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Abstract: In principle, the fundamental data of companies may be used to select stocks with a high
probability of either increasing or decreasing price. Many of the commonly known rules or used
explanations for such a stock-picking process are too vague to be applied in concrete cases, and at the
same time, it is challenging to analyze high-dimensional data with a low number of cases in order to
derive data-driven and usable explanations. This work proposes an explainable AI (XAI) approach
on the quarterly available fundamental data of companies traded on the German stock market. In
the XAI, distance-based structures in data (DSD) that guide decision tree induction are identified.
The leaves of the appropriately selected decision tree contain subsets of stocks and provide viable
explanations that can be rated by a human. The prediction of the future price trends of specific stocks
is made possible using the explanations and a rating. In each quarter, stock picking by DSD-XAI is
based on understanding the explanations and has a higher success rate than arbitrary stock picking,
a hybrid AI system, and a recent unsupervised decision tree called eUD3.5.

Keywords: decision trees; explainable AI; fundamental analysis; information visualization

1. Introduction

In stock picking, targeted investment in individually listed companies is made by
selecting shares according to certain criteria to achieve an above-average return. However,
identifying the appropriate criteria is demanding mainly to two reasons. First, commonly
known explanations for such a stock-picking process are too vague to be applied in concrete
cases. Second, it is challenging to analyze high-dimensional data with a low number of cases
in order to derive data-driven explanations. In principle, decision trees offer themselves as
a solution for both challenges by deriving algorithmically specific criteria for stock picking
from fundamental data to achieve an above-average return.

In the classical supervised top-down induction of decision trees (e.g., [1,2]), the dis-
tance metric or splitting criterion takes into account the class information of each case of
data, whereas for unsupervised decision trees, the cases are not classified, and the splitting
criterion does not take into account any class information [3]. However, this work focuses
on unsupervised approaches because the data described below does not have a classifica-
tion. In the supervised case, an extensive state-of-the-art survey of explainable methods
can be found in [4], whereas in the unsupervised case approaches are less common. In this
second case, explainable Ais (XAIs) based on unsupervised decision trees could be useful
to derive stock-picking criteria by providing relevant and meaningful explanations based
on fundamental data. However, current unsupervised decision trees are restricted by their
choice of splitting criterion based on specific cluster assumptions (e.g., spherical cluster
structures for the methods of Dasgupta et al. or Loyola-González et al. [5,6]).

This paper’s contribution is the proposition of an unsupervised explainable AI (XAI)
based on a decision tree guided by distance-based structures in data (DSD) for non-
sequential data. DSD are detected in an unsupervised approach by selecting a distance
metric based on multimodality [7] combined with projection-based clustering [8]. The
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identified DSD guides a supervised decision tree into generating meaningful and relevant
explanations evaluated by Grice’s maxims [9,10]. Additionally, this works’ methodology
is better reproducible than many other approaches introduced in Section 2 because it is
restricted to accessible open-source libraries of CRAN (see Section 3.4 for details).

Stocks are picked by selecting companies of the best-rated leaf of a decision tree. The re-
sults are compared to the sophisticated explainable AI proposed by Loyola-González et al. [6]
and a rule-based system combined with a neural network, called hybrid AI, of Tsaih et al. [11])
with priorly reported performance due to the low availability of unsupervised explainable AI
systems with accessible source code.

The fundamental data of specific companies is analyzed: their shares are tradable in
the stock market, and the companies are listed in the German Prime Standard [12]. The
Prime Standard is a segment of the regulated market in the Frankfurt stock exchange with
additional admission follow-up duties and the highest transparency requirements [13].
Here, stocks of the German Prime standard [13] are selected because companies with
tradable shares within this standard [12] must publish their quarterly financial statement,
income sheet, and cash flow every three months due to regulations [13]. Results are
provided based on four datasets of four consecutive quarters. The results identify, in each
quarter, valid DSD that allow for extrapolation about the future behavior of the shares’
market value for a chosen leaf containing a subset of stocks. All four quarters show that the
DSD-XAI outperforms a hybrid AI system and a recently published unsupervised decision
tree called eUD3.5 [6] for the case of stock picking.

2. Related Works

A considerable number of studies have inferred that predicting stock market returns
is a difficult task [14]. Nazario et al. distinguished two main analysis categories that are
used for this goal [14], called technical and fundamental analysis. Technical analysis is
a set of tools that predict future returns in financial assets by studying past market data
such as stock price and volume [14]. For example, the direction of movement of two stock
prices indices and two stock prices was predicted with several models of which random
forests exhibited the highest performance with around 84% accuracy based on ten technical
indicators such as open, high, low, and close prices [15]. Additionally, predicting future
values of the same two indices using ten technical indicators was possible up to 30 days
in advance with a mean absolute error of around 238 to 927 depending on the model and
selected index [16].

However, this work focuses on fundamental analysis. Fundamental analysis deter-
mines the expected stock prices by examining financial factors that are meaningful and
relevant to the domain expert who searches for stocks that are currently trading at prices
that are higher or lower than their actual value. Consequently, “fundamental analysis
utilizes economic factors to estimate the intrinsic values of securities, whereas technical
analysis relies on historical data on stock prices” [14].

We refer to a company’s accounting information in a given quarter if the company’s
shares are tradable in the Frankfurt stock exchange [13]. The implicit assumption of a
trade is the goal to increase the investment of the person purchasing or selling the stock
shares. This increase is measured by the transaction yield, which will be defined as the
rate of return in the methods section. Using specific financial products instead of shares, it
becomes unimportant if the return rate is positive or negative as long as this and the correct
share of stock are known before the transaction. Often, a fundamental analysis is a part
of a more extensive system to select the right stock (e.g., CANSLIM system [17]) using a
low amount of variables and a larger number of stocks [18–20]. Thus, “research does not
fully exploit the wealth of information contained in general purpose financial reports but is
outside of the primary financial statements” [21].

As an alternative to the usage of fundamental data, Gite et al. recently proposed to
predict stock prices using text mining based on sentiment analysis [22]. They were able to
predict the open price of the Indian stock market for seven days with a low error [22] by
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combining a bi-classification of headlines into positive and negative news with Yahoo’s
finance stock price data within an LSTM and the post-hoc explainer called LIME [23].

More generally, there are two approaches to provide explanations from models that
could be applied in fundamental analysis. The first approach combines sub-symbolic
systems (c.f. [24]) with post-hoc interpretation and justification (e.g., [25]). The second
approach comprises of symbolic systems (c.f. [26]) that can be explained through rea-
soning [27]. Hence, the second type is often called an explainable AI system (XAI) [28]
because such systems should be intrinsically explainable [29]. Typical XAIs comprise com-
binations of neural networks with rule-based expert systems [30,31], Bayesian networks
with rule mining [32], hybrids of clustering and fuzzy classification [33] or neuro-fuzzy
classification [34], interpretable decision sets [35], or decision tables [36], specific genetic
algorithms [37], decision tree clustering [3,38], or clustering combined with generative
models [39]. However, most often, no open-source code is provided. An extensive state-of-
the-art survey of explainable supervised methods can be found in [4].

However, the focus lies here on unsupervised approaches because the datasets used do
not have a classification (see Supplementary Material for details). Most recently, the eUD3.5
decision tree algorithm was proposed by Loyola-González et al. [6] with an accessible im-
plementation. Contrary to supervised decision trees that incorporate the given classification
in the split criterion, the eUD3.5 uses an unsupervised split evaluation criterion for which
the authors claim that for evaluating the split of features, both separation and compactness
are taken into account [6]. The resulting decision tree does not require a parameter to
control the depth of the tree. Similar to random forests, Loyola-González et al. [6] propose
to build 100 different trees “by selecting the best feature to split from a random subset
of features”. For each obtained tree, the authors consider its leaves as partitions of data
that can be combined to obtain the number of clusters specified by the user. Please see
Section 3.4 for access to implementation.

Another recent approach of Dasgupta et al. [5] used a hybrid of k-means with a
decision tree called iterative mistake minimization algorithm (IMM). The k-means method
provides the labels and cluster centers with which the decision tree is built top-down using
binary splits in which each node of the tree is associated with a portion of the input data [5].
However, Dasgupta et al. [5] did not provide any source code in their work.

3. Materials and Methods

In the sense of the explication provided in Section 2, fundamental analysis is performed
in this work. The method chapter is divided into four sections: identification of DSD by
cluster analysis and its validation, fundamental analysis, as well as evaluation by Grice’s
maxims. Implementation details and access to open-source code is described in Section 3.4.

Contrary to the usual approach, DSD are identified using all features through projection-
based clustering, which is able to identify a large variety of DSD [8]. The details are
described in Section 3.1. The clustering guides the supervised decision tree of a subset
of features selected by domain knowledge of the fundamental analysis. The reasons for
the selection can be found in Section 3.2. The choice of method for the supervised tree is
motivated in Section 3.3 out of the available trees listed in Section 3.4. Next, explanations
are deduced from the decision tree by following each path from the root to leaf. Finally,
the explanations are rated and lead to the decision if the price of shares of a group of com-
panies will probably fall or rise. The details are defined in Section 3.3.1. The performance
evaluation is based on the expected rate of return for a stock picking in the next respective
quarter. The details are described in Section 3.3.2.

3.1. Identification of DSD

Applying web scraping to the Yahoo finance website yields the features describing
financial statement, income sheet, and cash flow per company and quarter in the year 2018.
Datasets and their features are listed in Supplementary Material. Web scraping resulted in
the accounting information of 269 companies’ accounting information in the first quarter
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and 251 companies’ accounting information in the second quarter, 261 companies’ account-
ing information for the third quarter, and 286’ companies accounting information for the
fourth quarter of 2018. However, fundamental data is not provided with a classification
that makes typical supervised XAIs infeasible. The adjusted closing price of a share per
day for each company was extracted for the second (3 April 2018 until 29 June 2018) and
third quarter (3 July 2018 until 28 September 2018), fourth quarter (1 October 2018 until
31 December 2018), and first quarter (2 January 2019 until 29 March 2019). Companies with
accessible stock prices were mapped to their fundamental data. The quarter of fundamental
data lies prior in time to the quarter of stock prices. The details are described in Supple-
mentary Table S1. Days were ignored when the stock market was not open (holidays,
weekends, etc.). For data access please see Section 3.4. Data analysis was performed for
each quarter separately. After preprocessing (i.e., handling of missing values, standardiza-
tion, and decorrelation) of data, a specific distance metric was chosen based on its property
of multimodality [7] investigated by mirrored-density plots [40] and verified by the dip
test [41]. The selected multimodal distance matrix is defined by the chord distance in
Equation (1) [42]:

D(x, y) =

√
2
(

1− xy
√

xx ∗ yy

)
(1)

which represents the dissimilarity between the accounting information of each two com-
panies

⇀
x and

⇀
y of the high-dimensional feature space. Implementation is accessible as

described in Section 3.4.
Then, projection-based clustering [8] guided by a swarm projection method is applied,

since swarm intelligence makes the usage of a global objective function unnecessary and
allows the usage of specific distance metrics [43]. In the company’s accounting information
data, there are no concepts of how a cluster should be defined. Thus, approaches such
as PSO [44] or conventional projection or clustering algorithms are unfeasible because
global clustering criterions predefined the DSD they seek [45,46]. If a global clustering
criterion is given, it follows that an implicit definition of a cluster exists, and the bias is
the difference between this definition and the existing structures in data [47]. For example,
Single linkage (SL) tends to produce connected and chain-like structures by searching
for nearest neighbors in contrast to Ward, which is sensitive to outliers and tends to find
compact clusters of equal size with ellipsoidal structures [43].

The projection guides the subsequent hierarchical clustering using the shortest paths
of the weighted Delaunay graph of the projection for which the weights correspond to the
high-dimensional distance metric chosen [8]. In the dendrogram, substantial changes in
fusion-levels of the ultrametric portion of the distance (c.f. [48]) would (y-axis) indicate the
best cut. If only slight changes in the fusion levels exist, it indicates that the algorithm is
not able to find a cluster structure. Details about the algorithm are described in [8] and are
accessible as described in Section 3.4.

Validation of DSD

The cluster tendency is evaluated with a combination of statistical testing [49,50] and
a visualization of the mirrored-density plot [40]. Data has an appropriate cluster tendency
if the first principal component is multimodal [49–51]. Statistical testing for multimodality
is performed with the dip test [41]. DSD are valid if the clustering is consistent with the
topographic map of high-dimensional structures. The topographic map with hypsometric
tints can be visualized after the projection of the high-dimensional data into a toroidal
and two-dimensional plane. The topographic map is the visualization for the generalized
U-Matrix [52], which means that the altitudes correspond to the dissimilarities (high
altitudes represent high dissimilarities and vice versa). Hypsometric tints are surface colors
representing elevation ranges (see [53]). Contour lines are combined with a specific color
scale. The color scale is chosen to display various valleys, ridges, and basins: blue colors
indicate small distances (sea level); green and brown colors indicate middle distances (low
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hills); and shades of white colors indicate vast distances (high mountains covered with
snow and ice) [53]. Superordinate structures in data are visible through valleys and basins,
representing clusters and the watersheds of hills and mountains that represent the borders
between clusters. In this 3D landscape, the borders of the visualization are cyclically
connected with a periodicity (L, C). This visualization is necessary because the Johnson–
Lindenstrauss lemma [54,55] states that the scatter plot’s two-dimensional similarities
cannot coercively represent high-dimensional distances. In sum, the topographic map can
visualize high-dimensional, distance-based structures of a given data set or distance matrix
derived from the data set if a dataset possesses cluster structures [45]. A central problem
in clustering is the correct estimation of the number of clusters. The topographic map can
address this problem since it allows assessing the number of clusters [53] by counting the
number of valleys. The points in the topographic map symbolize the companies. After the
clustering task is performed, the labels of the clustering color these points. In this sense,
the clustering is valid if mountains do not partition clusters indicated by colored points
of the same color [45]. Additionally, a heatmap is provided in which the clustering orders
the distances with blue to yellow colors indicating low distances and orange to red colors
indicating high distances. If the coloring of the map’s ordered pixels indicates that the
intracluster distances are smaller than the intercluster distances, then the clustering is valid
in the meaning described above.

3.2. Fundamental Analysis

From the available features described in the section before (Section 3.1 and Supplemen-
tary Material), the supervised decision tree is restricted to four features, because domain
knowledge states for these four features that they are interrelated with the price develop-
ment of stocks. These four selected features can be easily understood based on information
extracted from the web (www.investopedia.com, accessed on 18 September 2018). High
values in these features should be interrelated with rising stock prices and low values with
falling stock prices. The features are net income from continuing ops, operating income
or loss, cash and cash equivalents, and income before tax. The domain knowledge about
these features is cited below:

‘Net income from continuing ops’ defines the after-tax earnings that business has
generated from its operational activities, meaning how much a company has in revenue
after expenses are deducted. Net income from continuing ops “is considered to be a prime
indicator of the financial health of a firm’s core activities”.

‘Operating income or loss’ is the difference between the gross revenues and costs
generated by ordinary operations (e.g., cost of goods sold, wages, and depreciation) and
before deducting interest, taxes, et cetera. Operating income measures the profitability of a
company telling investors how much revenue will eventually become profit. “Earnings
before interest and taxes (EBIT) and is also referred to as the operating profit or recurring
profit. The one big difference between operating income and EBIT is that EBIT includes
any non-operating income the company generates” [56].

“’Cash and cash equivalents’ refer to the line item on the balance sheet that reports
the value of a company’s assets that are cash or can be converted into cash immediately,”
meaning that they are short-term investments. They are the most liquid assets a company
possesses and are one of a company’s crucial health indicators.

“‘Income Before Tax’ combines all of the company’s profits before tax, including
operating, non-operating, continuing operations and non-continuing operations.” “ [It]
holds much value in providing internal management and external users of financial data
with a company’s operating performance”. ‘Income Before Tax’ “emphasizes the general
operations of a business”. This makes companies in different states or countries more
comparable, as tax rates may differ significantly across borders [56].

In sum, the understanding of selected features allows the explanation of stock prices’
future behavior.

www.investopedia.com
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3.3. Searching for Meaningful Explanations Using the Grice’s Maxims

In our work, explainability is evaluated based on the four Grice maxims of relevance,
quality, manner, and quantity [9]. For the maxim of relevance, explanations are typically
relevant if they are tendentially contrastive (c.f. [57]), which will be used to evaluate the
relevance of explanations. The other three maxims are used to select the best-performing
decision tree in terms of meaningful explanations, because decision trees may not always be
intrinsically interpretable [29]. The maxim of quality states that only well-supported facts
and no false descriptions should be reported. Quality will be measured by the accuracy
of supervised decision trees guided by the clustering. Accuracy is computed as 1-error.
The error is the sum of the number of missing and incorrect classified points divided
by their number. The maxim of manner suggest being brief and orderly and avoiding
obscurity and ambiguity [9]. Therefore, the decision tree uses only preselected and non-
transformed features that can be easily understood based on information extracted from
the web (see Section 3.2). The maxim of quantity states that neither too much nor too few
explanations should be presented [9] given the limited capacity of human cognition [29].
This work specifies the statement in the sense that the number of explanations should follow
the Miller optimum of 4–7 [58,59]. As decision tree algorithms do not aim at meaningful
explanations [60], a path from the root to each leaf in this tree corresponds to an explanation.
Each explanation based on a path gives precise thresholds of the features depicted in the
nodes. Thresholds between low and high are interrelated with rising and falling stock
prices. Decisions trees are evaluated according to the criteria quality, quantity, and manner.
Then, explanations are meaningful to a domain expert (c.f. discussion [61]).

3.3.1. Rating of Explanations

The explanations are rated as follows. Each path in the tree will have several nodes,
with each one having a specific threshold for a particular feature (see Section 3.2), dividing
the feature into values lower than the threshold and higher than the threshold. For each
node, the score increases by one point if the path follows the higher values and decreases
with one point if it follows these features’ lower values. A positive scoring is an indication
of rising prices, and a negative scoring indicates falling prices. It follows that positive
scores define a long (+), and negative scores a short (−), position. If no tree with sufficient
accuracy (>90%) can be found, the scoring is zero. The path having the highest absolute
score values is selected, and the explanation describing this path is used for stock picking.

3.3.2. Validation by Evaluation of the Relevance of Explanations

The relevance of the explanation is evaluated based on stock picking as follows. The
stock picking is investigated by comparing the rate of the return of shares during each
quarter between a cluster and all stocks (defined from here on as the random choice). The
rate of return is computed in Equation (2) by the relative difference:

R(P1, P2) = 2
P2 − P1

P1 + P2
(2)

If P1 is the adjusted closing price of a share on the first day and P2 the adjusted closing
price of the second day [62], the rate of return of the quarter is defined as the sum over all
days in a quarter. It should be noted that it was shown that this definition of the rate of
return should be preferred over the log-ratio [62]. The hypothesis that prices in a cluster will
rise or fall can be tested under the assumption that all companies’ accounting information
data is available on the same date at the beginning of the respective quarter of a year (i.e.,
no look-ahead bias). Backtesting is conducted with the meaning that all data was available
at the start of the analysis. The validation of provided explanations by the DSD-XAI is
performed by simulating buying at the beginning of the respective quarter and selling at
the end of the quarter with three options: either randomly, by stock picking based on the
explanation of the best-rated leaf of the DSD-XAI, or by using eUD3.5. Then, the rate of
return per cluster is compared to each other by class-wise box plots. Class-wise boxplots
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visualize the difference between the random choice and the stock-picking if the dip test
is performed prior to plotting to test against multimodality [41]. Additionally, statistical
testing with an unpaired two-sided t-test [63] is performed to determine if the means of the
random choice versus the stock-picking are significantly different from each other.

3.4. Access to Data and Open-Source Code

All computations were performed in R using an iMac PRO, 32 Cores, 256 GB RAM. All
libraries used are accessible via CRAN and published. Furthermore, all dependencies of the
libraries used are managed via CRAN. The supervised decisions trees investigated are condi-
tional inference trees (https://cran.r-project.org/package=partykit, accessed on 6 October 2020),
CART (https://cran.r-project.org/package=rpart, accessed on 6 October 2020), C45 (https:
//cran.r-project.org/package=RWeka, accessed on 6 October 2020), C50 (https://cran.r-project.
org/package=C50, accessed on 6 October 2020), and the evolutionary learning of globally
optimal trees (https://cran.r-project.org/package=evree, accessed on 6 October 2020). In
this work, we used for eUD3.5 the C# Code usable through GitHub (https://github.com/
miguelmedinaperez/eUD3.5, accessed on 6 October 2020) with the preset of three clusters
hardcoded in the source code.

Distance metrics investigated and the one selected can be found in https://cran.r-
project.org/package= parallelDist (accessed on 6 October 2020); the dip test for multimodal-
ity is accessible via https://cran.r-project.org/package=diptest (accessed on 6 October 2020)
and the mirrored-density plot via https://cran.r-project.org/package=DataVisualizations.
Other statistical testing and correlation measures used are found in R base. Projection-
based clustering, the accuracy implementation, and the evaluation of cluster tendency are
accessible in https://cran.r-project.org/package=FCPS, accessed on 6 October 2020 [64]. If
not stated in the manuscript specifically otherwise, all algorithms are used in the default
parameter setting.

4. Results

The results are divided into three parts: the evaluation of the meaningfulness of
explanations, the relevance of explanations, and the identification of DSD by cluster analysis
with its validation.

4.1. Meaningfulness of DSD-XAI Explanations

A supervised decision tree guided by DSD for each quarter is computed and exem-
plarily shown in Figure 1 for the fourth quarter (see Figures 2–4 for other quarters). The
accuracy of each best-performing decision tree based on the DSD was 93%, 96%, 96%, and
91% for each respective quarter.

The features are presented in the nodes, and the thresholds are written in the edges
after the respective node. The explanations extracted from the decision tree of each quar-
ter Q with the highest rating are concise: Q1: NetIncomeFromContinuingOps < 1865 &
OperatingIncomeorLoss < −17, Q2: NetIncomeFromContinuingOps ≥ −362 & CashAnd-
CashEquivalents > 932, 200, Q3: IncomeBeforeTax < 51 & NetIncomeFromContinuingOps
< 313, 000, and Q4: CashAndCashEquivalents < 109, 055 & OperatingIncomeorLoss
< −3000. With these explanations, the hypotheses are as follows: a short position of
59 stocks in quarter two, a long position of 36 stocks in quarter three, a short position
of 56 stocks in quarter four, and a short position of 17 stocks in the first quarter of the
next year. In sum, the explanations of DSD-XAI are meaningful. The eUD3.5 algorithm
provided one big cluster, one small cluster, and one tiny cluster for every quarter. The
four quarters yielded 461 (135), 474 (93), 444 (87), and 401 (89) explanations (in form of
pattern descriptions) for all clusters (for the small cluster), which are not concise and, hence,
not meaningful.

https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=evree
https://github.com/miguelmedinaperez/eUD3.5
https://github.com/miguelmedinaperez/eUD3.5
https://cran.r-project.org/package
https://cran.r-project.org/package
https://cran.r-project.org/package=diptest
https://cran.r-project.org/package=DataVisualizations
https://cran.r-project.org/package=FCPS
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4.2. Relevance of DSD-XAI Explanations by Simulated Stock Picking

Rating the explanations of leaves leads to the hypothesis of a short or long position
with stocks. For all quarters, the simulation of the picking stocks of the interesting cluster
with a meaningful explanation against a random choice of stocks is shown in Table 1.
Class-wise box plots of the rate of returns per company stock share and per quarter are
provided in Figure 5 and allow for a more detailed view. Moreover, Figure 5 includes the
evaluation of the eUD3.5 algorithm in the four quarters of the data. The eUD3.5 made it
impossible to understand the explanations of a cluster and select a cluster with regard to the
prediction of a short or long position for stock picking. Therefore, the small cluster of each
quarter was evaluated in Figure 5 because the sizes of the clusters for each quarter were
similar to the size of the selected stocks for the DSD-XAI. The success rate can be defined
as the percentual difference between the random stock picking and the long/short position
stock-picking of a selected class. Only the difference allows one to ignore the general trend
of prices for each quarter. On average (per quarter), the success rate of the approach of this
work is 25% percent higher than a random picking of stocks with an (absolute) average
rate of return of 10.75%.

Table 1. Backtesting of the rate of success if picked stocks were bought at the beginning of the
respective quarter and sold at the end of the quarter. Stock picking by DSD-XAI is compared
against random picking. More detailed statistical information is provided in Figure 5. Hartigan and
Hartigan [41] dip tests against multimodality and one-sided t-tests [63] random versus selected class
were performed.

Quarter
Cluster Analysis

Quarter of
Stock Prices

Price Development of
Selected Stocks in

DSD-XAI
Random Rate of Success

(Significance of t-Test)

2018, Q4 2019, Q1
61% of stocks fall with

an average rate of
return of −8%

51% of stocks fall with
an average rate of

return of −1%

10%
p(t = −2.3, d f = 69.92) < 0.012

2018, Q1 2018, Q2
57% of stocks rise with

an average rate of
return of 2%

43% of stocks rise with
an average rate of

return of −4 %

14%
p(t = 2.47, d f = 66) = 0.008

2018, Q2 2018, Q3
95% of stocks fall with

an average rate of
return of −31%

91% of stocks fall with
an average rate of

return of −22%

4% with
p(t = 1.89, d f = 70.26) = 0.03

2018, Q3 2018, Q4
52% of stocks fall with

an average rate of
return of −2%

30% of stocks fall with
an average rate of

return of 9%

22% with
p(t = −2.3, d f = 18.38) = 0.02
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Figure 5. Class wise box plot of the rate of return in % calculated with relative differences [62] per
investigated Quarter. “XAI->Long” or “XAI->short” are the interpreted explanations for which
the stocks were purchased in either short or long sales. Stock picking is conducted consistently
in the quarter following the cluster analysis. The difference between random and the DSD-XAI
stock-picking is statistically significant but between random and eUD3.5 is not. All features shown in
the boxplots were tested with the dip test against multimodality, yielding non-significant p-values.

Therefore, it is evident that the success rate is above the chance level if the random
picking of stocks sets the chance level for a short/long position. Therefore, the explanations
of DSD-XAI are relevant. The stock picking based on eUD3.5 is comparable to chance and,
hence, not applicable.

4.3. DSD Identification by Cluster Analysis and Validation

The data shows a high cluster tendency (Figure 6). Statistical testing largely agrees
with density estimation that the 1st principal component is multimodal, indicating strong
clusterability. For the fourth quarter, density estimation using the PDE [66] is more sensitive
to multimodality than statistical testing with the dip test [41]. The dendrogram with the
most significant change in the fusion levels defines the initial clustering (see Figure 7).
During the clustering validation, outliers are marked interactively in the topographic maps
as follows. First, the high-dimensional structures of companies’ accounting information are
visible in the topographic maps per quarter in Figures 8–11 on the left side. The points in
the visualizations represent the companies. The color of the points represents the clustering.
In each left figure, two valleys can be identified with several volcanos, indicating outliers
resulting in three groups of data (big, small, and outliers). Second, the heatmaps on the
right of Figures 8–11 indicate the clusters are homogenous because intercluster distances are
higher than intracluster distances. The distances are ordered accordingly to the provided
projection-based clustering.



Information 2022, 13, 51 12 of 19Information 2022, 13, x FOR PEER REVIEW 12 of 19 
 

 

 
Figure 6. The evaluation of cluster tendency using the method described in [51] shows a high 
clusterability because multimodality is visible in all four quarters. Moreover, statistical testing 
agrees for the first three quarters that the distribution of the 1st principal component is multimodal. 

 

 
Figure 7. Dendrograms show that the projection-based clustering is performed at the most 
remarkable change in the fusion levels of the branches in the dendrograms. The dendrograms of the 
quarters are ordered from Q1 to Q4. 

Figure 6. The evaluation of cluster tendency using the method described in [51] shows a high
clusterability because multimodality is visible in all four quarters. Moreover, statistical testing agrees
for the first three quarters that the distribution of the 1st principal component is multimodal.
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Figure 7. Dendrograms show that the projection-based clustering is performed at the most remarkable
change in the fusion levels of the branches in the dendrograms. The dendrograms of the quarters are
ordered from Q1 to Q4.
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Figure 9. For the accounting information of the second quarter, the topographic map shows DSD 
in two valleys—one primary cluster with companies represented by magenta points, one smaller 
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distances (orange). 

Figure 8. The topographic map (left) visualizes high-dimensional, distance-based structures in
data (DSD) by separating clusters through watersheds of mountains. It shows two valleys for the
companies (points) of the first quarter—one primary cluster with companies labeled with the color
magenta, one smaller cluster with companies labeled in yellow, and various outliers (black and red).
Heatmap indicates an appropriate clustering because intracluster distances are smaller (in yellow)
than intercluster distances (orange).
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Figure 9. For the accounting information of the second quarter, the topographic map shows DSD in
two valleys—one primary cluster with companies represented by magenta points, one smaller cluster
with companies in yellow, and various outliers (other colors). Heatmap indicates an appropriate
clustering because intracluster distances are smaller (in yellow) than intercluster distances (orange).
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picking in the next respective quarter (Table 1) and compared to unsupervised XAIs. 
Second, the usual supervised methods, e.g., hybrid deep learning approaches or 
combinations with post-hoc explainers [67], were not applicable. Recently, unsupervised 
deep learning methods were proposed, although it is questionable based on the current 

Figure 10. For the accounting information of the third quarter, the topographic map shows DSD in
two valleys—one primary cluster with companies represented by magenta points (one smaller cluster
with companies in yellow and various outliers (black). Heatmap indicates an appropriate clustering
because intracluster distances are smaller (in yellow) than intercluster distances (orange).
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Figure 11. For the accounting information of the fourth quarter, the topographic map shows DSD
in two valleys—one primary cluster with companies represented by magenta points, one smaller
cluster with companies in yellow, and various outliers (red and black colors). Heatmap indicates
an appropriate clustering because intracluster distances are smaller (in yellow) than intercluster
distances (orange).

5. Discussion

The fundamental data used in this work did not have a classification resulting in
to consequences. First, the evaluation of performance has to be based on the expected
stock picking in the next respective quarter (Table 1) and compared to unsupervised
XAIs. Second, the usual supervised methods, e.g., hybrid deep learning approaches or
combinations with post-hoc explainers [67], were not applicable. Recently, unsupervised
deep learning methods were proposed, although it is questionable based on the current
literature review if such methods can reproduce structures in data better than state-of-the-
art algorithms [47].
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The DSD-XAI proposed here has three major advantages compared to the latest
unsupervised decision trees. First, comparable approaches are limited to either use trans-
formed data that cannot provide meaningful explanations to the domain expert or to use
non-transformed data. The latter poses the issue that the usage of many distance met-
rics, including the most-often used Euclidean metric, requires to account for correlations
(e.g., [64,68]) and the normalization of the data to avoid undesired emphasis of features with
large ranges and variances [69] (see also [70]), which will lead to inappropriate clustering
and therefore explanations.

Exemplarily, this issue was shown for eUD3.5 [6]. If unprocessed data is used, the
eUD3.5 provides explanations for each quarter that are not meaningful and relevant based
on Grice’s maxims. The eUD3.5 algorithm provides more than 400 explanations per
quarter. The IMM algorithm [5] could not be compared due to the lack of source code,
but using unprocessed features with the k-means or k-medoids criterion would have the
same issues. It is apparent that explanations derived from unsupervised decision trees with
appropriate preprocessed features would be less or not meaningful to a domain expert. In
contrast, the DSD-XAI performs robustly in a high-dimensional space using preprocessed
features, and a clustering-guided supervised decision tree applied to unprocessed features
provides explanations around the magic number of four [58], from which stock picking is
already possible.

Second, the guidance of best-performing decision trees by validated high-dimensional
DSD simultaneously selects the splitting criterion of the decision tree based on actual
structures in data and three out of four Grice’s maxims. Using all available features to
identify DSD based on projection-based clustering has the advantage that the resulting
clustering can yield novel and coherent insights through emergence [43]. In contrast,
methods based on k-means or k-medoids criteria severely restrict the structures in data
that can be found (e.g., [45,71]) which would hold true for the IMM algorithm.

Third, the relevance of the explanations (4th Grice’s maxim) provided by the clustering
guided decision tree can be improved by selected features based on domain knowledge.
The approach could be extended to the Miller optimum of 7±2 if more domain knowledge
about fundamental analysis is accessible.

From the perspective of domain experts, contrastive explanations, also called coun-
terfactual explanations [72], are preferable [57]. Such counterfactual explanations tend to
make future recommendations easier [67,73]. One disadvantage of this work is the fact that
due to missing access to a domain expert, it could not be investigated if the presented expla-
nations are contrastive for a non data scientist (see discussion in [61]). Hence, this work’s
challenge is that only four features were—from the data scientist’s perspective—contrastive
enough to decide if a stock price would go up or down (see Section 3.2). Consequently,
these four features were chosen because common domain knowledge is available on the
web. A rating was specified for the explanations extracted from the clustering-guided
decision tree based on the four unprocessed features. Hence, domain knowledge has to
specifically indicate that the selected features are not only meaningful but also relevant for
stock picking. The current approach could be improved if more domain knowledge would
be available, leading to a better selection of features for the decision tree.

Nevertheless, the explanations are meaningful w.r.t identified DSD of all preprocessed
features. Domain knowledge allows for understanding a subset of unprocessed features
used in the decision tree, enabling a rating of explanations and, hence, selecting a leaf node
consisting of a subset of stocks. The explanations were relevant because they allow for stock
picking of around 6–20% of available stocks. For all four quarters, even nonprofessionals in
stock trading are able to conclude the price development of companies in the next quarter.
Specific accounting information influences the price development of shares through the
probability of a significantly higher rate of return of stock prices of companies of the selected
stocks compared to random stock picking. The success rate is 25% above the chance level if
the random picking of stocks sets the chance level for a short/long position.
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As an alternative to using fundamental data, Gite et al. used the classification of
positive and negative headlines to predict the price of an index of the Indian stock mar-
ket [22] for a short period of several days. Although the error was low, no baseline was
provided in their results (e.g., an LSTM model without the headlines), and no comparison
to other methods were shown. In contrast, this work compares the success rate of stock
picking for a long period of four quarters to the baseline of random stock picking. Such a
comparison has the advantage that the volatility of the market and the central tendency
of prices are mapped within the random choice of stock picking, whereas in Gite et al., it
remains unclear if the seven days in the test data are only predicted accurately because of
the low volatility of the market. In comparison, the success rate at stock picking by a hybrid
AI system was reported with, on average, 55.19% to 60.69%, and experts had a success
rate worse than chance. The eUD3.5 XAI performed similarly to random stock picking, as
shown in Figure 5. Thus, the DSD-XAI approach allows data-driven stock picking with a
high chance of success.

6. Conclusions

The explainable AI (XAI) approach is based on three components. First, the distance is
selected, resulting in a multimodal distribution if applied to the data. Second, projection-
based clustering using all and preprocessed features is applied and identifies distance-
based structures in data (DSD) that are verified. Third, the DSD clustering guides the
best-performing supervised decision tree of preselected and non-preprocessed features.
Finally, the resulting leaves of the DSD-XAI are rated, and stocks contained in the leaf with
the best rating achieve an above-average return. Consequently, stock picking based on
meaningful and relevant explanations selected and assessed by the Grice maxims performs
better than random stock picking, with a rate of success significantly higher than chance.
Moreover, the success rate outperforms the reported success rate of two other AI systems.
Contrary to other AI systems, the advantages lie in the fact that the DSD-XAI outputs
are interpretable by humans, enabling them to integrate further domain experts in the
stock-picking process. Additionally, the open-source code of all methods used is available.

In the future, it would be interesting to combine fundamental analysis with sentiment
analysis of news headlines for stock picking. Moreover, an ensemble system in combination
with technical analysis seems promising. Furthermore, it should be investigated if DSD-XAI
can provide contrastive explanations to the domain expert.
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