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Abstract

:

There are many areas where conventional supervised machine learning does not work well, for instance, in cases with a large, or systematically increasing, number of countably infinite classes. Zero-shot learning has been proposed to address this. In generalized settings, the zero-shot learning problem represents real-world applications where test instances are present during inference. Separately, recently, there has been increasing interest in meta-classifiers, which combine the results from individual classifications to improve the overall classification quality. In this context, the purpose of the present paper is two-fold: First, the performance of five state-of-the-art, generalized zero-shot learning methods is compared for five popular benchmark datasets. Second, six standard meta-classification approaches are tested by experiment. In the experiments undertaken, all meta-classifiers were applied to the same datasets; their performance was compared to each other and to the original classifiers.
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1. Introduction


A large number of machine learning methods focus on classifying instances and are applied in cases where the classes have been seen during the model training phase. Here, “seen” means that at least a single (correctly labelled) instance of each existing class was present in the training dataset. The best results of model training are obtained when available labelled datasets are large and when the number of instances in each class is balanced.



However, realistic real-world applications may require the classification of instances belonging to classes that have not been seen before. Here, the examples include, but are not limited to, object recognition (where every object is a class [1]), cross-lingual dictionary induction (where every word is a class [2,3]), and “mind reading”, using magnetic resonance imaging scans of the brain (where every word is a class and every instance is a brain scan [4]).



In this context, zero-shot learning (ZSL) has been proposed. It is a class of model training approaches that seeks to deal with situations where the classes covered by the training instances and the classes to be classified are disjoint [5,6,7,8,9,10].



In zero-shot learning, some instances in the feature space are given. In practice, these instances are represented as a vector (usually a real number vector), placed within a feature space (usually a real number space). The set of all instances consists of a subset of instances, which are labeled, and a second subset of instances, which are not labeled. The classes corresponding to the labeled instances are referred to as seen classes, comprising the training set and a part of the testing set. Classes corresponding to unlabeled instances are referred to as unseen classes. They constitute the remaining part of the testing set. Note that the set of classes that correspond to the training instances and the set of classes that correspond to the testing instances may not be disjoint. Here, it is reasonably assumed that this more accurately represents real-world circumstances. Zero-shot learning, where it is not assumed that the training and testing classes are disjoint, is called generalized zero-shot learning (GZSL). It is important to note that GZSL differs from ZSL only in the relationships between the training and the testing datasets.



Machine learning approaches that have been used to solve the ZSL problem have also been applied to GZSL [11]. However, to the best of our knowledge, for both ZSL and GZSL, the proposed model training methods have been evaluated separately. Moreover, even if they have been compared with each other (in a sub-group), different datasets have been used in reported experiments. Finally, even if all datasets and classifiers were the same, only a single performance measure (e.g., Top-1) has been used. However, as shown in [12,13], in the case of ZSL solvers, different performance measures give different answers to the question: Which ZSL approach is the most effective? Therefore, the first goal of this investigation is to experimentally compare the performance of five different approaches to solving the GZSL problem, when the same (the most popular in the literature) benchmark datasets are used. In these comparisons, four different performance measures are applied.



Separately, it can readily be seen (see, for instance, [14]) that the existence of a large number of approaches that can be applied to the same machine learning task results in attempts to develop meta-classifiers. Here, the term “meta-classifier” denotes software that takes as its input results from individual classifiers and combines them, with the intention of obtaining a result that is better than for the best individual classifier. Hence, the second goal of the experimental work undertaken here is to apply standard state-of-the-art meta-classifiers and establish if they can improve performance over individual GZSL approaches.



The remainder of the paper is organized as follows: First, a precise formulation of the problem is provided in Section 2. Next, in Section 3, a brief summary of pertinent literature is provided. A comprehensive description of the experimental setup is provided in Section 4. This is followed by description and analysis of the experimental results obtained in Section 5. Section 6 summarizes the main findings and suggests future research directions.




2. Problem Formulation


The following mathematical formulation of the GZSL problem has been widely accepted in the literature. This definition is geared towards an image processing/classification task, which is the focus of the experimental work reported in this paper. However, after only minimal modifications, it holds in more general settings. Assume the following:




	
let    X s  =  {   (  x i s  ,  y i s  )   i = 1   N s   ∈  X s  ×  T s  }    be the set of seen instances



	
and let    X u  =  {   (  x i u  ,  y i u  )   i = 1   N u   ∈  X u  ×  T u  }    be the set of unseen instances,



	
where    T s  ≡  { 1 , … ,  N  T s   }    is the set of all seen class labels



	
and    T u  ≡  {  N  T s   + 1 , … ,  N  T s   +  N  T u   }    is the set of all unseen class labels,



	
such that   X =  X s  ∪  X u    is the set of all instances where    X s  ∩  X u  = Ø  



	
and   T =  T s  ∪  T u    is the set of all class labels where    T s  ∩  T u  = Ø   resulting in    N  T s   +  N  T u     distinct classes.








Given a dataset of image embeddings and their corresponding class labels   D = {  (  x i  ,  y i  )  ∈ X × T | i = 1 , … ,  N  t r   +  N  t e   }  , each image is a real D-dimensional embedding vector comprised of features    x i  ∈  R D   , and each class label is represented by an integer    y i  ∈ T  . The following is denoted   X  =  def    R D   , for generality. The division of the dataset  D  results in two subsets: the training and the test sets.



	
The training set – is defined as    X  t r   =  {  (  x i  t r   ,  y i  t r   )  ∈ X ×  T  t r   | i = 1 , … ,  N  t r   }   , such that    y i  t r   ∈  T  t r   ⊂ T  . Let    Y  t r   =  {  y i  t r   ∈  T  t r   | i = 1 , … ,  N  t r   }    be the set of class labels corresponding to the training set   X  t r   .



	
The test set – is defined as    X  t e   =  {  (  x i  t e   ,  y i  t e   )  ∈ X ×  T  t e   | i =  N  t r   + 1 , … ,  N  t r   +  N  t e   }   , such that    y i  t e   ∈  T  t e   ⊂ T  . Let    Y  t e   =  {  y i  t e   ∈  T  t e   | i =  N  t r   + 1 , … ,  N  t r   +  N  t e   }    be the set of class labels to be predicted, corresponding to the set   X  t e   .






The goal of generalized zero-shot learning is to deliver a classifier that is trained on the training set   X  t r    and that is able to deliver reasonably good classification performance on the test set   X  t e   . It is apparent that the GZSL setting is nearly infeasible without auxiliary information associating the labels of the classes from both the training set and the test set, since some of the training classes are used in conjunction with all of the test classes for testing.



One of the solutions to this problem is to represent each class label y where   1 ≤ y ≤  N  T s   +  N  T u     by its prototype   π  ( y )  = p ∈ P  =  def    R M   —also known in the literature as its “semantic embedding”—where   π ( · )   is the prototyping function, and  P  is the semantic space, or the semantic embedding space. The resulting prototype vectors, obtained from the prototyping function are obtained in such a way that any two class labels   y 0   and   y 1   are considered similar, if, and only if, their corresponding prototype representations   π  (  y 0  )  =  p 0    and   π  (  y 1  )  =  p 1    are relatively close in the semantic embedding space  P . To make this concept more specific, consider the following example: the inner product of the resulting similar prototype vectors in  P  is large, i.e.,    〈 π  (  y 0  )  , π  (  y 1  )  〉  P   is large. Prototyping all of the class labels into a joint semantic space, i.e.,   { π  ( y )  | y ∈  T  t r   ∪  T  t e   }  , forces the labels to become related. In consequence, this alleviates the prior problem of having nearly disjoint class sets, so that the model can learn from the training set and test its predictions from the test set.




3. Related Work


Multiple approaches have been proposed to solve the ZLS/GZSL problem. An extended state-of-the-art summary can be found in [13]. Here, we focus our attention mostly on work directly related to the GZSL problem. Moreover, since only standard state-of-the art meta-classifiers are experimented with, their detailed description is omitted (this can be found in [13]). Details concerning their implementation are summarized in Section 4.2.



There are currently five classes of approaches to the solution of the ZSL/GZSL problem [11].



	(1)

	
The first utilizes a linearity factor, i.e., it is based on a learning function that is linear. Here, for instance, deep visual semantic embedding (DeViSE) [15], attribute label embedding (ALE) [16], and structured joint embedding (SJE) [17] algorithms use a bilinear compatibility function, i.e., a symmetrically bilinear mapping, in which the stochastic gradient descent [18] method is used for learning and is implicitly regularized by early stopping. The “embarrassingly simple approach to zero-shot learning” approach (ESZSL) [19] uses the square loss error, to learn the bilinear compatibility function between image embedding and the class values, i.e, class labels, and explicitly defines regularization, which regularizes the unregularized risk minimization formulation with respect to the Frobenius norm. In the semantic autoencoder (SAE) model, the training instances are projected into the semantic embedding space  P  with the projection matrix W, and then projected back into the feature space  X , with a projection matrix   W *  , where   W *   is the conjugate transpose.




	(2)

	
The second group of approaches adds a non-linearity component to the linear compatibility function. Here, the latent embeddings method (LATEM) [20] learns a piecewise linear compatibility and uses the same ranking loss function as the DeViSE approach, combined with stochastic gradient descent. LATEM learns multiple mappings corresponding to different visual characteristics of the data and uses a latent variable to select which matrix mapping to use in predictions. The cross modal transfer (CMT) method, described in [21], trains a two-layer neural network using a non-linear mapping function tanh.




	(3)

	
The third group of approaches uses probabilistic embeddings mapping to the class values [5]. Here, the direct attribute prediction (DAP) algorithm makes class predictions by combining scores of the learned attribute classifiers, whereas the indirect attribute prediction (IAP) algorithm approximates the probabilities of the attributes associated with the training instances by predicting the probabilities of each training class value.




	(4)

	
The fourth group of approaches expresses the input image features and the semantic embeddings as a mixture of seen classes. Here, the semantic similarity embedding (SSE) method [22] connects class values within both the semantic-embedding space and the feature-embedding space of the feature vectors. The convex combination of the semantic embeddings (ConSE) [23] method learns the probability of a feature vector belonging to a specific class. The synthesized classifiers (SynC) [24] approach first learns a mapping from the semantic-embedding space to the model space, which holds the classifiers associating the real class values and what are referred to as phantom class values. The class values, along with the set of phantom class values, which are introduced to connect the seen and unseen class values, form a weighted bipartite graph. The objective of SynC is to align the semantic-embedding space and the model space, resulting in reducing the distortion error. The generative framework for the zero-shot learning (GFZSL) [25] method applies generative modeling. Here, each class-conditional distribution is modeled as a multivariate Gaussian distribution.




	(5)

	
Finally, in the fifth set of models, during training, both seen and unseen classes are included in the training data. The discriminative semantic representation learning (DSRL) method [26] can be applied to any method that is based on a compatibility learning function, i.e., a mapping of the image embeddings to class labels. It learns the feature-embedding vectors from the training instances with non-negative matrix factorization and aligns the feature-embedding vectors with the semantic-embedding vectors of their corresponding class values.







Taking into account the results of the literature review, and the goals of the project that this work is a part of, the following question is raised: Which classifiers should be experimented with? While testing them all is tempting, it would require a lot of resources and would not fit into a single report. Upon further reflection, it was decided that testing representatives of all five groups of approaches (e.g., one per group) could result in a lot of questions concerning the selection process and the fairness of comparison (since each class of approaches addresses the ZSL/GZSL problem from a very different perspective). Therefore, it was decided that a reasonable first step would be to comprehensively explore approaches belonging to the first class, where a large number of methods have already been proposed. Hence, five individual classifiers belonging to the first class of approaches and implementing different linear factors, i.e., DeViSE, ALE, SJE, ESZSL and SAE, were chosen. This decision was supported by the fact that all these approaches have been explored in [11], which can be treated as the basis on which a further, relatively fair, comparison of results can be made.




4. Experimental Setup


In the following sections, the key aspects of the experimental setup are discussed, including: (1) implementation details of the ZSL/GZSL algorithms, (2) implementation details of the meta-classifiers, (3) performance measures applied to the obtained results, and (4) the datasets used in the experiments.



4.1. Individual Classifier Implementations


Individual classifiers were taken from the sources reported in the respective publications (see Section 3). Details concerning their implementation have been reported in [12,13]. In the context of GZSL, before proceeding with the actual experiments, light hyperparameter tuning was performed. Specifically, for each classifier and for each dataset (see Section 4.4), a series of ten experiments was performed. Each time the hyperparameters were slightly shifted in a direction where better results would be anticipated (see also [12,13]). In these experiments, the Top-1 accuracy measure was used (see Section 4.3) to assess performance. The final values of the hyperparameters for each of the individual classifiers and for each dataset are summarized in Table 1. Here, it must be stressed that, while these hyperparameter values delivered the best accuracy for the experiments performed, it is not claimed that they are the optimal values. It is possible, and quite likely, that there exist hyperparameters that would result in better performance for each individual classifier, for each dataset and, as will be shown, for each separate performance measure. However, searching the complete hyperparameter space was beyond the scope of this investigation. Instead, it was assumed that a reasonably good set of hyperparameters should be applied for each classifier and dataset and used to compare classifier performance for the performance measures considered.



In Table 1, lr denotes the learning rate;   λ 1   and   λ 2   are the weighting coefficients of the Sylvester equation for the encoder and the decoder, respectively. The image embedding normalization functions that have been used are: the Euclidean norm denoted as   L 2   and the standardization of features, which changes the mean and scales to unit variance. The latter, for the training instance vector x, is defined as follows:


    | | x | |  std  =   x −  x ¯    s ( x )   ,  



(1)




where   x ¯   is the mean of the training instances, defined as


   x ¯  =    ∑  i = 1   N  t r     x i    N  t r    ,  



(2)




and   s ( · )   is the standard deviation of the training instances, defined as follows:


  s  ( x )  =     ∑  i = 1   N  t r      (  x i  −  x ¯  )  2    N  t r     .  



(3)







Finally, mr is the margin value, which is used by each individual classifier. It applies to the stochastic gradient descent approach for optimization in DeViSE, ALE and SJE.




4.2. Meta-Classifier Implementations


Six standard state-of-the-art meta-classifiers were tested, namely, meta-decision tree (MDT) [27], deep neural network (DNN) [28], a game-theory-based approach (GT) [29], an auction-based model (Auc) [29], a consensus-based approach (Con) [30], and a simple majority voting approach (MV) [31]. Here, GT, Auc, Con and MV classifiers were implemented exactly as described in the cited literature.



The implementation of the MDT differs from that described in [27] by not applying the weight condition on the individual classifiers. The weight condition is defined as a function, which returns the fraction of the training examples that have been used by the individual classifier to estimate the class distribution for a given training instance. Since, in the case of the experiments performed, each individual classifier uses the entirety of the dataset, weighting is irrelevant.



Finally, a simple neural network was implemented for the DNN. It included two hidden layers using the rectified linear activation function. The stochastic gradient descent algorithm was applied as an optimization function for the network, where the mean squared error loss function was used.



Again, as in the case of individual classifiers, the goal was not to create the most powerful meta-classifier for a given context, but to implement standard state-of-the-art meta-classifiers and reflect on their potential in the context of GZSL. Therefore, the same approach that was used to obtain the hyperparameters for the individual classifiers (see [12,13] and Section 4.1), was applied to obtain the MDT hyperparameters, which are summarized in Table 2.



The  α  hyperparameter is the maximum displacement value and the  β  hyperparameter is the entropy displacement value. The learning rate of the DNN meta-classifier was set to   1 ×  10  − 4    .



The implementation of both the individual and the meta-classifiers was carried out from scratch; the resulting code that was used in the experiments can be found in the Github repository (https://github.com/Inars/Zero-Shot_Learning_for_Object_Recognition_and_Classification, accessed on 1 July 2020).




4.3. Performance Measures


In all the experiments undertaken, the accuracy of the classifiers was assessed using four accuracy measures: Top-1 (T1), Top-5 (T5), logarithmic loss (LogLoss) and the F1 score (F1).



The T1 accuracy, as described in [11], was measured for the single label image classification. In this case, the prediction is accurate whenever the predicted class corresponds to the ground truth. However, for the ZSL/GZSL the concern is with obtaining high performance, even for sparsely populated classes. Therefore, the T1 accuracy was measured by averaging the class accuracy of each class independently, in the following way:


   acc Y  =  1   N  T s   +  N  T u      ∑  c = 1    N  T s   +  N  T u       #   correct predictions in   c   #   samples in   c    



(4)







The T5 accuracy was measured in the same way as the T1 accuracy. Here, the prediction was considered correct whenever one of the top five predicted classes was true. In the context of ZSL/GZSL, the T1 accuracy can be seen as a measure of exact precision, while the T5 accuracy measures the robustness of the approach.



Next, the F1 score [32], which calculates the precision and robustness, i.e., the recall of the model, was used. Finally, since this research focuses on generalized zero-shot learning, where the search space at evaluation time is composed of training and test classes (where    c i  ∈ T  ), a further accuracy measure is typically applied; specifically, the harmonic mean of the training accuracy and the test accuracy is computed. The harmonic mean is selected, instead of the arithmetic mean, because the harmonic mean is not significantly affected by the potentially large difference(s) between the training accuracy and the testing accuracy [33]. The harmonic mean can be seen as a way to capture variance in the differences.



Note that most predictions of the models are not probabilistic; therefore, the prediction values were converted into a probabilistic distribution by applying the normalized exponential function [34], also known as the softmax function. The normalized exponential function  σ  is a function that normalizes the input vector   z =   (  z 1  , … ,  z k  )  T  ∈  R k    into a probability distribution consisting of k probabilities.




4.4. Datasets Used in Experiments


From the many datasets found in the literature in the context of the GZSL problem, five of the most widely used were selected for this study, namely: Caltech-UCSD-Birds 200-2011 (CUB) [35], Scene UNderstanding (SUN) [36], Animals with Attributes 1 (AWA1) [5], Animals with Attributes 2 (AWA2) [11], and Attribute Apascal&Ayahoo (aPY) [37].



Each of these five datasets forms a continuous attribute space. All the datasets consist of image embeddings. In the experiments undertaken, the dataset splitting followed the suggestions in [11], as represented in Table 3. Here the scalars   N  t r   t e    and   N  t e   t e    denote the number of instances used during the testing phase; the type of dataset is displayed in the “detail” column, and the number of semantic attributes is displayed in the “M” column.



The aPY dataset consists of two datasets, the Pascal dataset and the Yahoo dataset, merged into one. It is a coarse-grained dataset consisting of 32 classes. Of the 32 classes available, 20 classes provided from the Pascal dataset are used for training. The 12 classes, provided by the Yahoo dataset are used for testing. Of the 20 classes from the Pascal dataset, five classes are selected randomly to serve as validation classes. The aPY dataset consists of 64 attributes, describing the classes forming the semantic embedding space.



The AWA1 dataset is a coarse-grained dataset, consisting of 50 classes. Of these 50 classes, 40 classes are used for training, with 13 randomly selected for validation. The remaining 10 classes are used for testing. The AWA1 dataset consists of 85 attributes. In terms of the number of image instances, the AWA1 dataset consists of a total of 30,475 image instances.



Like AWA1, AWA2 was introduced in [11] for use as an alternative, since the images on the AWA1 dataset are not available for public use. The AWA2 dataset is publicly available. Here, recall that in this investigation the images themselves were not actually needed, as only the features that were extracted from them were used. This is why we were able to experiment with both AWA1 and AWA2 datasets. AWA2 is a coarse-grained dataset, consisting of 50 of the same classes used in the AWA1 dataset. The AWA2 dataset consists of the same 85 attributes used in the AWA1 dataset. Unlike AWA1, the AWA2 dataset consists of 37,322 image instances from public web sources, protected under a free-use and redistribution licence, none of which overlap with the images from the AWA1 dataset. In a similar way to how the AWA1 dataset is split, of the 50 available classes in AWA2, 40 classes are used for training, with 13 randomly selected for validation and the remaining 10 classes used for testing.



The CUB dataset is a fine-grained dataset in terms of both the number of classes and the number of images and consists of 200 classes of bird species and 11,788 bird images. Of the 200 available classes, 150 classes are used for training, with 50 randomly selected for validation and the remaining 50 classes used for testing. The classes in the CUB dataset are annotated with 312 attributes forming the continuous attribute space.



The SUN dataset is a fine-grained dataset in terms of both the number of classes and the number of images available. It consists of 717 classes of different scenes and comprises a total of 14,340 images. Of the 717 available classes, 645 classes are used for training, with 65 randomly selected for validation and the remaining 72 classes used for testing. The classes in the SUN dataset are annotated with 102 attributes forming the continuous attribute space.



All five datasets used in the experimental procedure already include the feature vectors, which contain the features extracted from the image instances provided within each dataset. Since feature extraction to form the feature space is not the focus of this investigation, it was assumed that the datasets provided in [11] were sufficient. Therefore, various feature extraction techniques, such as ResNet, were not applied (e.g., as a preprocessing step) to the images provided in the datasets.





5. Experimental Results and Their Analysis


As stated above, the first goal of the experiments undertaken was to evaluate and compare the behavior of the five individual classifiers. The second goal was to explore the performance of the six meta-classifiers, including a comparison of their performance with the individual classifiers.



5.1. Experiments with Individual Classifiers


The first set of results represents the T1 accuracy and is summarized in Table 4. Here, as defined in Section 2,   Y  t r    represents the set of training class labels,   Y  t e    denotes the set of testing class labels, while   H ^   represents the harmonic mean of the two (as described in Section 4.3).



The first group of rows copies results found in [11] (where only the T1 measurement was used to assess the performance), whereas the second group of rows displays the results obtained during the experiments undertaken (in-house implementation). Moreover, the first row of the results reported for the SAE classifier for the in-house implementation represents the accuracy obtained from the encoder, whereas the second row represents the accuracy obtained from the decoder. Finally, for each classifier and for each dataset, the “best” results are marked in bold font.



The following observations can be made based on the results presented in Table 4, where experiments based on in-house implementation are compared with the results presented in [11]. Note that, if the difference between the results is within   ± 5 %   they are considered to be close enough to be considered indistinguishable. This is stipulated since, as stated earlier, the aim of this investigation was not to fine-tune the hyperparameters, but to fairly compare the performance of different approaches to GZSL.



	
In-house implementation of DeViSE—obtained a   7.29 %   increase in accuracy (over results reported in [11]) for the AWA1 dataset.



	
ALE—achieved a   9.2 %   increase in accuracy for the aPY dataset.



	
SJE—delivered an   8.98 %   increase in accuracy for the aPY dataset.



	
ESZSL—produced similar results on all five datasets.



	
SAE—achieved an   8.09 %  , a   6.42 %  , a   7.22 %  , an   11.87 %   and an   8.2 %   increase in accuracy for the CUB, AWA1, AWA2, aPY and SUN datasets, respectively.






In summary, the results for in-house implementation were of slightly better performance than the results reported in [11]. However, the results were relatively close (within 10%) and the difference probably originated from differences in hyperparameter tuning. Overall, these results support each other as representing a fair estimate of the current state-of-the-art accuracy of GZSL solvers for the T1 performance measure.



With respect to the results originating from the in-house implementation of individual classifiers (see Section 4.1) reported in the bottom part of Table 4, it can be seen that: (i) ALE produced the highest accuracy value on the CUB, SUN and aPY datasets (  38.83 %  ,   17.9 %   and   28.92 %  , respectively), whereas DeViSE achieved the highest accuracy values on both the AWA1 and AWA2 datasets (  29.69 %   and   27.88 %  , respectively); (ii) none of SJE, ESZSL or SAE outperformed the remaining classifiers for any of the five datasets; (iii) for the harmonic means results, only DeViSE, ALE and SJE were above   30 %   for the CUB dataset; (iv) all of the individual classifiers performed considerably worse on the aPY dataset than on the other datasets. This result is consisten with that reported in [12,13] for the ZSL settings. It also corresponds to the pattern of results reported in [11]; and finally, (v) there was a significant drop in accuracy across the board compared to the results from the ZSL experiments reported in [12,13]. The reason for this drop was the availability of the seen classes taken from the source domain   T  t r    during the testing phase in the target domain   T  t e   . In other words, the fact that    T  t r   ∩  T  t e   ≠ Ø  . Here, the seen classes acted as “deterrence” for the individual classifiers, since they were trained to exclusively classify the seen classes from the source domain, while no unseen class from the target domain was present during the training phase. This gave the seen classes “an edge” over their counterparts, i.e., an increased bias during the prediction process. This resulted in the seen classes having a higher selection rate than their unseen counterparts. As a consequence, this reduced the overall accuracy of the individual classifiers.



The remaining experimental results, reported below, could not have been compared to others, as, to the best of our knowledge, no fully comparable results obtained for the same approaches, with the same datasets, with the same performance measures, exist in the literature. The first set of results was obtained for the T5 accuracy and is reported in Table 5. Here, again, the “best” results are marked in bold font.



The following observations follow from the results reported in Table 5: (A) DeViSE produced the highest performance on the AWA1, AWA2 and aPY datasets (  81.22 %  ,   79.09 %   and   71.65 %  , respectively); (B) ALE achieved the best overall performance on both the CUB and SUN datasets (  75.71 %   and   62.57 %  , respectively); (C) all of the reported results were less than   80 %  ; (D) The SUN dataset appeared to be the “hardest” dataset when the T5 performance measure was applied; finally, (E) SAE performed the worst. Most of the values of SAE for the T5 measure were relatively similar to one another across all five datasets. This should be taken into account when comparing the values of SAE for the T5 measurement to the values for the T1 measure.



The next set of results relate to the performance of the five classifiers, measured according to LogLoss accuracy. The results are summarized in Table 6. Note that, here, the lowest value is the “best”; the best results are marked in bold font).



Comparing the results in Table 6, the following observations can be made: (a) ESZSL achieved the lowest values on both the AWA1 and aPY datasets (  1.41   and   2.3  , respectively); (b) ESZSL achieved the lowest values for each of the CUB, AWA1, AWA2, aPY and SUN datasets (  3.59  ,   2.5  ,   2.46  ,   2.57   and   5.6  , respectively). When evaluated from the LogLoss perspective, the SUN dataset again appeared to be the most difficult to deal with.



Finally, in Table 7, the performance of the five individual classifiers is compared in terms of the F1 measure. Here, the “best” (highest) values are marked in bold font.



The following observations can be made on the basis of the results reported in Table 7: (1) The ALE algorithm achieved the highest performance on the CUB, aPY and SUN datasets (  0.37  ,   0.1  , and   0.29  , respectively); (2) DeViSE achieved the highest values on the AWA1 and AWA2 datasets (  0.26   and   0.16  , respectively); and (3) the aPY dataset was the hardest to deal with when the F1 accuracy measure was applied.



Overall, on the basis of all the experiments performed, similar conclusions can be drawn to those reported in [12,13]: (i) Different performance measures promoted different GZSL approaches; (ii) the aPY and SUN datasets were the most difficult to classify, depending on the performance measure that was being used. This differed from the ZSL settings, where only the aPY dataset was found to be difficult; and (iii) none of the individual classifiers can be considered “the best”. Moreover, none of the classifiers delivered particularly good results, regardless of the dataset and performance measure used to evaluate it.



The concern to identify the best overall approach was addressed in [13] by introducing a competitive scoring scheme. Specifically, each of the five classifiers was assigned scores from 5 to 1 for each dataset for each performance measure, depending on its result (the best performance received 5 points, while the worst received 1 point). Next, the results were added. The same approach to representing “robustness” for all classifiers was applied; the results are displayed in Table 8. The “best” results for each dataset, and overall, are marked in bold.



The observations from Table 8 can be summarized as follows: (A) DeViSE performed best for the AWA1 and AWA2 datasets and also obtained the best overall result (78 points); (B) ALE performed the best for the CUB, aPY, and SUN datasets; and (C) SAE performed the worst for almost all datasets, as well as overall.



These results differ from these reported in [12,13], where the best overall score was reported for the ESZSL classifier. Overall, for the GZSL problem, if specific characteristics of the dataset are not known beforehand, the DeViSE approach may be the one to try first. However, the results obtained strengthen the view that much more work is needed to develop a deeper understanding of the relationships between datasets, approaches and performance measures with respect to the GZSL problem.




5.2. Performance of Meta-Classifiers


The second part of the investigation concerns the experimental evaluation of the performance of meta-classifiers. Here, the T1 accuracy results are summarized in Table 9. The “best” results are marked in bold font.



The following key information can be derived from the results reported in Table 9: (i) The GT achieved the highest performance for the CUB, AWA1 and aPY datasets (  39.17 %  ,   33.14 %   and   48.17 %  , respectively); (ii) Con achieved the highest overall T1 accuracy for the AWA2 dataset (  33.82 %  ); (iii) MV achieved the highest T1 accuracy value for the SUN dataset (  28.26 %  ); (iv) these results imply that none of MDT, DNN or Auc achieved the best scores for any single dataset; (v) all the results were below   50 %   accuracy; (vi) all the results obtained were higher than those reported in Table 4; (vii) the largest difference was for the ESZSL classifier and the AWA2 dataset (69.07%), while the smallest was for the SAE classifier and the CUB dataset (0.12%); and (viii) the SUN dataset was found to be the most difficult when the performance of the meta-classifiers was measured in terms of the T1 accuracy measure.



It is important to note that the T5 accuracy was not reported, as some meta-classifiers, e.g., DNN, returned the individual classifier result as an output. Hence, since the experimentation was undertaken for five individual classifiers, the resulting accuracy of the meta-classifier using the T5 measure would always be 100%, regardless of the correctness of the output.



For use of the F1 accuracy measure to assess the performance of the meta-classifiers, the results are summarized in Table 10 (bold-font-marked results are “the best”).



The following observations can be derived from Table 10: (a) MV achieved the highest values for the CUB and SUN datasets (  0.33   and   0.28  , respectively); (b) Con achieved the highest performance for the AWA1 and AWA2 datasets (0.32 and 0.13, respectively); (c) DNN achieved the highest accuracy score for the aPY dataset (0.19); (d) none of MDT, GT or Auc achieved the best accuracy score for any dataset; (e) all of the reported results were below   0.4  ; (f) the obtained results were comparable to, but somewhat worse than, the results reported in Table 7; and (g) the AWA2 dataset was the most difficult using the F1 accuracy measure.



Comparing the results obtained when applying the F1 accuracy score to the meta-classifiers with those obtained for the individual classifiers, it can be seen that the meta-classifiers performed better than the individual classifiers on the AWA1 and aPY datasets (0.32 and 0.28 compared to 0.26 and 0.1, respectively). At the same time, the individual classifiers obtained better results on the CUB, AWA2, and SUN datasets (0.37, 0.17 and 0.29 compared to 0.33, 0.13 and 0.28, respectively).



Using the method of competitive point distribution described above to measure the combined performance of the individual classifiers, the results calculated for the meta-classifiers are reported in Table 11 (“best” results reported in bold font). Both the performance measures, T1 and F1, were combined for the meta-results. The top scorer, in a given category, is given six points, since there are six meta-classifiers.



The following can be noted on the basis of the results reported in Table 11: (A) GT performed the best for the CUB and AWA1 datasets and obtained one of the best overall results alongside Con (total score for both equal to 46 points), which achieved the best score for the AWA2 dataset; (B) GT and DNN performed the best for the aPY dataset; (C) MV performed the best for the SUN dataset; and (D) Auc performed the worst overall (both on individual datasets and for combined performance).



Finally, the same competitive score combination method was applied jointly to both the meta-classifiers and the individual classifiers. For obvious reasons, only the T1 and the F1 accuracy measures were taken into account; since 11 classifiers were compared, the top score was 11 points. The results are displayed in Table 12 (bold font marks the “best” results).



Observations that can be made from the results reported in Table 12 are detailed below:




	
For the individual classifiers–ALE obtained the highest score on both the CUB and SUN datasets (18 and 22), as well as the highest overall score (88). Only ALE achieved a score of 20 or higher on any given dataset. DeViSE, ALE and SJE obtained overall scores of 60 or higher, whereas ESZSL and SAE scored below this threshold.



	
For the meta-classifiers–Con obtained the highest score on both the AWA1 and AWA2 datasets (20 and 21); DNN and GT both obtained the highest score for the aPY dataset; MV, DNN, GT and Con obtained scores of 20 or higher for any given dataset. All the meta-classifiers achieved an overall score of 60 or higher, with half achieving overall scores of above 70.



	
When comparing individual and meta-classifiers, half of the meta-classifiers obtained total scores higher than 70, whereas less than half of the individual classifiers did.



	
None of the meta-classifiers obtained total scores of less than 60, while three of the five individual classifiers did.



	
Only ALE obtained a score of 20 or above on an individual dataset, whereas four of the six (i.e., two-thirds) of the meta-classifiers reached this level.



	
Unlike the conclusions presented in [12,13] for the ZSL problem setting, where the simpler meta-classifiers (e.g., MV) gave better results, in the case of the GZSL problem, the more complex meta-classifiers (e.g., DNN) delivered better results.








Overall, it can be concluded that, in GZSL settings, selection of the “best approach” is very much context-dependent. With “inside knowledge” of the characteristics of the dataset and/or the aims for obtaining fine-tuned results for a given performance measure, this can be achieved using one of the individual classifiers. On the other hand, when the goal is to solve the problem, while avoiding the “worst case scenario”, then, use of meta-classifiers is desirable.





6. Concluding Remarks and Future Research Directions


The aim of this investigation was to experimentally study two different aspects of the generalized zero-shot learning problem. The first involved a comprehensive evaluation of five different approaches (DeViSE, ALE, SJE, ESZSL and SAE) for solving the GZSL problem, using five standard benchmarking datasets (CUB, AWA1, AWA2, aPY and SUN), applying four performance measures. The second involved a preliminary assessment of the performance of six standard state-of-the-art meta-classifiers—MV, MDT, DNN, GT, Con and Auc—applied to the results obtained by the five individual GZSL classifiers.



Similar to the conclusions presented in [12,13], at this stage of research, there appears to be no single best overall classifier for the GZSL problem, since the performance of the existing classifiers depends on the dataset and the applied performance measure used. Thus, determining which classifier to use will depend on the data and the goals. For instance, a classifier may be applied when the single best result is important and a different one used when the total performance for the five best results matters.



Another important finding is that the meta-classifiers seem to be valuable as an approach geared towards avoiding performance pitfalls, when it is not clear which solver should be tried. Here, despite their performance ceiling, MV, MDT and DNN performed comparably well. However, the non-constrained models, GT and Con, achieved the best performances when applied to the GZSL problem.



With respect to future work, first and foremost, it is clear that much more work is needed to develop novel approaches to obtain satisfactory results for the GZSL problem. More work is needed to develop a better understanding of the relationships between the characteristics of the dataset, the method used to solve the GZSL problem, and the performance measure that is being used. There is an obvious need to introduce additional datasets that can be used to gain more knowledge about such relationships. Moreover, studies similar to this one should be undertaken to include methods belonging to other categories of ZSL/GZSL solvers (see Section 3). Finally, similar to the research reported, for instance, in [38], more refined meta-classifiers or meta-learning systems need to be developed and investigated to address the ZSL/GZSL problem. Combining the knowledge obtained following these research projects may result in better understanding of which approaches can raise the quality of available solutions to the next level.
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Abbreviations


The following abbreviations are used in this manuscript:



	ZSL
	Zero-shot learning



	GZSL
	Generalized zero-shot learning



	DeViSE
	Deep visual semantic embedding



	ALE
	Attribute label embedding



	SJE
	Structured joint embedding



	ESZSL
	Embarrassingly simple approach to zero-shot learning



	SAE
	Semantic autoencoder



	MDT
	Meta-decision tree



	DNN
	Deep neural network



	GT
	Game-theory-based approach



	Auc
	Auction-based model



	Con
	Consensus-based approach



	T1
	Top-1



	T5
	Top-5



	LogLoss
	Logarithmic loss



	F1
	F1 score



	CUB
	Caltech-UCSD-Birds 200-2011



	SUN
	Scene UNderstanding



	AWA1
	Animals with Attributes 1



	AWA2
	Animals with Attributes 2



	aPY
	Attribute Apascal&Ayahoo
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Table 1. Hyperparameters used in experiments for each individual classifier and dataset.






Table 1. Hyperparameters used in experiments for each individual classifier and dataset.





	
CLF

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
DeViSE

	
lr   =   1  

	
lr   =   0.01  

	
lr   =   0.001  

	
lr   =   1  

	
lr   =   0.01  




	
mr   =   1  

	
mr   =   200  

	
mr   =   150  

	
mr   =   1  

	
mr   =   3  




	
norm   =    L 2   

	
norm   =     std

	
norm   =   std

	
norm   =    L 2   

	
norm   =   None




	
ALE

	
lr   =   0.3  

	
lr   =   0.01  

	
lr   =   0.01  

	
lr   =   0.04  

	
lr   =   0.1  




	
norm   =    L 2   

	
norm   =    L 2   

	
norm   =    L 2   

	
norm   =    L 2   

	
norm   =    L 2   




	
SJE

	
lr   =   0.1  

	
lr   =   1  

	
lr   =   1  

	
lr   =   0.01  

	
lr   =   1  




	
mr   =   4.0  

	
mr   =   2.5  

	
mr   =   2.5  

	
mr   =   1.5  

	
mr   =   2  




	
norm   =     std

	
norm   =    L 2   

	
norm   =    L 2   

	
norm   =     None

	
norm   =     std




	
ESZSL

	
   γ = 3   

	
   γ = 3   

	
   γ = 3   

	
   γ = 2   

	
   γ = 3   




	
   λ = 0   

	
   λ = 0   

	
   λ = 0   

	
   λ = 0   

	
   λ = 2   




	
SAE

	
    λ 1  = 80   

	
    λ 1  = 3.2   

	
    λ 1  = 0.8   

	
    λ 1  = 0.16   

	
    λ 1  = 0.32   




	
    λ 2  = 0.2   

	
    λ 2  = 0.8   

	
    λ 2  = 0.2   

	
    λ 2  = 2.56   

	
    λ 2  = 0.08   
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Table 2. Meta Decision Tree Hyperparameters.
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	Hyperparameter
	CUB
	AWA1
	AWA2
	aPY
	SUN





	  α  
	1
	0.013
	0.185
	0.0101
	3.21



	  β  
	1
	0.16632
	0.185
	0.159171
	3.21
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Table 3. Statistics for the Datasets.
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	DS
	Detail
	M
	     N  T s   +  N  T u      
	     |   T tr   |     
	     |   T te   |     
	     N tr  +  N te     
	    N tr    
	    N  tr  te    
	    N  te  te    





	CUB
	fine
	312
	200
	100 + 50
	50
	11,788
	7057
	1764
	2967



	AWA1
	coarse
	85
	50
	27 + 13
	10
	30,475
	19,832
	4958
	5685



	AWA2
	coarse
	85
	50
	27 + 13
	10
	37,322
	23,527
	5882
	7913



	aPY
	coarse
	64
	32
	15 + 5
	12
	15,339
	5932
	1483
	7924



	SUN
	fine
	102
	717
	580 + 65
	72
	14,340
	10,320
	2580
	1440
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Table 4. Individual Classifier Results for the Top-1 Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
Results reported in [11]




	
DeViSE

	
23.8

	
52

	
32.8

	
13.4

	
68.7

	
22.4

	
17.1

	
74.7

	
27.8

	
3.5

	
78.4

	
6.7

	
16.9

	
27.4

	
20.9




	
ALE

	
23.7

	
62.8

	
34.4

	
16.8

	
76.1

	
27.5

	
14

	
81.8

	
23.9

	
4.6

	
73.7

	
8.7

	
21.8

	
33.1

	
26.3




	
SJE

	
23.5

	
59.2

	
33.6

	
11.3

	
74.6

	
19.6

	
8

	
73.9

	
14.4

	
1.3

	
71.4

	
2.6

	
14.4

	
29.7

	
19.4




	
ESZSL

	
14.7

	
56.5

	
23.3

	
6.6

	
75.6

	
12.1

	
5.9

	
77.8

	
11

	
2.4

	
70.1

	
4.6

	
11

	
27.9

	
15.8




	
SAE

	
7.8

	
54

	
13.6

	
1.8

	
77.1

	
3.5

	
1.1

	
82.2

	
2.2

	
0.4

	
80.9

	
0.9

	
8.8

	
18

	
11.8




	
In-House Implementation




	
DeViSE

	
23.41

	
61.96

	
33.98

	
18.01

	
84.41

	
29.69

	
17.3

	
71.78

	
27.88

	
4.12

	
76.28

	
7.8

	
18.54

	
32.75

	
23.68




	
ALE

	
26.07

	
62.74

	
36.83

	
13.46

	
80.14

	
23.05

	
12.15

	
77.59

	
21.01

	
10.26

	
69.85

	
17.9

	
23.68

	
37.13

	
28.92




	
SJE

	
22.82

	
60.8

	
33.19

	
9.93

	
79.29

	
17.64

	
10.48

	
78.82

	
18.5

	
6.26

	
73.31

	
11.54

	
18.75

	
33.37

	
24.01




	
ESZSL

	
14.7

	
56.53

	
23.34

	
5.29

	
86.84

	
9.98

	
4.04

	
88.83

	
7.72

	
2.25

	
81.07

	
4.39

	
13.75

	
28.41

	
18.53




	
SAE

	
13.86

	
49.88

	
21.69

	
5.29

	
80.52

	
9.92

	
5

	
81.42

	
9.42

	
8.28

	
27.97

	
12.77

	
16.81

	
24.69

	
20




	
15.72

	
57.02

	
24.64

	
14.72

	
82.93

	
25

	
13.86

	
87.2

	
22.41

	
9.48

	
56.62

	
16.24

	
19.03

	
31.2

	
23.64
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Table 5. Individual Classifier Results for the T5 Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
DeViSE

	
59.6

	
87.6

	
70.9

	
69.3

	
98.0

	
81.2

	
66.9

	
96.8

	
79.1

	
58.3

	
93.0

	
71.7

	
47.3

	
62.8

	
54.0




	
ALE

	
65.6

	
89.5

	
75.7

	
23.1

	
80.1

	
60.0

	
62.7

	
97.8

	
76.4

	
54.2

	
98.1

	
69.8

	
57.1

	
69.2

	
62.6




	
SJE

	
62.8

	
86.7

	
72.9

	
66.0

	
96.6

	
78.4

	
66.3

	
97.0

	
78.8

	
51.0

	
93.3

	
65.9

	
48.3

	
64.1

	
55.1




	
ESZSL

	
58.7

	
86.5

	
69.9

	
63.9

	
97.8

	
77.3

	
63.0

	
98.4

	
76.8

	
40.9

	
97.8

	
57.7

	
42.5

	
58.4

	
49.2




	
SAE

	
13.9

	
51.9

	
21.8

	
15.1

	
83.2

	
25.5

	
14.6

	
84.0

	
24.8

	
16.6

	
36.5

	
22.8

	
19.0

	
25.0

	
21.6




	
15.7

	
57.8

	
24.7

	
23.1

	
84.6

	
36.3

	
21.3

	
88.4

	
34.3

	
17.8

	
57.9

	
27.2

	
21.0

	
31.5

	
25.2
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Table 6. Individual Classifier Results for the LogLoss Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
DeViSE

	
5.24

	
5.23

	
5.23

	
3.48

	
3.00

	
3.22

	
3.38

	
2.95

	
3.15

	
3.47

	
3.31

	
3.39

	
6.53

	
6.53

	
6.53




	
ALE

	
5.29

	
5.29

	
5.29

	
3.90

	
3.90

	
3.90

	
3.91

	
3.91

	
3.91

	
3.56

	
3.44

	
3.50

	
6.57

	
6.57

	
6.57




	
SJE

	
4.90

	
4.40

	
4.62

	
3.78

	
3.78

	
3.78

	
3.81

	
3.77

	
3.79

	
3.47

	
3.47

	
3.47

	
6.88

	
6.48

	
6.67




	
ESZSL

	
3.78

	
3.43

	
3.59

	
2.93

	
2.18

	
2.50

	
2.92

	
2.13

	
2.46

	
4.67

	
1.79

	
2.57

	
5.63

	
5.57

	
5.60




	
SAE

	
4.98

	
4.92

	
4.95

	
3.69

	
3.51

	
3.6

	
3.67

	
3.46

	
3.56

	
3.38

	
3.03

	
3.20

	
6.21

	
6.18

	
6.19




	
5.05

	
5.01

	
5.03

	
3.66

	
3.51

	
3.58

	
3.63

	
3.43

	
3.52

	
3.5

	
2.87

	
3.15

	
6.23

	
6.19

	
6.21
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Table 7. Individual Classifier Results for the F1 Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
DeViSE

	
0.24

	
0.62

	
0.34

	
0.15

	
0.88

	
0.26

	
0.09

	
0.80

	
0.16

	
0.03

	
0.76

	
0.06

	
0.19

	
0.33

	
0.24




	
ALE

	
0.26

	
0.62

	
0.37

	
0.12

	
0.87

	
0.22

	
0.07

	
0.86

	
0.13

	
0.05

	
0.74

	
0.10

	
0.24

	
0.37

	
0.29




	
SJE

	
0.23

	
0.6

	
0.33

	
0.1

	
0.86

	
0.18

	
0.07

	
0.86

	
0.13

	
0.03

	
0.74

	
0.06

	
0.19

	
0.33

	
0.24




	
ESZSL

	
0.15

	
0.56

	
0.23

	
0.07

	
0.9

	
0.13

	
0.04

	
0.92

	
0.08

	
0.01

	
0.83

	
0.02

	
0.14

	
0.28

	
0.19




	
SAE

	
0.26

	
0.50

	
0.22

	
0.06

	
0.83

	
0.11

	
0.05

	
0.85

	
0.09

	
0.05

	
0.23

	
0.09

	
0.17

	
0.25

	
0.20




	
0.26

	
0.59

	
0.36

	
0.28

	
0.86

	
0.43

	
0.21

	
0.90

	
0.35

	
0.05

	
0.70

	
0.10

	
0.31

	
0.32

	
0.31
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Table 8. Individual Classifier Combined Performance.
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	CLF
	CUB
	AWA1
	AWA2
	aPY
	SUN
	Total





	DeViSE
	13
	19
	19
	14
	13
	78



	ALE
	16
	11
	11
	15
	17
	70



	SJE
	14
	12
	13
	12
	13
	64



	ESZSL
	11
	12
	11
	10
	10
	54



	SAE
	6
	6
	9
	12
	10
	43
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Table 9. Meta-Classifier Results for the T1 Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
MV

	
21.98

	
66.83

	
33.08

	
8.76

	
84.01

	
15.87

	
7.34

	
81.61

	
13.48

	
3.24

	
80.36

	
6.23

	
22.64

	
37.6

	
28.26




	
MDT

	
25.96

	
75.89

	
38.69

	
20.21

	
80.01

	
32.27

	
20.4

	
80

	
32.51

	
38.53

	
62.65

	
47.72

	
11.02

	
90.01

	
19.63




	
DNN

	
25.9

	
75.89

	
38.62

	
20.18

	
80.05

	
32.23

	
20.46

	
80.02

	
32.59

	
38.53

	
64.17

	
48.15

	
11.16

	
90.06

	
19.86




	
GT

	
26.45

	
75.49

	
39.17

	
20.86

	
80.59

	
33.14

	
21.03

	
80.24

	
33.33

	
38.62

	
64

	
48.17

	
10.36

	
90.06

	
18.58




	
Con

	
25.97

	
75.71

	
38.67

	
20.18

	
80.05

	
32.23

	
21.42

	
80.3

	
33.82

	
37.92

	
64.84

	
47.85

	
10.91

	
90.08

	
19.47




	
Auc

	
25.96

	
75.89

	
38.69

	
20.18

	
80.05

	
32.23

	
20.46

	
80.03

	
32.59

	
38.53

	
62.65

	
47.72

	
10.77

	
90.03

	
19.25
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Table 10. Meta-Classifier Results for the F1 Accuracy.
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DS

	
CUB

	
AWA1

	
AWA2

	
aPY

	
SUN






	
CLF

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   

	
   f (  Y  t r   )   

	
   f (  Y  t e   )   

	
   H ^   




	
MV

	
0.66

	
0.22

	
0.33

	
0.89

	
0.09

	
0.17

	
0.88

	
0.06

	
0.1

	
0.81

	
0.02

	
0.03

	
0.38

	
0.23

	
0.28




	
MDT

	
0.12

	
0.36

	
0.19

	
0.01

	
0.02

	
0.02

	
0.02

	
0.02

	
0.02

	
0.1

	
0.02

	
0.03

	
0.11

	
0.1

	
0.1




	
DNN

	
0.12

	
0.36

	
0.18

	
0.02

	
0.01

	
0.02

	
0.02

	
0.02

	
0.02

	
0.11

	
0.67

	
0.19

	
0.12

	
0.1

	
0.11




	
GT

	
0.16

	
0.2

	
0.18

	
0.1

	
0.3

	
0.2

	
0.12

	
0.01

	
0.1

	
0.11

	
0.12

	
0.11

	
0.03

	
0.1

	
0.05




	
Con

	
0.12

	
0.29

	
0.17

	
0.28

	
0.39

	
0.32

	
0.16

	
0.11

	
0.13

	
0.05

	
0.17

	
0.07

	
0.1

	
0.12

	
0.11




	
Auc

	
0.19

	
0.36

	
0.19

	
0.01

	
0.02

	
0.02

	
0.02

	
0.03

	
0.02

	
0.11

	
0.02

	
0.03

	
0.12

	
0.1

	
0.11
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Table 11. Meta-Classifier Combined Performance.






Table 11. Meta-Classifier Combined Performance.





	CLF
	CUB
	AWA1
	AWA2
	aPY
	SUN
	Total





	MV
	8
	7
	7
	5
	12
	39



	MDT
	9
	8
	7
	6
	8
	38



	DNN
	7
	7
	8
	11
	10
	43



	GT
	10
	11
	10
	11
	4
	46



	Con
	8
	10
	12
	8
	8
	46



	Auc
	9
	7
	8
	6
	7
	37
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Table 12. Individual Classifier and Meta-Classifier Combined Performance.






Table 12. Individual Classifier and Meta-Classifier Combined Performance.





	CLF
	CUB
	AWA1
	AWA2
	aPY
	SUN
	Total





	DeViSE
	16
	18
	18
	11
	17
	80



	ALE
	18
	16
	16
	16
	22
	88



	SJE
	14
	13
	15
	12
	18
	72



	ESZSL
	11
	9
	9
	7
	8
	44



	SAE
	9
	8
	11
	14
	15
	57



	MV
	13
	11
	13
	9
	20
	66



	MDT
	16
	13
	14
	14
	10
	67



	DNN
	13
	12
	15
	21
	12
	73



	GT
	16
	17
	19
	21
	6
	79



	Con
	13
	20
	21
	17
	10
	81



	Auc
	16
	12
	15
	14
	9
	66
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