to do with
knowledge sources containing parts of speech or commonly used words in their respective
texts. This curated data source can still be helpful for topic models, but we must first find
the appropriate labels.

Graph-based ranking models have already established the ability to find the most
important word in a sentence [31]. It follows that similar techniques can find the most
important node from a set of nodes. If we apply the ranking algorithm to a knowledge
source graph, we can determine the labeling for a topic based on the highest scoring nodes.

By applying the ranking in this way, we can obtain the most important nodes in the
graph, but in some cases, we may want to let the corpus give us insight into the importance
of a node. It is plausible that a word used more frequently in a corpus should be considered
more important in the representative graph than one that is used very seldom. In other
cases, this weighting is not so important. To account for these cases, we can augment the
original PageRank formula to consider these weights and the associated importance of the
weighting (ζg) as:

w1 = ∑
n∈I(m)

Rg(n)
|O(n)| (8)

w2 = ∑
n∈I(m)

Cn

|D| · Rg(n) (9)

Rg(m) =
1 − d
|N| + d · [ζg + (1 − ζg)× w2] · w1 (10)

Ci is the count of word i in the corpus D, and ζg is defined over the interval 0 to 1.
We can also use this information in the generative model itself. Given that we only have

the graph-based knowledge source, we can construct a distribution over the vocabulary
in a similar manner. We can form a distribution over the vocabulary by starting at a topic
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label node, t, and normalizing the probability of arriving at each word in the vocabulary.
The distribution can be calculated by considering the path a random surfer takes to each
node with the restriction that the random surfer starts at each labeled node. This function
is given as:

Pg(wi|t) ∝ ∏
m∈S(t,wi)

Rg(m) (11)

The advantage of this approach is that the change required to infer the model’s hidden
variables can easily be adapted to any semisupervised topic model’s Gibbs sampling
equation. We can precompute the probabilities and then use the distributions the same way
as a word distribution from an article-based knowledge source. In this approach, we add
curated outside knowledge while still allowing LDA to cluster the topics.

4.2. Article-Based Knowledge Sources

For those knowledge sources consisting only of articles, we can model the articles into
a graph and then run our ranking algorithm. Our approach connects each topic node to
each corresponding source article word. Because frequent words in an article are assumed
to be more important to topic identification, we would like to give these words more weight
in our graph representation. We add this weighting by creating an edge (from topic to
word) for each token in an article. For example, take the two histograms corresponding
to a knowledge source article (article-topic) shown in Figure 3a. In this example, each ti
represents a knowledge source topic label (or article heading) with each wi as a non-topic
label word in knowledge source topic i. We model the edges as undirected resulting in
I(n) = O(n). Note that an article-topic can have in its article a word that is also a label for
another article-topic. Also note that a word can be a non-topic label word (shows up in the
body of the text) and the knowledge source topic label (the article heading) in the same
knowledge source topic (such as ti).

The change required to the ranking algorithm is the weighting of each node. This
change gives us:

w3 = ∑
n∈I(m)

Ra(n)
|O(n)| (12)

w4 = ∑
n∈I(m)

X(m, n)
∑

m∈O(n)
X(m, n)

· Ra(n) (13)

Ra(m) =
1 − d
|N| + d · [ζa × w3 + (1 − ζa)× w4] (14)

where ζa, a parameter defined between 0 and 1, lets us specify the importance of weight-
ing the edges over a PageRank score, and X(m, n) is the count of the number of token
assignments word n has in knowledge source topic m.

We can then use the graph-based representation in tasks mentioned in the graph-based
knowledge sources section with this representation. This method would be beneficial in
preprocessing to decrease some of the unimportant topics.
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Figure 3. A graph-based representation of two topic (t1, t2) histograms corresponding to knowledge
source articles (a) alongside a diagram representation of knowledge source rankings (b). In ranking
diagram (b), KA, KG, and a corpus are used to construct a graph from left to right, used as input into
a semisupervised topic model.

4.3. Graph and Article Knowledge Sources

Having both graph- and article-based knowledge sources brings a more extensive
set of information into the topic model and thus can lead to better labeling of found
topics. Given that we already have the graph form, we can apply the ranking algorithm to
preprocess the existing knowledge source articles. We would want to let the corpus tell us
about the importance of a word, but we also want to consider how important it is in the
knowledge source article. For this, we make a change to the ranking calculation that allows
for this weighting:

w5 = ζg × w1 + (1 − ζg)× w2 (15)

w6 = ζa × w3 + (1 − ζa)× w4 (16)

R(m) =
1 − d
|N| + d · w5 · w6 (17)

We can use this ranking to perform all the tasks previously mentioned, such as pre-
inference topic filtering, as we diagram in Figure 3b. Additionally, this ranking can be
helpful in the inference stage of existing semisupervised topic models. During inference,
the topic model must decide which topics to keep and which ones to discard. To determine
which topic to discard, the algorithm considers a simple observable property such as the
count of assignments to a topic. This decision can lead to problems such as when two
related topics are used in a corpus, and thus one takes most of the overlapping word
assignments. The topic with the smaller number of overlapping word assignments is
then discarded. When using clustering algorithms, the same problem exists, limiting the
similarity of two topics to a distance measure. Compared to clustering, using counts has
more of an underlying intuition. We can use the ranking methods described previously
as a third way of determining which topics to discard. After obtaining a ranking, we can
simply remove an appropriate number of low-scoring topics.

Both knowledge sources can also be combined in a topic model that leverages the
graph-based connections to increase the probability of words being assigned to the appro-
priate source topic when they do not appear in the knowledge source article. An incomplete
assumption of article-based knowledge sources is that they contain every word for which
the generative model would use to write about a particular topic, but this is certainly not
the case. It is entirely possible that important words about a topic may not show up in a
random document describing that topic. Graph-based knowledge sources can help add
more information into the model. The generative process can be changed to allow for this
synthesis of information. The change required to Equation (11) is:

P(wi|t) ∝ ∏
m∈S(t,wi)

R(m) (18)
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The graph-based knowledge source can also influence the word assignments by giving
a graph-based distribution an influence that can be more or less than the article-based
distribution depending on the data. To allow for this, we can place a Dirichlet prior over
the selection between the models. Based on an input hyperparameter, the data will decide
which distribution to select, and then we sample from this multinomial to determine
which knowledge source is used to select the word. A more straightforward approach
assumes that the vocabulary of the samples for the different types of knowledge sources
is disjoint. This approach allows the generative model to sample the knowledge source
choice variable (b) from the Bernoulli distribution, parameterized by p. During inference,
p is easily observed and does not factor into the inference other than to determine which
calculation to use.

As shown in Figure 2 (with the variables explained in Table 3), we can build a Gibbs
sampler from the generative model. The choice variable, b, should be included in the Gibbs
sampling and used to determine which distribution to sample from. The step sampling
for b = 0 is the same as Equation (6). For b = 1, the step sampling is drawn from the
proportional probability of [P(zi=j|z⃗−i) unchanged and omitted]. We take this approach to
be Rank-LDA:

P(zi=j|z⃗−i, wi, b=1) ∝
nwi
−i,j + P(wi|j)

n(·)
−i,j + 1

(19)

Table 3. Notations used in Rank-LDA.

Symbol Description

ϕr A distribution over words for each b ∈ B topics, parameterized by Rb
KG A graph-based knowledge source

Rb
The Dirichlet hyperparameters for each word in b ∈ B topics influenced by
KnowledgeRank

p Bernoulli distribution parameter

b Draw from the Bernoulli distribution parameterized by p to determine which
knowledge source w is drawn from

Rank-LDA is shown in Figure 2 as an extension to Source-LDA however a similar
extension to any semisupervised topic model would result in a congruent construction.
Rank-LDA uses the article-based knowledge source (KA) in two ways. The first being the
original way used in the semisupervised topic model; the second is to provide supplemental
support to the graph provided by KG. The intuition is that both KA and KG provide
partial information about a topic and that combining them can only help. Additionally,
by turning KA into a graph, we take advantage of ranking over counting, which gives us
the advantages discussed in the motivating examples. One disadvantage of this approach
is that it does not consider the quality of the knowledge sources (KA and KG), thus
weighting them equally. A poor quality knowledge source could add noise, leading to less
desirable results [51]. Knowledge source weighting and optimization are left as an open
research area.

5. Results

Knowledge source rankings are applied in various experiments to show the utility of
KnowledgeRank.

5.1. Datasets

To examine how well our algorithm performs across different datasets, we collected
datasets across various domains and varying sizes. Details and metrics are provided in
Tables 4 and 5. Links to download the datasets are provided in the data availability state-
ment. The datasets can be partitioned into two sets: hierarchical and nonhierarchical. For
the nonhierarchical datasets, we required a corpus with topics labeled by a human annota-
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tor. Each dataset was taken from previous work on similar topic modeling tasks [52,53].
The datasets were preprocessed differently depending on the experiment; however all
datasets were converted to lower case with nonascii characters removed. Additionally,
to mitigate against stop words and obscure words we filter out the top and bottom 5%
of occurring tokens. Outside of these standard data cleansing steps more details of data
processing are provided in each experiment’s experimental setup. The hierarchical datasets
consist of parent, child relationship topic pairs. Each child was restricted to one parent,
while each parent could have multiple children. Thus the network structure resembled a
forest as opposed to a graph. More details about construction are given in the experimental
setup for the hierarchal experiments (Section 5.6).

Table 4. Nonhierarchical datasets and their descriptions, article-based knowledge sources (KA),
graph-based knowledge sources (KG), document count (D), and number of topics (K) used for
evaluation of KnowledgeRank.

Description KA KG D K

MeSH Medical subject headings Wikipedia UMLS 2000 56,326

CiteULike-180 Manually tagged scholarly papers Wikipedia WordNet 182 1660

FAO-30 Manually annotated documents from the Food and Agriculture Orga-
nization of the UN. Wikipedia WordNet 30 650

SemEval-2010 Scientific articles with manually assigned keyphrases Wikipedia WordNet 244 3107

Reuters-21578 Manually labeled documents from the 1987 Reuters newswire Wikipedia WordNet 21,578 2663

Table 5. Hierarchical datasets and their descriptions, article-based knowledge sources (KA), graph-
based knowledge sources (KG), and number of topics (K), used for evaluation of KnowledgeRank.

Description KA KG K

MeSH Medical subject headings Wikipedia UMLS 130
PhySH Physics Subject Headings Wikipedia WordNet 36
ACM-2012 ACM computing classification system Wikipedia WordNet 4
OAD-Wiki Outline of academic disciplines Wikipedia WordNet 70

5.2. Execution Time

For KnowledgeRank to be helpful in preprocessing, we seek to add a filtering ap-
proach that does not significantly add to the overall time needed to perform topic modeling.
An execution cost that is minuscule compared to the time needed to complete Gibbs sam-
pling of a corpus is ideal, given that execution times of semisupervised topic models can be
quite expensive [10]. Any time increase in the topic modeling process will undoubtedly
lead to a decrease in the usage of a semisupervised topic model.

We run KnowledgeRank as the preprocessing step on a dataset that consists of articles
from Wikipedia corresponding to MeSH terms. We seek to obtain the best K topics from a
superset of T knowledge source distributions. With K taken as 100, 200, 500, and 1000 topics.
T also varies from 0 to 50,000 superset topics. Figure 4a shows that the execution time
increases linearly with an increase of T. The different values of K do not significantly impact
the results, and even at extreme values of K and T, the total execution time is relatively
small; at 1.5 s, this is much less than the time taken to run state-of-the-art methods [10].

The same experiment was performed on each of the nonhierarchical datasets. To show
the linearity of the execution times, we compare the average coefficient of determination of
a linear function fit to the data against a quadratic function. The functions were fit using the
least squares approach. As shown in Table 6, the results show more of a linear relationship
than a quadratic relationship for the execution times of KnowledgeRank in preprocessing.
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Figure 4. Results showing execution time for running KnowledgeRank (a), precision-recall curve
for selecting topics used in generation of the corpus (b) and trade-off between execution time and
F-score (c). All results shown are in preprocessing stage for MeSH dataset.

Table 6. Metrics describing execution of KnowledgeRank in preprocessing stage.

Execution Time Preprocessing Trade-Off

R̄2
f (x) R̄2

f (x2) AUCrank AUCvote AUCjs r

MeSH 0.905 0.768 0.418 0.264 0.02 −0.963
CiteULike-180 0.519 0.299 0.244 0.192 0.192 −0.529
FAO-30 0.344 0.186 0.269 0.238 0.238 −0.836
SemEval-2010 0.493 0.28 0.229 0.104 0.104 −0.821
Reuters-21578 0.437 0.236 0.223 0.164 0.164 −0.764

5.3. Preprocessing

A proposed advantage of KnowledgeRank is the ability to appropriately determine
which topics are used in the generation of a corpus. We show the utility of KnowledgeRank
in this task by comparing it to baseline methods. We consider only baseline methods that
require much less computation cost than that of topic modeling.

5.3.1. Experimental Setup

We generate a corpus by first taking a random subset of MeSH article headings
and combine them with each MedlinePlus article heading. For each article heading, we
search Wikipedia for the corresponding article. If a query leads to no results or multiple
results, we discard the article heading. The process results in 4300 found Wikipedia
articles. Each Wikipedia article is then turned into a histogram over the set of words
in the article. Given the histograms corresponding to Wikipedia articles, we generate a
corpus of 2000 documents, each consisting of an average of 500 words using the Source-
LDA generative model. The Source-LDA parameters are K, α, µ, and σ set to 100, 0.5,
5, and 2, respectively. For KnowledgeRank, we take as input the SNOMED CT (http:
//www.snomed.org/, accessed on 1 December 2021) subset of the UMLS. The graph is
filtered by removing any node whose corresponding string label does not occur in the
corpus. We then run KnowledgeRank on the filtered graph. The first baseline method is
based on voting, where one vote is cast to each topic for every word in both the corpus
and the corresponding knowledge source article. A second baseline method is constructed
by taking each document as a discrete distribution and scoring the likelihood of a topic
existing in the corpus by comparing the Jensen–Shannon (JS) divergence. We then repeat
this experiment for all datasets and record the area under the curve (AUC) of the precision-
recall curve.

5.3.2. Experimental Results

The corpus and knowledge sources are used to determine which topics are used to
generate the corpus. Figure 4b shows the precision-recall curve for determining whether
a topic was used in the corpus. KnowledgeRank outperforms the baseline methods sig-
nificantly as the JS divergence baseline method has a hard time separating the mixtures,
and voting is not refined enough to accurately capture the matching. Bringing into the

http://www.snomed.org/
http://www.snomed.org/
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model the outside information of the UMLS allows for a more accurate determination of
correct topics while doing so in a computationally efficient manner. Table 6 confirms that
KnowledgeRank is consistently better in preprocess filtering than baseline methods.

5.4. Preprocessing Trade-Off

As shown in the previous experiment, KnowledgeRank can effectively filter out some
topics from the knowledge source but cannot perform this task perfectly. Some filtered
out topics could potentially be used to generate the corpus. A natural question to ask
is whether the preprocessing is needed at all, since keeping all topics in the topic model
allows the topic model to determine whether the topic is needed, based on an accurate
Gibbs sampling [10].

The primary factor in deciding to use preprocess filtering is the amount of time it
takes a semisupervised topic model to run entirely. This time is significant for existing
semisupervised methods with a large corpus, approximation steps, and knowledge source
size [10]. As shown in Figure 4c, for a corpus of 2000 documents averaging 500 words per
document and K set to 100 topics and 10 approximation steps, as the knowledge source
increases, so does time. At the extreme end, one iteration takes over 350 s. It is simply not
feasible to run the model on such an input size.

The solution is to reduce the knowledge source size using KnowledgeRank. But by
doing this, we sacrifice some F-score. Figure 4c shows the trade-off expected when we
filter out all but K topics from the knowledge source before inference. As expected, as we
increase the number of filtered topics, we inevitability decrease the F-score, as the ranking
model has more choices to skew the filtering. This relationship is verified with the other
datasets. The anticorrelation (r) is shown in Table 6 as the Pearson correlation coefficient.

5.5. Inference Pruning

Given that the input into the semisupervised topic model is a superset of topics,
at some point, the topic model must decide which topics to keep and which topics to
discard. Additionally, since K unlabeled topics are thrown into the mix in the mixed
models, a determination must also be made on these unlabeled topics.

KnowledgeRank can be used in these determinations by helping sort out which topics are
best to keep around in a more in-depth manner than the current method of counting. The fol-
lowing experiment verifies this and compares its selections against clustering-based methods.

5.5.1. Experimental Setup

A corpus was generated consisting of 2000 documents with an average of 500 words
per document using 100 Wikipedia articles taken from MeSH subject headings. The Source-
LDA generative algorithm was used to create the corpus from the 100 selected Wikipedia
articles. The parameters for Source-LDA were α, µ, σ set to 0.5, 0.7, and 0.3, respectively.
We run Source-LDA with a knowledge source of 1000 medical subject headings with
the generated corpus, inclusive of the 100 selected topics to generate the corpus. This
process does not always yield incorrect decisions from Source-LDA using simple counting.
Therefore, random permutations of the 1000-topic superset and 100 selected topic set were
used as input into this process. The 100 and 1000 topic sets were sampled from a full MeSH
and UMLS overlapping set of 8000 topics. Once a corpus and knowledge source were
found, we log the decisions, count vectors, and ϕ distributions at each relevant step of the
topic model and run the different methods to see if they can improve upon the decisions.

The decisions are made using KnowlegeRank and the established clustering algo-
rithms: k-means clustering and density-based spatial clustering of applications with noise
(DBSCAN) [54]. For KnowledgeRank, a graph was constructed using the counts as a weight
from a word node and a topic node. If word i was assigned to a topic j, then the number of
times that word i was assigned to topic j becomes the weight of the directed edge from node
i to node j. These rankings were then used to weight the counts to decide which topics to
keep. K-means and DBSCAN were run against the ϕ distributions. The number of centroids
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for k-means was set to 100. For DBSCAN ϵ was set to 0.115 with the minimum number
of points for a dense region as 1. We take the point closest to the centroid (Centroid), the
distance to the centroid (Distance), and the distance weighted using the ranking score
(Distance+Rank) to rank and choose topics to keep for k-means. For DBSCAN, we take the
topic with minimal distance to all other topics in the cluster. The same experiment was
performed on all nonhierarchical datasets.

5.5.2. Experimental Results

The algorithms were run against the ϕ and count matrices after 800 iterations in the
topic model out of 1000 total iterations. The decision to make is to choose the best 100 out of
176 (this can be different depending on the data source and random seed) candidate topics.
As shown in Figure 5 and Table 7, KnowledgeRank improves upon the existing method of
counting, while k-means-based decisions and DBSCAN mostly have no effect. From an
intuitive perspective, this problem is well served for KnowledgeRank. The reason why the
topic model does not assign the words to the correct topic is due to another topic, not used
in the generation of the corpus, that takes the assignments. By ranking the counts to topics,
we can give less importance to words that belong to many different topics. These words can
skew the counts and lead to incorrect topic decisions while weighting them appropriately
by the amount they overlap, which ranking methods are quite good at, allowing for a
better decision.

Table 7. Increase in topic selections for all datasets when using KnowledgeRank- and clustering-based
methods over simple counting during topic modeling inference.

%∆ Topic Selection

Rank Centroid Distance Distance+Rank DBSCAN

MeSH 50 −70 −85 −66.667 −87.755
CiteULike-180 10 0 0 0 0
FAO-30 6.25 0 0 0 6.25
SemEval-2010 30 0 0 0 0
Reuters-21578 50 0 0 0 0
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Figure 5. A bar chart representing increase in topic filtering decisions made during inference using
KnowledgeRank- and clustering-based methods as a percentage over naive approach of simple
counting of assignments to each topic using MeSH dataset.

5.6. Partial Knowledge

We show the utility of Rank-LDA to aid existing semisupervised topic models with
partial knowledge. Rank-LDA is used to assign meaningful labels to topics that contain a
large number of words that appear in the corpus but do not occur in the predetermined
article-based knowledge sources. Each corpus used in evaluation consists of a subset
of topics as the knowledge source and their children as the source for tokens not in the
knowledge source.
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5.6.1. Experimental Setup

To demonstrate how we constructed the dataset we use the MeSH corpus as an
example. All other datasets were similarly constructed. From the entire MeSH hierarchy,
we crawl Wikipedia for the resultant topic documents. This set consists of 20,050 found
topics. We randomly select 65 topics that contain at least two direct children in the found
topics from this set. We take two random direct children from the 65 parent topics for a total
of 130 child topics. We then build the knowledge graph based on SNOMED CT filtered by
tokens appearing in the corpus. We connect the nodes together using the graph structure
of SNOMED CT and the article-based knowledge source. We add an edge between every
topic node and a word existing in the corresponding article. Next, we run a modified
version of the generative model for the bijective model [10] of Source-LDA with parameters
of K, α, β, µ, σ, D, Davg, as 65, 50/K, 200/V, 5.0, 0.0, 2000, and 500 respectively. The
modification is for each word we flip an unbiased coin to decide if we are to sample from
the parent topic under the Source-LDA parameters or from the raw child distributions.
This process results in close to a 50/50 split between a word coming from the parent
or the child. For each child word, we mark the topic assignment as that of the parent
and keep the parent word as assigned to the parent topic. We then run the Rank-LDA
topic model in comparison with Source-LDA, explicit Dirichlet allocation (EDA) [26], the
concept topic model (CTM) [27], Sawtooth Factorial Topic Embeddings Guided Gamma
Belief Network (SawETM) [4], the Variationally-Learned Recurrent Neural Topic Model
(VRTM) [6], and a version of VRTM defined to utilize outside information in the form of
word embeddings [55] and is evaluated as a separate model (VRTM+W2V) to determine
which topic each word belongs to. Each neural topic model was implemented as described
in their respective publications [7,8]. For all hierarchical datasets, we repeat the experiment
as described above with the corresponding dataset topics.

5.6.2. Experimental Results

After 1000 iterations, we compare the perplexity (Γ) and classification accuracy (Λ) as a
measure of goodness between the models. As is shown in Table 8, Rank-LDA outperforms
all other semisupervised topic models in terms of correctly assigning each word to the
correct label (Λ%), as well as perplexity. Rank-LDA similarly outperforms the baseline
neural topic models as demonstrated in Table 9. The semisupervised baseline methods,
Source-LDA, EDA, and CTM are limited in being restricted by their knowledge source
distributions leading to a low probability of a word being assigned to the topic when it
is not in the knowledge source topic. Rank-LDA rectifies this deficiency by bringing in
additional outside information to connect words that may not show up in the original
knowledge source article. Another interesting aspect is that Rank-LDA outperforms the
neural topic models in perplexity. It is somewhat expected for Rank-LDA to outperform
the baseline models in label assignment accuracy, however perplexity is a major benefit of
the neural topic model over Bayesian models. We submit the reason for better performance
has to do with benefit of our model coupled with the generated data. These results suggest
in data that is generated under a generative model, Bayesian models can outperform neural
topic models. A finding that suggests the gains in perplexity to Bayesian topic models
in reported studies [7,8] may be due to the assumed generative model of the Bayesian
topic models.
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Table 8. Classification accuracy of token assignments and perplexity values for Rank-LDA, Source-
LDA, EDA, and CTM using a corpus mixed evenly between parent and child topics.

Rank-LDA Source-LDA EDA CTM

Γ Λ% Γ Λ% Γ Λ% Γ Λ%

MeSH 935.8 62.9 4432.5 50.1 20,390.8 42 2040.7 30.7
PhySH 47.6 75.9 7262.3 50.2 14,447.9 41.5 981.2 39.2
ACM-2012 3.6 49.9 7637 49.9 1481.9 49.9 200.6 49.9
OAD-Wiki 202.3 74.4 25,407.6 51.8 11,363.1 37 1197.9 12.5

Table 9. Classification accuracy of token assignments and perplexity values for Rank-LDA, SawETM,
VRTM, and VRTM+W2V using a corpus mixed evenly between parent and child topics.

Rank-LDA SawETM VRTM VRTM+W2V

Γ Λ% Γ Λ% Γ Λ% Γ Λ%

MeSH 935.8 62.9 6212.5 1.82 985.1 1.84 2073 1.85
PhySH 47.6 75.9 2200.6 5.72 910.3 5.72 266.3 5.7
ACM-2012 3.6 49.9 326.8 50.1 167.4 50 63.6 50
OAD-Wiki 202.3 74.4 3223.5 3.04 1225.9 3.04 1401.6 3.04

5.7. Interpretability

To show the how knowledge source rankings affect interpretability, we follow estab-
lished crowdsourcing techniques [8] to measure interpretability of our proposed model
against baseline models. The two interpretability tasks we measure are topic intrusion and
word intrusion.

5.7.1. Experimental Setup

We extract the Wikipedia article for each Medline Plus article heading from the Medline
Plus corpus. We add into the knowledge source, articles which are a descendant, ancestor,
or no relation to a Medline Plus article heading according to MeSH. The knowledge source
consists of 1000 articles and 1000 knowledge source topics. We take Medline Plus as our
corpus, which consists of 961 articles. Next, we run LDA with parameters K, α, β as 100,
50/K, 200/V respectively followed by Source-LDA on the corpus with K, α β, µ, σ, as 100,
50/K, 200/V, 1.0, 0.3 respectively for 1000 iterations. Next, we run a version of Rank-LDA
where we filter out 800 topics before inference (Preprocessing) and use ranking to prune
topics during inference (Inference Pruning). The parameters for Rank-LDA are the same
as Source-LDA with ζa and ζg both as 0.5. The graph used in Rank-LDA is built from the
knowledge source and the UMLS described in the methods section. We repeat the above
for ten LDA, Source-LDA, Rank-LDA, SawETM, VRTM, and VRTM+W2V runs. The neural
topic models were implemented as described in Section 5.6. To generate the topic intrusion
task, we choose a random run, then a random document from a set of Medline Plus article
headings that do not require specialized medical knowledge. After a document is chosen,
we take the two most probable topics from θ and a random selection of the least probable
topics as the intruder topic. We present the user with the title of the article and the first
100 words—with the option to view the entire article. After reading the title and article,
the user must identify the intrusive topic from the set of 3 topic labels. For LDA, we use
the eight most common words as the topic label. In the word intrusion task, we first select
a random run from LDA, Source-LDA, and Rank-LDA, then randomly choose from the
following a set of easily understood and overlapping topics. From the chosen topic, we
choose the four most probable words from ϕ. The intrusive word is taken randomly from
the five least probable words from ϕ that are also highly probable words in some other
topic. The user is then presented with the topic label and asked to choose the intrusive
word from the combined set of four probable and one improbable words. We filter out
obscure words and topics for both the topic intrusion and word intrusion tasks.
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5.7.2. Experimental Results

The tasks are placed on Amazon Mechanical Turk. (https://www.mturk.com/, ac-
cessed on 1 December 2021) For each task, a total of 75 questions are generated, 25 each for
LDA, Source-LDA, Rank-LDA, SawETM, VRTM, and VRTM+W2V. Each task is assigned
five workers. After the assignments are completed, we compare how well each model
did versus the null hypothesis. For the null hypothesis, we assume a random guess. For
the topic intrusive task, Rank-LDA and Source-LDA score a p-value of 0.0249 and 0.0742
with mean values of 0.448, 0.416 respectively. These scores imply significance at the 90%
confidence level for both models. For the word intrusive task, we obtain p-values for
both Rank-LDA and Source-LDA as less than 0.001 with mean values of 0.416 and 0.348
respectively. While there is not much interpretability gain over LDA for the topic intrusion
task, there is a significant improvement in the word intrusion task (mean value of 0.272 for
LDA against 0.416 for Rank-LDA). The neural topic models perform poorly on both tasks,
more so than the Bayesian topic models. This findings is consistent with recent studies on
neural topic models and interpretability [7]. Each task’s results are plotted as a box plot
in Figure 6. Each dot represents an answer whose value is set to the mean of that group.
The groupings are based on the worker and topic for the word intrusion task, and worker
and document for the topic intrusion task. The dashed line represents the mean of the null
hypothesis.

0.0
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1.0

LDA Source−LDA Rank−LDA SawETM VRTM VRTM+W2V

(a)

0.0

0.5

1.0

LDA Source−LDA Rank−LDA SawETM VRTM VRTM+W2V

(b)

Figure 6. Results showing mean group answers for word intrusion task (a) and topic intrusion task (b).

6. Discussion

This work removes a barrier to the widespread use of semisupervised topics models.
Given that we can now use any size knowledge source size as input, speed of execution is
no longer an impediment. Existing semisupervised topic modelers may find our approach
to be beneficial as well to reduce feasible yet slow running times back to normal speed.
Additionally, we provide an alternative to counting in the inference stage, which yields
better topic elimination decisions. When used as an extension in the generative model
itself (Rank-LDA), we provide a topic model that improves the state-of-the art method
(Source-LDA) for both perplexity and interpretability. Put together the technique presented
in this paper yields improvements in three vital areas of topic modeling: (1) execution time,
(2) perplexity, and (3) interpretability. We hope that by demonstrating these improvements,
semisupervised topic modeling becomes more widely used.

https://www.mturk.com/
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The improvements of our approach over existing semisupervised topic models is
impactful however it is far from complete. One limitation is the input size of the semisu-
pervised input. Given the nature of PageRank, the input size is limited to the order of 105.
While this greatly increases the number of inputs that can be handled by our model, it
is conceivable that an input size may be larger than 105 and unable to be used with out
model. Future work may consider a nonparametric model to handle a theoretically infinite
input size. Also the ranking method we provide here may be vastly improved as input into
an ensemble technique which uses the baseline methods together with other information
retrieval techniques. The ensemble method approach is left as an open research area. An-
other limitation is the inputs used in semisupervised topic models. While generally less
restrictive than supervised learning models, there are a limited amount of semisupervised
data available. In our study, we utilize Wikipedia due to its completeness, but outside
of Wikipedia for the general domain there are not many alternatives. This hurdle is an
interesting area of future research.

Although the addition of graph-based knowledge sources was established as beneficial
to various text mining tasks, it is yet to be demonstrated for inputs used in semisupervised
topic modeling. Our approach represents a novel technique for representing a knowledge
source article as a graph and extracting meaningful information from that graph. We
also provide a technique to adding additional contextual knowledge into topic modeling.
Our work is the first topic model that biases topic construction to both written word
knowledge sources and graphical-based knowledge sources. It also represents the state-
of-the-art technique for semisupervised topic modeling when given both graphical and
text-based knowledge sources, in both perplexity and interpretability measurements; when
the knowledge source input size is very large, our approach is the only feasible technique
currently available.

7. Conclusions

This paper introduces novel methods for representing knowledge sources as graphs
and ranking the nodes representing topics. These rankings can be applied to existing
semisupervised topic models. When used in the preprocessing stage, KnowledgeRank is
helpful to eliminate unnecessary topics. Eliminating topics before inference helps speed up
the topic modeling and allows the topic model to focus on a more appropriate superset of
topics. This ranking can be used during inference in place of existing elimination techniques
based on counting or clustering. When used alongside semisupervised models that use
an article-based knowledge source, a graph-based knowledge source improves the topic
labeling. The result is better perplexity and improved interpretability.

This work is fitting to applications which depend on topic interpretability and labeling.
At the University of California Los Angeles (UCLA), we are building a topic modeling
visualization system for aiding primary care physicians (NIH National Library of Medicine,
R21 LM011937). In this application it is paramount that topics are both interpretable and
labeled, as we only give the labels across a time series as the key to understanding a patient
history. The importance of basing a medical decision off a learned history, summarized by
topics places a emphasis on interpretability and topic labeling over other metrics such as
perplexity. This work has the potential to improve the understanding of a patient history
leading to better outcomes, which could lead to drastic improvements in medical decisions
and even prevent medical errors, thus saving lives. This work underscores and important
application of our approach but it is not limited to this use case. We envision our approach
to be beneficial for any application of topic modeling where interpretability and topic
labeling are visually displayed to give end-users a quick and efficient understanding of
a document.
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