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Abstract: The natural language model BERT uses a large-scale unsupervised corpus to accumulate
rich linguistic knowledge during its pretraining stage, and then, the information is fine-tuned for
specific downstream tasks, which greatly improves the understanding capability of various natural
language tasks. For some specific tasks, the capability of the model can be enhanced by introducing
external knowledge. In fact, these methods, such as ERNIE, have been proposed for integrating
knowledge graphs into BERT models, which significantly enhanced its capabilities in related tasks
such as entity recognition. However, for two types of tasks, commonsense causal reasoning and
predicting the ending of stories, few previous studies have combined model modification and process
optimization to integrate external knowledge. Therefore, referring to ERNIE, in this paper, we
propose enhanced language representation with event chains (EREC), which focuses on keywords
in the text corpus and their implied relations. Event chains are integrated into EREC as external
knowledge. Furthermore, various graph networks are used to generate embeddings and to associate
keywords in the corpus. Finally, via multi-task training, external knowledge is integrated into the
model generated in the pretraining stage so as to enhance the effect of the model in downstream
tasks. The experimental process of the EREC model is carried out with a three-stage design, and
the experimental results show that EREC has a deeper understanding of the causal relationship and
event relationship contained in the text by integrating the event chains, and it achieved significant
improvements on two specific tasks.

Keywords: external knowledge; event chains; commonsense causal reasoning; story ending prediction

1. Introduction

BERT (Bidirectional Encoder Representations from Transformers) [1] is designed to
pretrain deep bidirectional representations from unlabeled text by jointly conditioning left
and right contexts. BERT is generally a two-stage model, and it first provides a general
pretraining model with rich linguistic knowledge and then solves downstream tasks via a
fine-tuning mode. It achieved state-of-the-art results on as many as 11 different NLP tasks
and has been widely used ever since.

After continuous developments, many studies attempted to break the traditional
two-stage process and use some other methods to enhance the ability of BERT. Among
them, there are two mainstream approaches. One is a three-stage process approach in
which an additional stage is added between the pretraining stage and fine-tuning stage,
and an additional corpus is used for incremental training in the extra stage. The other is the
transform model approach in which the model’s structure is transformed and additional
training tasks are designed in the traditional pretraining process of BERT.

The well-known three-stage process approach was proposed by Li et al. [2], who
added a second stage of pretraining in the middle of the traditional BERT pretraining stage
and the fine-tuning stage. The new stage is used to train causal task-related supervised
tasks with respect to external causal knowledge. By utilizing three specific transfer tasks,
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including natural language inference, emotion classification, and action prediction, the
prediction accuracy of the Story Cloze Test (SCT) is improved.

Transform models, such as the models proposed in references [3–5], attempt to incor-
porate external knowledge into pretrained language models. These models focus on the
integration of a knowledge graph and a language model. One study of this approach was
conducted by Zhang et al. [4] who integrated knowledge into BERT. In their research study,
a unified vector space is formed by using a large-scale text corpus and knowledge graph to
train an enhanced language representation model ERNIE. This model can simultaneously
use lexical, syntactic, and knowledge information.

The above studies show that compared with the traditional two-stage design, the
three-stage process and the transform model are able to enhance the effect of BERT in
some specific tasks. Inspired by the above approaches, we propose a three-stage model,
enhanced language representation with event chains (EREC), which is a combination of
the above two approaches. We apply the model in commonsense causal reasoning tasks
and story ending prediction task. The EREC model contains the following: (1) a pretrained
BERT model [1] in stage 1; (2) a denoising autoencoder (DAE) [6] in stage 2—similarly
to the model structure proposed by [4], in which the event chains contained in a text
corpus are extracted and aligned with the text. Then, it is unified with the graph network’s
representation; this enables the model to have incremental pretraining capabilities. With
this synchronous alignment of text and event chains, EREC achieves the effective fusion of
linguistic representation and event association. Finally, there is a (3) fine-tuned component
in stage 3: the model produced in stage 2 is fine-tuned for specific downstream tasks.

The second stage is the core of EREC, which includes modules for preprocessing
the corpus, extracting event chains, aligning text, fusing graph network representations,
and incremental training. Since the core of the model proposed in this paper includes
event chains, which are extracted from the corpus containing causal or event relations, the
model is then evaluated in two specific downstream tasks: choice of plausible alternatives
(COPA) [7] and story cloze test (SCT) [8]. The experimental results show that EREC signifi-
cantly outperforms the state-of-the-art BERT model on the task by taking full advantage of
the events’ relations.

In summary, this paper contributes to the following areas:

• This research proposes an enhanced language representation model, named EREC,
which incorporates the semantics of the text and the causal event relationships con-
tained in it, and such relationships are extracted and used as event chains to enhance
the ability of the model to understand the text’s information.

• A three-stage process model is used, and an incremental training process is conducted
in the second stage to integrate the above extracted event chains and to achieve better
results in the two downstream tasks.

• In the process of merging the event chains into the embeddings, multiple experiments
are compared. These experiments are conducted in the form of network + algorithm
combinations in which three graph networks and two different algorithms (Deepwalk
and Line) are compared. By using comparisions, a particular setting was found to be
more effective for two downstream tasks.

2. Related Work

Many efforts are devoted to improving the semantic understanding and representation
capabilities of pretrained language models so as to accurately capture linguistic information
from the text and to utilize it for specific NLP tasks. From the perspective deciding whether
to change the model’s structure, this type of enhancement method can be divided into two
classes, i.e., knowledge fusion and incremental training.

A typical work of knowledge fusion is the ERNIE model proposed by Zhang et al. [4],
which integrates the knowledge graph into BERT. In the fine-tune stage, the knowledge
graph is extracted by the TagMe tool before entity linking, and ERNIE only verifies en-
tity typing and relation classification and does not extend to other NLP tasks. In addition,
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there has also been a great deal of research in knowledge augmentation, such as [9–13],
both of which have made improvements to models for downstream tasks and achieved
effective enhancements.

For incremental training, Gururangan et al. [14] proposed useing domain-related
corpora, task-related corpora, or a combination of them to continue incremental pretraining
on the basis of BERT, and the obtained model achieved significant improvements in a
variety of NLP tasks. Furthermore, Gu et al. [15] combined the domain-related corpus
with the task-related corpus and adopted incremental training to enhance the capability
of the model. It is worth noting that Gu et al. designed an algorithm to mark task-related
keywords in the corpus, such as like and hate, which play important roles in sentiment
classification tasks, while Clark et al. [16] extracted the keywords in the text and presented
them in the form of event chains.

In this paper, we combine the above two methods to integrate external knowledge
into the language model during the process of incremental training. Nouns and verbs
are usually used to understand semantic relationships [17,18], so they are also chosen as
external knowledge; for example, event/casual relations implied in the nouns and verbs
of a text corpora and those explicitly expressed in a network can be used to enhance the
reasoning ability of the model. Among the causal-relation-mining studies, Luo et al. [19]
showed that a complete pair of causal statements usually contains a pair of words with
causal relations. For example, in the two statements, I knocked on my neighbor’s door and
my neighbor invited me in, knocked and invited have a causal relationship. Luo et al. also
extracted a large number of causality pairs similar to knock and invite from a large data
set and constructed a rich causality network called causalNet. Li et al. [20] conducted a
further study on the basis of causalNet and provided a corpus with causal characteristics
(CausalBank) and a large lexical causal knowledge graph (cause effect graph). Li et al.
designed intermediate tasks to incrementally train BERT using the CausalBank corpus and
achieved good results in the COPA task.

In addition to the above studies, the graph’s embedding may have an impact on the
results of tasks. Among the generation algorithms for graph embedding, deepwalk [21] is
more common, which is derived from word2vec [22] and its core comprises random walk.
However, deepwalk only works on undirected graphs and not directed graphs, and it does
not take into account the weight between nodes. Tang et al. [23] propose a large-scale
network coding model, Line, in which the calculation of second-order similarities is used
on directed or undirected graphs, and the weight between nodes is taken into account. In
this paper, we use these two algorithms to conduct comparative experiments.

3. Approach and Model Structure

In this section, we present EREC’s model structure in Section 3.1 and the details of
integrating the event chains in the corpus and network embedding into the model, which
includes events’ extraction in Section 3.2, network embedding in Section 3.3, and tokens
and events Alignment in Section 3.4.

3.1. Model Structure

As shown in Figure 1, we adopt a three-stage experimental model, EREC, in this paper,
including a pretrained BERT model [1] in stage 1, incremental training in stage 2, and
specific fine-tuning tasks, COPA and SCT, in stage 3. The core of EREC is the external
knowledge fusion and incremental training in the second stage. In this stage, the underlying
semantics of the input tokens are derived primarily from the textual encoder (T-Encoder) of
the model, which is an encoder similar to BERT and sums the token embedding, segment
embedding, and positional embedding for each token to compute its input embedding.
Another encoder, a knowledgeable encoder named K-Encoder, is contained in stage 2,
which is similar to ERNIE and takes the event and event embedding as inputs, where the
details of event embedding are described in Section 3.3. Then, multi-tasks, including next
sentence prediction (NSP), masked language model (MLM), and denoising autoencoder
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(DAE), are trained to integrate their knowledge with the semantics derived from T-Encoder,
where the details of multi-task training will be described in Section 4.2.

Figure 1. Model architecture and three-stage process.

The generalization ability of the model is improved by introducing noise. This is based
on the fact that partially corrupted data have the same expressive power. Therefore, a
good representation can capture the stable characteristic structure of its observed input
distribution. For high-dimensional redundant inputs (such as text), similar stable structures
can be collected through the combination of multiple dimensions, so the sentence can
be repaired from partial corruption. For example, “a thief entered the store and stole the
necklace”, after masking the word “steal”, we may still “guess” the word or some word that
has similar meaning. For example, in this paper, DAE encodes masked event sequence, then
need the decoder to reconstruct the origin event sequence from the sequence embedding.
This property is similar to the ability of humans to recognize partially occluded or damaged
sentences, which means that humans can abstract higher-level concepts from various
association of things, and even if some forms disappear, they can still make identifications
from them.

Thus, we add a noise-processing mechanism at K-Encoder, similarly to the denoising
autoencoder (DAE) [6]. As shown in Figure 2, the specific step is to obtain x̃ ∼ qD(x̃|x) by
random masking with respect to input x. qD refers to the mean of a stochastic mapping,
where D = {x1,x2,x3. . . xn} is the input sequence. In the experiment, the following masking
form is used. For each input x, given a random mask proportion v, the masked values are
completely removed, and the rest remained unchanged. Masked input x̃ is mapped to y by
the autoencoder, y = fθ(x̃) = s(Wx̃ + b), and further reconstructs z = gθ′(y) = s(W ′y+ b′).
We use the traditional squared error (TSE) loss during training by building a reconstruction
error function L

L(x, z) = ||x− z||2 (1)

That is, the reconstructed z should be as close as possible to the original sample input x.
Similar to denoising autoencoder (DAE), after the random mask, the token’s sequence

{t1,t2,t3,t4. . . tn}, where ti(1 ≤ i ≤ n) represents the i-th token in the sequence, is mapped
to event sequence {e1,e2,e3,e4. . . em}, where ej(1 ≤ j ≤ m) represents the j-th event in the
sequence. In order to obtain the masked input, the following strategies are used for the
original input tokens:

(1) The probability of 80% remains unchanged;
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(2) A probability of 10% is used to mask the event aligned with the token, and it is set to
−1, which aims to make the model to predict the masked events;

(3) A probability of 10% is used to replace the event aligned with the token with other
events. For example, the event’s id is replaced, corresponding to knock in the original
corpus with the event id corresponding to strike, which is intended for training the
model in order to correct errors.
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3.2. Event Extraction

To realize the enhanced language representation with event chains, it is necessary
to perform a series of tasks, including sentence segmentation, word segmentation, part-
of-speech tagging, and event extraction. The quality of work in each stage will affect
subsequent tasks. Since the focus of this paper is to solve the fusion of the language
model and event chains, we directly use the method proposed by Chambers [24] to extract
narrative event chains. The steps of the process are as follows.

Firstly, we divide the COPA statements mentioned in Luo et al. [19] into two lines
and take them as the original corpus for subsequent processing; an example is provided
as follows.

I knocked on my neighbor’s door.
My neighbor invited me in.

Then, we obtain the event chains extracted from the corpus by using the method
of Chambers [24] so that the keywords, keyword prototypes, and their positions in each
sentence are marked. The events extracted from the above example are as follows.

Events:
knocked / knock / verb_pos=(0,1) / type=normal / subj=I / obj=door / iobj=None
invited / invite / verb_pos=(1,2) / type=normal / subj=neighbor / obj=me / iobj=None

Taking “knocked” as an example, the extracted items are separated by “/”. The
meaning of each item in the order from left to right are as follows: (1) The verb of the
event in the original text, which is “knocked” here; (2) the prototype of the verb: knock; (3)
verb_pos indicates the position of the word in the original text, and its value (0, 1) indicates
the first position of the word in line 0; (4) type = normal indicates that the extraction result is
normal and the syntax is normal; (5) subj = I indicates that the subject of the event is “I”; (6)

Figure 2. The process of denoising autoencoder (DAE).

3.2. Event Extraction

To realize the enhanced language representation with event chains, it is necessary
to perform a series of tasks, including sentence segmentation, word segmentation, part-
of-speech tagging, and event extraction. The quality of work in each stage will affect
subsequent tasks. Since the focus of this paper is to solve the fusion of the language
model and event chains, we directly use the method proposed by Chambers [24] to extract
narrative event chains. The steps of the process are as follows.

Firstly, we divide the COPA statements mentioned in Luo et al. [19] into two lines
and take them as the original corpus for subsequent processing; an example is provided
as follows.

I knocked on my neighbor’s door.
My neighbor invited me in.

Then, we obtain the event chains extracted from the corpus by using the method
of Chambers [24] so that the keywords, keyword prototypes, and their positions in each
sentence are marked. The events extracted from the above example are as follows.

Events:
knocked / knock / verb_pos=(0,1) / type=normal / subj=I / obj=door / iobj=None
invited / invite / verb_pos=(1,2) / type=normal / subj=neighbor / obj=me / iobj=None

Taking “knocked” as an example, the extracted items are separated by “/”. The
meaning of each item in the order from left to right are as follows: (1) the verb of the event in
the original text, which is “knocked” here; (2) the prototype of the verb: knock; (3) verb_pos
indicates the position of the word in the original text, and its value (0, 1) indicates the
first position of the word in line 0; (4) type = normal indicates that the extraction result is
normal and the syntax is normal; (5) subj = I indicates that the subject of the event is “I”;
(6) obj = door indicates that the object of the event is “door”; iobj indicates the indirect object
of the verb. Here, iobj = None indicates that there is no indirect object. In this paper, since
we focus on the key relationships between events, we only use the first three items. Thus,
the verb in the sentence is treated as the event in this paper.

3.3. Network Embedding

In order to represent relationships with respect to causality, we use the Causality
Network (CausalNet) provided by Luo et al. [19], which is extracted from the corpus with
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causal characteristics. In CausalNet, the relations between events are mined and built into
a graph network, where nodes correspond to events and edges correspond to relations.
The network obviously contains rich causal relationships.

Each row in CausalNet is in the form of (word, word, number), which corresponds
to an edge (node, node, weight) in the network, where node represents event and weight
represents the degree of association between two events. For example, an edge (white,
congratulate, 3) indicates that the strength or degree of causal association between “white”
and “congratulate” is 3. From CausalNet, we extract different node information to construct
an events vocabulary.

In order to construct gragh embeddings, the following two algorithms are used:
(1) LINE with second-order proximity [23]—the input of this algorithm is a directed graph
network and its edges are in the form of (word, word, number). The algorithm is applicable
to both directed and undirected graphs, and the weights between nodes in the network can
be incorporated into the graph’s embedding. (2) DeepWalk [21]: The edges of the network
have no weight and their form is (node_index: x, node_index: y). Therefore, we remove the
weights in the CausalNet network and the words of each node are converted into their
indexes in the events vocabulary as the node_index here; thus constructing an unweighted
network that conforms to the deepwalk input form.

By using these two algorithms, a 128-dimensional embedding vector is generated for
each node in the causality network.

3.4. Tokens and Events Alignment

A key part of the integration between the language model and event chains is to align
tokens and events, which is the basis of incremental training in this paper. Therefore, it
is necessary to mark the events in the original text corpus. To perform this, the location
of events (marked in the text corpus) is used, and the events (verbs) are wrapped with
the ‘sepsepsep’ separator. After transformations, for example, the previous sentence,
‘I knocked on my neighbor’s door’, becomes the following form.

I sepsepsep knocked sepsepsep on my neighbor’s door.

The event extraction process (mentioned in Section 3.2) uses OpenNLP to perform
preliminary sentence and word segmentation operations on the text. In order to meet the
input format of the BERT model, it is necessary to perform more refined word segmentation
on the text.

For example, the model used in this paper is bert-base-uncased, its vocabulary size is
30,522, and the letters are all in lowercase form. We use BERT FullTokenizer to divide all
the corpus into tokens contained in this vocabulary.Then, there will be one problem: after
using BERT for word segmentation, each sentence is divided into a sequence of tokens,
that is, TS = {t1,t2,t3,t4. . . tm}. The events corresponding to tokens in the sequence TS form
another sequence: ES = {e1,e2,e3,e4. . . en}. In order to align the events to the corresponding
tokens. We define an alignment function as falignment({t1,t2,t3,t4. . . tm}) = {e1,e2,e3,e4. . . en} to
perform this step. Thus, tokens and events are semantically aligned. Please note that the
number of events is different from the number of tokens. This is because we only use verbs
as indicators of events in this paper; moreover, a verb will form multiple morphemes after
word segmentation via the BERT FullTokenizer. For example, resuscitate (regarded as an
event) is aligned with res, ##us, ##cit, ##ate.

The first idea will be adopted in subsequent experiments in this paper. After word
segmentation, the text can be converted into the id sequence in the BERT vocabulary. For
example, the id of knocked in the BERT vocabulary is 6573. It is worth noting that a large
number of sepsepsep separators have been inserted into the text to mark events. As the
maximum id of the vocabulary of BERT is 30,521; thus, we set the id of ‘sepsepsep’ as
30,522. Actually, it can be skipped and remain unused in the model. Before subsequent
processing, we record the correspondence from the event between the two delimiters to the
event in the events dictionary generated in Section 3.3, such as knocked→ knock→ 2404, and
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we align other non-event tokens to #UNK#. After the above process, as shown in Figure 3,
two sequences (token sequence and event sequence) are generated from each sentence in
the text, which is ready for subsequent processing. MASK in Figure 3 means to mask or
replace the original event with other events. For details, please refer to Section 4.

Figure 3. Alignment of an input example.

4. Experiments

In this section, the details of the entire three-stage process are presented, particularly
the pretraining of the second-stage EREC model, which is also a BERT incremental pretrain-
ing step. Additionally, the first stage follows the procedure of the BERT model [1], which
is not repeated here, but the publicly released pretrained BERT model, bert-base-uncased,
is used.

4.1. Pretraining Dataset

We use the CausalBank provided by Li et al. [20] as our pretraining dataset. Causal-
Bank is a causal corpus containing 314 million CE (cause–effect) pairs.

CausalBank contains different causal connectives, which are called patterns in [20],
and they mainly include as, as a consequence/result of, as long as, because, because of, caused
by, due/owing to, in response to, on account of, result from, etc. Each pattern constructs a
file, and each line in the file represents a complete causal statement in the form of PEC
(pattern—effect—cause). For example, because—I am very sad—I lost my phone.

Considering that the size of the corpus is too large, as mentioned by Ding et al. [25], a
smaller number of samples with strong event correlations tend to train the model more
effectively than a larger number of irrelevant samples, which shows that the sample quality
is more important than the sample size. In order to obtain training examples that are similar
to COPA’s form from these selected sentences of CausalNet, we transform the sentences in
the following manner. We automatically remove the causal connectives from the compound
sentence, and we extract the cause clause and the effect clause. Then, each pair of the two
clauses is marked as a “from cause to effect” or “from effect to cause” pattern according to
the order of the two clauses. For example, after removing the causal connectives “because
. . . so . . . ”, the sentence “because I lost my phone, so I am very sad.” becomes a pair
comprising two sentences, (I lost my phone. I am very sad.), which will be marked as the
“from cause to effect” pattern, similarly to COPA. On this basis, the corpus will be further
processed according to Section 3 and will be ready for subsequent processing.

4.2. Multi-Task Training

Similarly to ERNIE, the EREC model performs a multi-task procedure in which the
tasks of next sentence prediction (NSP), masked language model (MLM), and denoising
autoencoder(DAE) are trained. For the NSP task, the cause in the corpus is taken as tokens_a,
the effect corresponding to tokens_a is taken as tokens_b with a probability of 50%, and a
sentence is randomly selected from the corpus as tokens_b with a probability of 50%.

For the core task DAE, we align the sentences in the CausalBank with the extracted
event sequence obtained from the text, and we use the mask strategy described in Section 3.3
to process the original input event sequence. The training target is composed of two parts:
predicting the masked event and correcting the replaced event. There are two key stages in
this process.
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(1) Event Number
Each event sequence should usually contains at least two event keywords, and a
causal relationship is expected. However, as an event sequence containing less than
two event keywords can enhance semantic understanding, and it is still added to the
incremental training process.

(2) Batch-size
After data preprocessing, the number of events in each text has been fixed, so the
batch size has become a key factor affecting candidates of events, which is the set
of all events in a batch of data. In the DAE task, the model will take the candidates
as an option list to predict and correct the masked and replaced events, respectively.
If the batch-size is too small, there will be few events in the candidates, resulting in
insufficient causal relationship with respect to model fusion; if the batch-size is too
large, incremental training requires fewer training steps, which affects the search for
optimal model parameters. Thus, a suitable batch-size is crucial.

4.3. Parameter Settings and Training Details

Given the characteristics of the CausalBank corpus, we set the maximum sequence
length to 40 and found a suitable batch size for the DAE task, which is set to 32 in our
experiments. We use BertAdam [1] as the optimizer, and the initial learning rate is set
to 5× 10−5. The value “5× 10−5” refers to the value of the learning rate as the training
parameter of the model. It is provided in scientific notation and equals 0.00005. For the rest
of the super parameters, we use the same parameters as those used in BERT.

The sum of the losses of the three tasks, NSP, MLM, and DAE, is used as the loss value
for model training. Whenever training reaches a certain number of steps, for example,
10 steps, a prediction is made on the test set of a specific downstream task. Experiments
show that, within an epoch, the overall accuracy rate increases first and then decreases, and
we save the model’s parameters when the accuracy rate reaches the highest point; thus, we
can meet our experimental needs without a large amount of data. Based on this, subsequent
experiments only use 30 K sentences for incremental training, and the experiments use
an early stopping strategy when the prediction accuracy reaches the peak during training.
Then, the model’s parameters at the highest accuracy are saved for subsequent work.

4.4. Fine-Tune for Specific Tasks

The COPA task is used during the fine-tune stage. We divide all the corpuses contained
in COPA (COPA-All), which contains 1000 commonsense causal reasoning questions, into a
training set called COPA-Train and a testing set called COPA-Test in a ratio of 7:3, respectively.
COPA-Test is also used as the test set in the second stage. Then, the model that achieves the
highest prediction accuracy in the second stage is reserved for further fine-tuning in the
third-stage. In the fine-tuning stage, the maximum sequence length is also set to 40.

5. Results and Analysis

Our proposed EREC model is evaluated by its performance on downstream tasks. The
corpus CausalBank is used for COPA tasks in this section, which requires the model to choose
the correct cause or effect from two candidates. In order to expand the application fields of the
EREC model, in addition to the causal relationship, the event relationship is also incorporated
into the model to verify the ability of the model in the Story Cloze Test (SCT).

5.1. Model Performance

Three different models are used and compared for the same downstream task, COPA:

(1) BERT-base [26];
(2) CausalBert-base: The model proposed by [20] designs an intermediate task for train-

ing on the basis of BERT, and its test data include 100 randomly sampled input
examples from the model’s training data and 100 randomly sampled examples from
the development set of the COPA dataset.
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(3) EREC: The model proposed in this paper.

For COPA tasks, these models are trained with a margin-based loss [26]. The model
EREC proposed in this paper transforms the model’s structure while performing incremen-
tal training, and it integrates the external causal network; we obtain an improvement of
5.2%, from 75.4% to 80.6%. The causal network of the EREC fusion shown in Table 1 is
causalNet, and the deepwalk algorithm is used to generate the embedding.

Table 1. Results on COPA-Test.

Method Accuracy (%)

BERT-base [26] 75.4
CausalBert-base [20] 78.6
EREC(Ours) + causalNet 80.6

5.2. Ablation Experiment

To better verify key factors in the EREC model, we perform an ablation experiment. In
the process of incremental training, after removing event chains from the training data and
removing the training task but retaining the rest as the same as that of EREC, we obtain a
model without event data, and we call it EREC (No events).

The results of the ablation experiment in Table 2 show that the model that is integrated
with event chains in incremental training can better improve the results of downstream
tasks and further verify the core role of event chains in EREC.

Table 2. Ablation Experiment.

Method Accuracy (%)

EREC (No events) 76.3
EREC + causalNet 80.6

5.3. Comparative Experiment

As proved by the experiments in the previous section, the key to EREC lies in the inte-
gration of event chains and the causal graph network during the second-stage incremental
training process. Therefore, the comparative experiments in this section mainly focus on
the generation of the graph network and network embedding. Three different networks
are used:

(1) CausalNet [19]: for the convenience of explanations, it is abbreviated as CNT in
this paper;

(2) CEG [20] is a causal network, such as CausalNet, and both are weighted by co-
occurrence frequency;

(3) Li et al. [27] provided us with an event network, which processes the extracted events
into the form of predicate-GR [16]. For example, the mapping of knock in the event
vocabulary formed by the network is knock→ knock_subj→ 55,450, so it is abbreviated
as PGR in the experimental conclusion.

Table 3 shows the experimental results of different combinations of graph networks
and network embedding generation algorithms on the COPA-Test set.

Three different graph networks are used for fusion in the EREC incremental training
process. Compared with BERT-base, the results of the obtained models in the COPA task
significantly improved. The model using CNT achieves the best performance. Using CEG
does not obtain the best result. We notice that there are more nodes and edges in CEG, and
the average weight of the edges far exceeds CNT, which has a value of 10.54. Therefore,
we believe that in the case of the limited corpus, using a smaller-scale network CNT can
better integrate causality into the model, and CEG is suitable for a larger-scale corpus.
PGR covers a wider range of event relations, and the experimental results show that it also
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has certain gains for causal reasoning tasks. In addition, for the same network such as
CNT, compared with deepwalk, the Line algorithm additionally considers the weight and
directionality between events and obtains a better result. This may be because, during the
training process, the embedding generated by Line contains more accurate causality and,
thus, has a better gain on the effect of the model.

Table 3. Results on the COPA-Test.

Graph Network
Algorithm Line Deepwalk

CNT 81% 80.6%
CEG 77.6% 79.3%
PGR 78% 77.6%

In order to further improve the result of the model, we replaced BertAdam with
Adam [28] or AdamW [29], and the COPA task is repeated in the third stage of the fine-
tuning process. The experimental results with different optimizers on the COPA-Test dataset
are listed in Table 4. Zhang et al. [30] mentioned that the gradient bias correction is
omitted in the BertAdam optimizer, which is not beneficial for the fine-tuning of the model,
especially on small datasets. In the early stage of training, the model will continue to
oscillate, which will reduce the efficiency of the entire training process, slow down the
speed of convergence, and cause fine-tuning instability.

Table 4. Experimental results with different optimizers when fine-tuning the COPA-Test dataset.

Optimizer
Network CNT/Line CEG/Deep PGR/Line

BertAdam [1] 81% 79.3% 78%
Adam [28] 81% 80% 81%
AdamW [29] 82.6% 80.3% 81.6%

As shown in Table 4, the results in Table 3 are selected, with better results from different
experimental settings. For example, for network CEG, we select deepwalk as the generation
algorithm for further experimental analyses.

The results of the comparative experiments once again proved the point of view
proposed by Zhang et al. [30]. That is, with some small number of training iterations, the
BERTAdam lacks stability optimizations, and the bias correction of Adam and AdamW is
more fitting. By replacing BERTAdam with Adam and AdamW and integrating different
causal networks in the EREC model, the effect of the downstream task COPA improved to
varying degrees. It is worth noting that the combination of CNT/Line and AdamW achieved
an accuracy of 82.6%, which is 7 points higher than BERT-base. This also confirms the effect
of the model EREC proposed in this paper again.

5.4. Story Ending Prediction

In order to check the effectiveness of the EREC model for other tasks, we further apply
the model to the Story Cloze Test (SCT) [8]. The task of SCT is to select the right ending
from two candidate endings (one is incorrect and the other is correct) given a story context.
There is a strong similarity between this task and COPA, where the core is the prediction of
the next sentence, so we believe that applying the EREC model to the SCT task in a similar
fashion will also bring some degree of enhancement. According to the processing of SCT
data in [2], SCT_v1.5 [31] is used for experiments. The segmentation of SCT_v1.5 and the
data volume of each part are shown in Table 5.
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Table 5. Statistics of the datasets used in our experiments.

Dataset Training Development Test

SCT_v1.5 1871 1571 1571

We use only a 6K short news corpus of the NYT Data of the Gigaword Corpus used
in [16], in which “NYT Data” refers to the textual corpus of The New York Times. We
preprocess the data according to the process described in Section 3.2. In the second stage of
incremental training, we use the test data (SCT-test) in SCT_v1.5 as the evaluation data, and
when it reaches the optimal effect, the model’s parameters are saved. Finally, the model is
fine-tuned to solve SCT with new parameters. In the fine-tuning stage, we follow the point
of [30], and the AdamW optimizer is used; then, multiple rounds of training are conducted.

As Table 6 shows, the score of the EREC model on the SCT_v1.5 test datasets reached
90.4%, which is 2.2% higher than BERT-base and slightly higher than TransBERT. TransBERT
refers to BERTLARGE + MNLI mentioned in [2]. The results show that extra knowledge
helps the model make full use of small training data and the EREC model that integrates
event chains has a deeper understanding of the event relationship and causal relationship
contained in the corpus, which is important for most NLP tasks as large-scale annotated
data are unavailable. Thus, it can be used in the story prediction task to improve results.

Table 6. Experimental results of story ending prediction on the SCT_v1.5 test dataset.

Method Accuracy (%)

BERT-base (Our Implementation) 88.2
TransBERT [2] 90.3
EREC (Ours) 90.4

6. Conclusions

In this paper, based on BERT and ERNIE, we propose a model that integrates the event
relationship and causality contained in the corpus, named enhanced language represen-
tation with event chains (EREC). A three-stage process design is used, and a variety of
comparative experiments are performed in downstream tasks. Experimental results show
that EREC achieves good results in causal reasoning tasks and story prediction tasks. In
addition, the model uses knowledge enhancement to solve specific tasks, and the training
cost is relatively low, which can effectively solve the problem of an insufficient number
of samples and improve the model’s utilization of prior knowledge in the field. Event
induction enables the model to perform better when dealing with unknown events and is,
therefore, more practical.

The main directions of future work could include the following:

(1) The model proposed in this paper will be used to conduct experiments on more
domain-related and task-related corpus of other NLP tasks to further broaden its
scope of application.

(2) We aim to further improve the accuracy and variety of event chains extracted from
the corpus, including other forms of keywords that are not limited to verbs.

In addition, we will further optimize the model’s structure and process design in
future, and we hope to continuously update new events at a lower cost to promote the
integration and development of language models and external knowledge.
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