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Abstract: This paper examines the trading performances of several technical oscillators created us-

ing crypto-asset pricing methods for short-term bitcoin trading. Seven pricing models proposed in 

the professional and academic literature were transformed into oscillators, and two thresholds were 

introduced to create buy and sell signals. The empirical back-testing analysis showed that some of 

these methods proved to be profitable with good Sharpe ratios and limited max drawdowns. How-

ever, the trading performances of almost all methods significantly worsened after 2017, thus indi-

rectly confirming an increasing financial literature that showed that the introduction of bitcoin fu-

tures in 2017 improved the efficiency of bitcoin markets. 
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1. Introduction 

In 2008, an anonymous developer named Satoshi Nakamoto published a white paper 

titled “Bitcoin: A Peer-to-Peer Electronic Cash System”, which proposed a new decentral-

ized encrypted digital currency called Bitcoin (BTC) based on blockchain technology. In 

simple terms, the purpose of Bitcoin was to create a means for people to send money via 

the Internet as an alternative to traditional methods to transfer money. The blockchain is 

a public record-keeping system based on a linear chain that consists of blocks. The trans-

action information is recorded in the blocks, and each block contains the cryptographic 

hash value and the timestamp of the previous block: given that each block has a hash 

pointer to the previous block, the data structure is similar to a chain. Once we know the 

hash value of the previous block, it can be compared with the hash value in the current 

block to determine whether or not its recorded transactions have changed, thus offering 

a major defense against data tampering. A "miner" records the new transactions infor-

mation and transfers them into a block and then must solve a complex mathematical puz-

zle named proof-of-work (PoW), which is a decentralized consensus mechanism that is 

employed to prevent anyone from gaming the system. The first miner that successfully 

solves this mathematical puzzle receives a reward and transaction fees in bitcoin for the 

confirmed block. At the start of 2009, the reward for each block was 50 BTC, and it is 

halved approximately every four years. As of 2022, the reward for one new block is 6.5 

Bitcoin. The total amount of new Bitcoins to be issued is limited to 21 million, and this 

number will be reached around 2140.  

Bitcoin and thousands of other crypto-assets are traded daily on a large number of 

crypto-exchanges (at the end of the first quarter of 2022, there were almost 300 exchanges, 

see, for example, coinmarketcap.com/rankings/exchanges), with a total daily trading vol-

ume that, on some days, was higher than 100 billion dollars. In this regard, several 
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methods have been proposed to estimate the fundamental value of Bitcoin; see [1–3] for 

an introduction at the textbook level. There is also an increasing financial literature that 

proposed advanced non-linear models to predict Bitcoin returns using popular technical 

indicators representing market trend, momentum, volume, and sentiment; see, e.g., [4–7], 

and references therein. 

In this work, we followed in the footsteps of [8,9], who were the first to use moving 

averages and z-scores to convert pricing models into technical oscillators, and we exam-

ined seven pricing models proposed in the professional and academic literature to create 

oscillators for Bitcoin daily trading. We then computed two thresholds based on the quan-

tiles of these oscillators to create buy and sell signals. Even though professional traders often 

use technical oscillators based on pricing models for crypto assets, such an approach is 

rarely discussed in the academic literature. This paper differs from the aforementioned 

studies in that it is among the first to examine the profitability of a set of technical indica-

tors based on pricing methods for crypto assets using more than ten years of Bitcoin data.  

Our empirical back-testing analysis showed that some of these methods proved to be 

profitable with good Sharpe ratios and limited max drawdowns. However, the trading 

performances of almost all methods significantly worsened after 2017, thus indirectly con-

firming an increasing financial literature that shows that the introduction of Bitcoin fu-

tures in 2017 improved the efficiency of bitcoin markets. 

We remark that crypto assets can suffer from significant credit risk, which can take 

two forms: either the crypto asset "dies" (that is, a situation when its price drops signifi-

cantly and it becomes illiquid), or the crypto exchange closes due to a bankruptcy, or a 

fraud, or a hacking attack. We did not consider such type of risk in our analysis, and we 

refer to [10–12] for a detailed discussion. 

The rest of this paper is organized as follows. Section 2 reviews the literature devoted 

to crypto-asset valuation, while the technical oscillators proposed for trading Bitcoin are 

discussed in Section 3. The empirical results are reported in Section 4, while two robust-

ness checks are discussed in Section 5. Section 6 concludes. 

2. Literature Review 

The last years have witnessed the emergence of several professional analyses and 

academic papers proposing a wide range of models to price crypto assets. We focus below 

on a specific selection of approaches that will be useful for our work, while we refer the 

interested reader to [3], chapter 9, for a larger review. 

2.1. Cost Analysis 

Ref. [13] performed a valuation of several crypto coins by using the net present value. 

They examined the hardware and software costs of crypto mining and highlighted a par-

adox: new miners are not profitable because old miners are simply able to update their 

old equipment in their farms (such as CPUs, GPUs, or other infrastructure). Therefore, 

existing miners have a significant capital advantage over new mining groups. Ref. [14] 

analyzed the cost of a single miner, assuming that a new miner enters into a free market 

with an expected profit equal to zero. According to his model, the miner cost must equal 

the value of newly mined Bitcoins. 
Ref. [15] performed an analysis of the energy consumption of Bitcoin and argued that 

miners would not be profitable if the electricity price were to exceed $0.14/kWh, showing 

that the marginal cost of mining Bitcoin was approximately $1952. Instead, Ref. [16] fo-

cused mainly on environmental issues and attempted to construct a tax model for the 

crypto-coin mining industry. They noted that the total energy consumption of crypto 

coins is incredibly high: for example, in 2018, 0.3% to 0.5% of the energy consumed glob-

ally was used in mining, and crypto coins accounted for 5% to 12% of carbon emission 

quotas. They noted that the growth of the market size of the Bitcoin network was not 

feasible due to its proof-of-work mining model. They suggested that the government 

could introduce a tax if the energy consumption due to mining were to create a pollution 
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externality. They also introduced a “local decision model” including the average temper-

ature, electricity prices, and the distance to the nearest power station to help investors 

identify the optimal mining locations. They showed that, while crypto-coin mining can 

improve the local economy (more consumers and workers) and generate more tax reve-

nues, it may also create energy shortages and increased use of fossil fuels. 

2.2. Crypto-Coin Valuation 

Ref. [17] analyzed different methods to assess the intrinsic value of crypto coins using 

data from April 2014 until November 2018. They argued that crypto coins could be con-

sidered to be a currency-based commodity and that the intrinsic value of crypto coins can 

be divided into two parts: the commodity part that can be measured by the amount of 

labor iNVOLved and the currency part that can be measured by the money velocity. How-

ever, they also admitted that the price of crypto coins can be influenced by the investors' 

willingness to buy and sell. 

Ref. [18] suggested that there are three different categories of crypto coins: currency 

tokens, platform tokens, and asset-backed tokens. Currency tokens can be used for buying 

and selling goods and services in the real world; a typical example is Bitcoin. Platform 

tokens can be used to run transactions and smart connections on the blockchain; a typical 

example is Ethereum (ETH). Asset-backed tokens are tied to an underlying asset in the 

real world so that a coin unit can represent real estate ownership (for example). Ref. [18] 

also noted that the value of crypto coins depends on investor confidence, and ICOs should 

use a variety of methods for maintaining high market confidence. Moreover, they also 

suggested that the use of Metcalfe’s law is appropriate for measuring the value of crypto 

coins (more about this topic below). 

Ref. [19] provides a review of the crypto-coin valuation models currently used in 

practice, which includes both professional approaches and academic approaches: the 

quantity theory of money, Chris Burniske’s INET model, Evans’ Volt model, ARK Invest 

model, and the Black–Scholes model. Finally, Ref. [20] reviewed the asset valuation meth-

ods commonly used for stock pricing, and they found that these traditional valuation 

methods could hardly be applied to digital assets. Even though there are commonalities, 

digital assets require a different analysis for pricing purposes. The methodologies cur-

rently proposed for digital asset valuation may vary significantly, and the lack of stand-

ards for the valuation of these assets can lead to uncertainty and confusion among inves-

tors and managers. 

2.3. Social Network Analysis for Crypto-Asset Modeling 

Social network analysis (SNA) investigates social structures by using networks and 

graph theory. Networked structures are represented in terms of nodes, which can be in-

dividual actors, people, or items within the network, and the ties or links that connect 

them, which can be relationships or interactions. SNA can process a large amount of rela-

tional data and describe the general relational network structure. Moreover, the commu-

nication structure and the position of all individuals can be fully described by analyzing 

nodes, clusters, and their relations; see [21] for an introductory survey or [22–24] for a 

discussion at the textbook level. 

There is an increasing body in the financial literature that explores the key features 

of blockchains’ network structures and how they affect the price dynamics of these crypto 

assets. More specifically, a blockchain can be modeled directly through a social network 

because the social network nodes can represent the blockchain addresses, while its arcs 

can denote the transactions between the addresses corresponding to the iNVOLved nodes. 

Social-network-analysis-based techniques can then be used to extract knowledge about 

the behavior of the blockchain actors iNVOLved; see [25–31], just to name a few.  

The network structures may differ significantly across blockchains: for example, Ref. 

[32] found that the Bitcoin network has grown denser over time, with more nodes tending 
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to be connected with each other, leading to a strong community, while Namecoin has 

shown a decrease in density, resulting in an unclear community structure.  

This literature has found significant effects of network features on economic variables 

such as price and volatilities. For example, [33] found that the price of Bitcoin, Ethereum, 

and Litecoin are positively correlated with the size of the graph and the number of nodes 

and edges, while [29] showed that the price of Bitcoin is negatively correlated with the 

average outdegree (the outdegree is the number of edges that are directed out of a node 

in the directed network graph). Ref. [34] used a Granger causality test and found that the 

past degree distributions (especially the outdegree of the Bitcoin trading network) can 

predict future price increases, while [35] built an ARIMA time-series model to forecast 

price anomalies using network features. Finally, Ref. [36] presented an SNA-based ap-

proach to investigate user behavior during the speculative bubble iNVOLving Ethereum 

in 2017 and 2018 to extract knowledge patterns about this phenomenon, and to identify 

the speculators who were behind this Ethereum bubble. 

2.4. Active Addresses and Metcalfe’s Law 

Ref. [37] considered the number of unique addresses participating daily on the 

Bitcoin and Ethereum networks as a relative measure of the number of active users. He 

showed that the growth in the value of the network was significantly related to the num-

ber of unique addresses participating actively on the network. In this regard, Metcalfe’s 

law of network value, which associates the value of the network with the square of its 

number of active users, was shown to model the networks quite well. In addition, he also 

proposed a new model that was derived and compared with Metcalfe’s law, which in-

cluded a 30-day moving average filter. This model was found to be suitable for catching 

a bubble, because if a higher price is not related to the growth of active addresses, it could 

potentially be a bubble. 

Ref. [38] compared the features of crypto coins with a now-defunct Italian telephone 

token called the Gettone, an ecosystem that married a telecommunications network with a 

currency, and which was active from 1927 to 2001. Gettone tokens were originally made 

of physical metal materials, but they were later replaced by magnetic calling cards in 1983. 

Gettone tokens could be used in daily life for telephone calls, as well as a form of currency 

to buy goods and services. One gettone was valued at 50 lire until 1980, 100 lire until 1984, 

and 200 lire from 1984. It remained at this value until the introduction of the euro in 2001 

in Italy, and it has lost its monetary value since then. Peterson noted the similarities be-

tween the Gettone tokens and crypto coins. He then built a regression model based on 

Metcalfe’s law and showed that Bitcoin’s medium- to long-term price followed this law 

quite closely, with an R2 over 80%.  

Ref. [39] discussed the intrinsic values for different type of cryptocurrencies, includ-

ing initial coin offerings (ICOs) and single-layer and multiple-layer coins. The purpose of 

an ICO is simply to raise funds for a specific coin project, whereas a single-layer coin 

works as a payment system to transfer currency, and its value is based on the active users 

in the network. A multiple-layer coin is Turing-complete and can be used to develop de-

centralized applications based on the needs of individuals or businesses. The operation of 

a new cryptocurrency requires initial capital, which can be considered the initial intrinsic 

value of the crypto coins. If crypto coins are accepted by the market and they can be used 

in daily life, the payments for goods and services can be used to measure the intrinsic 

value of crypto coins. Ref. [39] suggested the use of Metcalfe’s law for measuring the in-

trinsic value of crypto coins. They argued that if popular online payment methods such 

as Visa and PayPal could be valued in this way, then Metcalfe’s law could also be applied 

to single-layer and multiple-layer coins, given that PayPal, Visa, and crypto-coin networks 

all possess similar characteristics. 

Ref. [40] analyzed the impact of network effects (user-based growth) and crypto-coin 

trends. They considered data for six crypto coins up to January 2020 and assumed that the 

growth of the network value was proportional to the number of users on the network. 
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They concluded that network effects affected crypto-coin prices, but these effects did not 

provide crypto-coins with any competitive advantage. 

Ref. [41] analyzed how the amount of Google search interest, the number of tweets, 

and the number of active addresses on the blockchain impacted the prices of Bitcoin and 

Ethereum over time. They used vector autoregressive (VAR) models with multivariate 

generalized autoregressive conditional heteroskedasticity (GARCH) and data from be-

tween July 2017 and February 2018. They found that the number of active addresses was 

the most significant variable influencing the price movements of these crypto assets, 

whereas Google searches and the number of tweets had weaker effects. There is also an 

increasing trend in the literature towards investigating the determinants of the returns 

and volatility of cryptocurrencies using different measures of social media sentiment, the 

Economic Policy Uncertainty index, gold prices, and herding behaviors; see [42–44] and 

references therein. 

2.5. Ratios of Crypto Coins 

The network-value–transaction (NVT) ratio first made its appearance in February 

2017 in a tweet but was discussed in more detail in an article published on Forbes later in 

2017 by [45]. Ref. [9] later improved the NVT ratio by proposing the NVTS (NVT signal), 

which is the network value divided by the 90-day moving average of the daily transaction 

value and provides more insight for forecasting price tops. Partly inspired by the NVTS 

ratio, Ref. [46] proposed the market-value–realized-value (MVRV) ratio, which is the mar-

ket value divided by the realized value. The market value is the last known price multi-

plied by the current circulating supply, while the realized value considers the lost and 

unmoved Bitcoins and is calculated by summing the products of price per bitcoin and 

what is called the “Unspent Transaction Output” (UTXO). By dividing the market value 

by the realized value, an indication of Bitcoin’s real value emerges: [46] found that, his-

torically, a MVRV ratio above 3.7 denotes overvaluation, whereas a MVRV ratio below 

one indicates undervaluation.  

Refs. [47,48] found that fundamental market ratios have relatively little impact on 

short-term bitcoin returns. They employed machine-learning methods and deep-learning 

methods to create trading strategies: they found that the price-to-earning (PE) ratio is not 

a good crypto-coin indicator, and they highlighted the limitations of the network-value–

transaction (NVT) ratio, which ignores the store-of-value function. Given this evidence, 

they proposed a new ratio called the price–utility (PU) ratio and built a trading strategy 

that gives a buy signal when the PU ratio goes below the 10% quantile and a sell signal 

when the PU ratio exceeds the 90% quantile. They argued that this strategy outperforms 

traditional moving average crossover strategies and that the token utility is a leading in-

dicator for the token price. However, the main limitation of ratios such as these is that 

they cannot be used to compare the valuations of coins with different features (such as 

Bitcoin and Ethereum, for example), as recently highlighted by [3]. 

3. Materials and Methods 

The previous literature review found no detailed analysis of the profitability of the 

proposed pricing methods for short-term trading, and all these approaches focused on 

medium- and long-term evaluation. Among all the methods reviewed, the approaches 

using the ratios of crypto coins and the metrics based on active addresses appeared to be 

the most apt for short-term trading. Therefore, given that the goal of our work was to 

examine the trading performances of technical oscillators created using crypto-asset pric-

ing methods, we selected seven pricing models proposed in the previously reviewed pro-

fessional and academic literature.  

Before presenting the results of the empirical analysis, we briefly review these crypto-

asset pricing methods, and we discuss in detail how to use them to create technical oscil-

lators and buy-and-sell trading signals. 
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3.1. Network-Value–Transaction Ratio (NVT) 

The network-value–transaction (NVT) ratio was originally proposed by [45] as fol-

lows:  

��� =
������� �����

����������� �����
=

������ ��������������

����������� �����
 (1)

The network value is usually measured with the crypto-asset market capitalization 

in US dollars (USD), while the transaction value is the total transaction volume in USD 

that took place in a specific period (daily, monthly, or yearly).  

The proposed model was originally developed from the price–earnings (PE) ratio, 

which is a traditional method used in financial analysis. If the NVT ratio is too high, such 

that the network value is much greater than the total transferred on-chain value for a spe-

cific period, then the market is overvalued and has high expectations for the crypto asset. 

If the NVT ratio is too low, the network value is much smaller than the total transferred 

on-chain value, which means that the market is undervalued and it has low future expec-

tations. 

If we use the definition of market capitalization and transaction value, 

������ �������������� = ����������� × ����������   

����������� ����� = ����������� ����������� × ����������   

And we substitute them into the NVT ratio, we obtain 

��� =
����������� × ����������

����������� ����������� × ����������

=
�����������

����������� �����������

 

Given that the token transaction volume over the token supply is the money velocity, 

the NVT is the reciprocal of the money velocity: 

��� =
1

��������
  

The NVT ratio is very volatile, so using this ratio as an indicator is rather difficult. To 

solve this problem, Ref. [9] modified the ratio (1) as follows: 

���� =
������� �����

������������� �����

 (1)

 

(2)

where he used the moving average (MA) of the transaction value to smooth the NVT 

ratio. Ref. [8] modified Kalichkin’s NVTS model (2) to what he called the "adjusted-NVTS 

ratio", which is an oscillator indicator able to generate buy and sell signals. However, he 

did not provide any formula, simply stating that “the adjusted-NVTS displays how many 

standard deviations NVTS is above or below its historical norm. The historical norm is the 2-year 

moving average of NVTS, similarly, the standard deviation calculation uses a 2-year sampling” 

[8]. Therefore, it appears that he used the well-known z-score to standardize the NVTS 

ratio as 

�����(�, �) =
���� − �

�
  (3)

where μ is the mean value of the NVTS ratio computed over a specific period of time 

b (with b=2 years), σ is the standard deviation over the same period b, and a is the time 

sample used to compute the moving average of the network transaction value in Equation 

(2). 

3.2. Network-Value–Realized-Value Ratio (NVRV) 

The network-value–realized-value (NVRV) ratio was first introduced by [46] and is 

computed as follows: 
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���� =
������� �����

�������� �����
 (4)

where the network value and realized value are measured in USD, and are given by 

������� ����� = ���� ����� ���� ����� ×  ��� ����� �� ����������� 

�������� ����� = � ���� ����� ����� �� ���ℎ �����
�

 

Unlike traditional stock markets, each crypto-coin transaction and the last trade price 

for each coin can be tracked, and their summation gives the realized value of the coin 

market capitalization; see [49] for more details. When the NVRV ratio is greater than one, 

the market is overvalued and in a stage of euphoria. Conversely, if the NVRV ratio is lower 

than one, the market is undervalued and in a stage of capitulation-despondency. 

A variant of this ratio using the z-score was originally introduced by [50]: 

�����(�, �) =
���� − �

�
 (5)

where μ is the mean value of the NVRV ratio computed over a specific period of time b, σ 

is the standard deviation over the same period b, and a is the time sample used to compute 

the moving average of the NVRV in equation (4). 

3.3. Network-Value–Hashrate Ratio (NVHR) 

The network-value to hashrate ratio measures a crypto-asset network value in dollars 

per unit of hashrate, see [51] for more details. Its formula is reported below: 

���� =
������� �����

���ℎ ����
 

The NVHR ratio measures the expectations of investors for a specific coin: when the 

NVHR is high, investors have positive expectations and are willing to invest more, but if 

it is low, they have negative expectations and are willing to invest less or exit the market. 

Another possible interpretation is that a higher value of the NVHR ratio suggests that an 

investor is willing to pay more to receive the economic security granted by the current 

crypto-asset hashrate, whereas a lower value of the NVHR ratio suggests that an investor 

is willing to pay less for the economic security granted by the current asset's hashrate. 

Given that the NVHR ratio can fluctuate wildly, it is smoothed using a moving average of 

the daily hashrate value like so: 

����� =
������� �����

������ ����

 

Similar to previous ratios, we transform it into an oscillator using the z-score for trad-

ing purposes: 

������(�, �) =
����� − �

�
  (6)

where μ is the mean value of the NVHR ratio computed over a specific period of time b, σ 

is the standard deviation over the same period b, and a is the time sample used to compute 

the moving average of the hashrate. 

To smooth the jitter at the peaks and troughs of the previous ratio (6), a variant using 

the exponential moving average (EMA) can be employed: 

������(�, �, �) = ��� �
����� − �

�
� (7)

where c is the number of days used to compute the exponential moving average. 
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3.4. Active Addresses Metrics 

Active addresses metrics are based on the addresses of crypto coins that are recog-

nized as unique individual accounts ([51]). Active addresses include all account ad-

dresses, independently of the fact that they are sending, receiving, or both. Another factor 

is the network value, which is measured by the coin market capitalization. These metrics 

are quite similar to the number of "daily active users" and to their daily activities, and they 

can be presented in two forms, using Metcalfe’s law or Odlyzko’s law. 

Metcalfe’s law was originally proposed to model the network effect of fax machines, 

telephones, networks, and other communication technology. It was formulated in the cur-

rent form by George Gilder in 1993, who attributed it to Robert Metcalfe in regard to his 

work with Ethernet in the 1980s; see [52,53] for more details. 

According to Metcalfe’s law, the value of a telecommunications network is propor-

tional to the square of the number of connected users of the system like so: 

�� ����� = � × ��   

where A is a coefficient and n is the number of connected system users. [54] improved this 

model and showed that the incremental value of adding one person to a network of n 

people is approximately the n-th harmonic number, so the total value of the network is 

given by 

�� ����� = � log � 

3.4.1. Network-Value–Metcalfe’s Law Ratio 

If we assume that Metcalfe’s law for crypto coins can be approximated as 

�� @ (������ ���������)� 

then the network value to Metcalfe’s law (NVML) ratio is given by 

���� =
������� �����

��
  

A moving average can be used to smooth the previous ratio by 

����� =
������� �����

����

 

while the traditional z-score can be employed to standardize it and create an oscillator for 

trading purposes: 

������(�, �) =
����� − � 

�
  (8)

where μ is the mean value of the NVML ratio computed over a specific period of time b, σ 

is the standard deviation over the same period b, and a is the time sample used to compute 

the moving average. Again, to smooth the jitter at the peaks and troughs of the previous 

ratio (8), a variant using the exponential moving average (EMA) can be employed: 

������(�, �, �) = ��� �
����� − �

�
� (9)

where c is the number of days used to compute the exponential moving average. 

3.4.2. Network-Value–Odlyzko’s Law Ratio 

If we assume that the market value of a crypto asset depends on Odlyzko’s law as 

follows, 

�� @ ������ ��������� ∗ log(������ ���������)  

then the network value to Odlyzko’s law (NVOL) ratio is given by, 
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���� =
������� �����

��
  

A moving average can be used to smooth the previous ratio, 

����� =
������� �����

����
  

while the traditional z-score can be employed to standardize it and create an oscillator for 

trading purposes: 

������(�, �) =
����� − �

�
  (10)

where μ is the mean value of the NVML ratio computed over a specific period of time b, σ 

is the standard deviation over the same period b, and a is the time sample used to compute 

the moving average. Again, to smooth the jitter at the peaks and troughs of the previous 

ratio (8), a variant using the exponential moving average (EMA) can be employed: 

������(�, �, �) = ��� �
����� − �

�
�  (11)

where c is the number of days used to compute the exponential moving average. 

3.5. A Variant of the INET Model for Short-Term Trading 

The INET model was developed by [55] to value the (fictitious) INET Token program. 

His starting point is the quantity theory of money, which argues that the price level of 

goods and services is proportional to the amount of money in circulation, and it builds 

upon the following equation: 

��� = �� = � 

where M0 is the monetary base, V is the money velocity, P is the price of the digital re-

source that is being provisioned, Q is the quantity of this digital resource, while Y is the 

gross domestic product (GDP) of the crypto economy based on this digital asset. 

If we use the expenditure method to measure the GDP of crypto assets, we obtain 

� = �������� ����� ��� ��������� = �$ ∗ ��  

where MC is the total transferred coins on-chain for consumption, while P$ is the price of 

the crypto asset measured in US dollars. We already know from section 3.1 that the NVT 

ratio is the reciprocal of the money velocity V, so that V can be obtained as 

� =
1

���
 

If we combine the previous equations together, we can get the monetary-based 

crypto-coin value in US dollars M0$,  

��$� =
��$

���
= �$ × ��Þ 

��$ = �$ × �� × ��� 

If we compare M0$ and the total supply of the crypto asset M0, we obtain 

�$
� =

��$

��

=
�$ × �� × ����

��

= �$ × �
��

��

× ����� 

Since we already know that the NVT is the ratio of the total coin supply M0 over the 

transaction volume MT, we can rewrite the previous equation as follows: 

�$
� = �

��

��

×
��

��
� × �$ = �

��

��
� × �$ Þ  
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� =
�$

�

�$

= �
��

��
�  

where e can be considered a sort of reciprocal ratio of M2/GDP for the crypto economy 

based on this crypto asset. 

Even though every single transaction is recorded on the blockchain, determining the 

purpose of a specific transaction can be difficult due to the anonymity of the blockchain 

network. Instead, the speculation volume is easy to identify for Bitcoin and most crypto 

assets: these transactions are performed via crypto exchanges and can be analyzed in a 

straightforward manner. Therefore, if the speculation volume substitutes the consump-

tion volume, we obtain the following ratio : 

������� = �
��

��
� (12)

where Me is the speculation volume. If this indicator is high, the proportion of speculative 

transactions has increased, whereas if it is low, the proportion of speculative transactions 

has decreased. The name of the ratio, InetSpe, was chosen to show that this ratio is a variant 

of the INET model for short-term trading used here for speculation purposes. This ratio is 

often used for trading purposes. We remark that in Chris Burniske’s original model for 

annual data, there is an additional part used for computing the present value of a coin. 

However, we focus here on daily data for short-term trading, so this part is not consid-

ered.  

We can transform the ratio (12) into an oscillator using the usual standardization pro-

cedure:  

�������(�, �) =
������� − �

�
  (13)

where μ is the mean value of the InetSpe ratio computed over a specific period of time b, 

σ is the standard deviation over the same period b, and a is the time sample used to com-

pute the moving average. 

3.6. Volt Valuation Model 

Ref. [56] proposed a framework for modelling the money velocity using the Baumol–

Tobin model, which is related to the transaction demand for money, transaction costs, and 

the risk-free rate of investment interest (VOLT is the name of Evans’ fictitious token). They 

assumes that a player in the economy will spend all their annual income during a specific 

year and that the player has two choices: either hold their money in cash, or save their 

income in an interest bearing bank and then make partial withdrawals when necessary. 

The last choice makes the player earn some money, but it also implies substantial transac-

tion costs. To find the optimal choice, the player must find the optimal number N of with-

drawals needed to maximize his/her earnings. Evans found that the optimal N is given by 

����� = �
� ∙ �

2�
 

where R is the nominal free-risk interest rate, Y is the average payment per user per year, 

and C is the transaction cost, while the money demand function is estimated as 

����� = �
� ∙ �

2�
 

A ratio for trading purposes can be computed by comparing the network value to the 

Volt money demand for a specific coin by 

������ =
������� �����

�����
 (14)
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while an oscillator can be built using (14) as follows: 

�������(�, �) =
������ − �

�
   

where μ is the mean value of the NVVolt ratio computed over a specific period of time b, 

σ is the standard deviation over the same period b, and a is the time sample used to com-

pute the moving average. To smooth the jitter at the peaks and troughs, the exponential 

moving average can be used again in the usual way: 

�������(�, �, �) = ��� �
������ − �

�
 �  (15)

where c is the number of days used to compute the exponential moving average. 

3.7. Trading Strategy 

Once all models were converted into oscillators, we computed the two thresholds 

used for trading purposes; that is, the short threshold and the long threshold. Both thresh-

olds were computed using the oscillators’ quantiles: following [47,48,57], we used the 5% 

quantile as the signal to enter a long position and the 95% quantile as the signal to sell and 

close our position. More specifically, when the oscillator was less than the long threshold, 

the crypto coin was considered to be in the oversold zone, but when the oscillator started 

crossing above the long threshold, the crypto coin was considered to be leaving the over-

sold zone, and the model created a long signal. Similarly, when the oscillator was greater 

than the short threshold, the crypto coin was considered to be in the overbought zone, but 

when the indicator crossed below the short threshold, the crypto coin was believed to be 

leaving the overbought zone and falling back, so the model created a short signal. While 

these two thresholds could have been optimized, this computation would have added a 

layer of complexity (and potentially also over-fitting) to our work. This is why we did not 

consider such an extension here, and we leave it as an avenue for further research. 

We remark that short-selling always iNVOLves a liquidation risk, particularly with 

high-risk financial assets such as crypto coins. Therefore, we only considered long posi-

tions in this work, whereas short-selling was discarded. To test the profitability perfor-

mance of an oscillator, we used the most straightforward strategy: when the indicator 

gave a buy signal, one Bitcoin was purchased, while it was later sold when a sell signal 

was triggered. Theoretically, a trading strategy should include take-profits and stop-

losses, but such strategies strongly vary among individuals: some people may prefer to 

exit when the floating loss is greater than 5%, whereas others prefer 10%. Aggressive in-

vestors may place stops at 40% or 50% of the initial position. Moreover, some traders may 

set up more complex stop-loss strategies iNVOLving options to hedge losses. In this work, 

we did not consider stop-loss (or take-profit) strategies, and we focused only on the prof-

itability of the buy and sell signals that were generated by the competing models. We 

leave this issue as a topic for future research. For simplicity, we considered an account 

with initial equity equal to 500 thousand USD.  

3.7.1. Parameters of the Moving Averages and Z-Scores 

These parameters can be chosen arbitrarily and there is no definitive method. For 

example, in the case of the well-known MACD oscillator, some investors employ the 200-

day and 50-day moving averages as signals, while others prefer the 100-day and 50-day 

moving averages as signals. In the case of crypto assets, [9] believed that a moving average 

of 90 days "is a better proxy for long-term fundamental value". Quarterly reports are also 

known to have an impact on the stock market, and they are generally released a few weeks 

after the conclusion of a quarter. The effect of quarterly reports on the crypto-coin market 

is currently unknown; for example, it is known that Tesla CEO Elon Musk is one of the 

main promoters of crypto coins, and his tweets can impact the crypto-coin market (see 

[58] and references therein), but it is unknown whether Tesla’s quarterly reports can affect 
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crypto coins. Microsoft, Tesla, PayPal, Coinbase, and other large companies that are sup-

portive of crypto coins are generally listed on the US stock market, and considering the 

quarterly reports of these companies, a sample of 120 days may be a good choice for com-

puting the z-scores. Given this evidence, we employed a period of 90 days to compute the 

moving averages and a sample of 120 days to compute the z-scores of our trading models. 

As for the EMAs, whose purpose was to reduce the jitter of the oscillators at the peak, we 

employed samples of 7 or 14 days, depending on the specific model used. We justify this 

choice because larger samples may make the oscillators too flat but are no more useful for 

providing trading signals. 

3.7.2. Trading Strategy Evaluation Metrics 

To backtest the trading performances of the models discussed in this work, we em-

ployed several metrics implemented in the “blotter” R package. The blotter R package pro-

vides transaction infrastructure for defining transactions, portfolios, and accounts for 

trading systems and simulation. Moreover, it provides portfolio support for multi-asset 

class and multi-currency portfolios. We refer to the help manuals available at 

https://github.com/braverock/blotter, accessed on 1 July 2022, for more details. We remark 

that the blotter package computes a much larger set of performance metrics, which are not 

reported here for sake of space and interest. The full results are available from the authors 

upon request. The metrics we employed are briefly discussed below in Table 1. 

Table 1. Evaluation metric acronyms and meanings. 

Metrics' Acronym Meaning 

Net.Trading.PL Net trading profit and loss 

Ann.Sharpe Annualized Sharpe ratio 

Max.Drawdown 
Maximum drawdown. The maximum accumulated loss for a portfolio position from its peak to 

its trough before a new peak is attained; indicator of downside risk over a specified period 

Profit.To.Max.Draw 
Profit to max drawdown. A risk-adjusted return measure used as an alternative to the Sharpe 

ratio. It represents profit expectations per unit of drawdowns 

Max.Equity Maximum floating profit of the entire strategy during the backtest period 

Min.Equity 

Num.Txns 

Maximum floating loss of the entire strategy during the backtest period 

Number of transactions 

4. Results 

4.1. Data 

We used daily Bitcoin data (BTC) from August 17, 2011 to March 30, 2022 obtained 

from Glassnode; the download links are reported in Appendix A. A brief description of 

the variables used in the empirical analysis is reported in Table 2, while their plots are 

reported in Figures 1–7. 

Table 2. Description of the variables used in the empirical analysis. 

Factor Unit Description 

Price USD Daily close price 

Network value USD Market capitalization 

Transaction value USD 
The total estimated value of daily transactions on the 

block chain 

Realized value USD 
Market capitalization measured by the last trade price 

of each coin 

Active addresses Number The number of addresses that were sent or received 

Network hashrate Number The hashrate of the total Bitcoin network 
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Transaction in ex-

changes 
Number 

The total estimated value of daily transactions within 

exchanges 

Risk-free rate Number United States 10-year treasury rate 

 

Figure 1. Bitcoin price and network value. 

 

Figure 2. Bitcoin price and daily transaction value. 
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Figure 3. Bitcoin price and realized value. 

 

Figure 4. Bitcoin price and active addresses. 

 

Figure 5. Bitcoin price and network hashrate. 
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Figure 6. Bitcoin price and daily transactions value within exchanges. 

 

Figure 7. Bitcoin price and risk-free rate. 

The descriptive statistics, the Jarque–Bera normality test statistics and p-values, and 

the KPSS unit root test statistics for the BTC price, BTC log-returns, and for the seven 

technical oscillators are reported in Table 3, while the Figures A1–A7 in the Appendix B 

reports the technical oscillators computed for each trading strategy. 
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Table 3. Descriptive statistics, Jarque–Bera normality test statistic and p-value, and KPSS unit root 

test statistics for the BTC price, BTC log-returns, and for the seven technical oscillators. 

 BTC (Price) BTC (Log Returns) NVTS_Z NVRV_Z NVHRS_Z NVMLS_Z NVOLS_Z INETSPE_Z VOLT 

Mean 8879.61 0.00 0.03 0.23 −0.08 0.11 0.36 0.02 0.51 

Median 1183.81 0.00 −0.05 0.05 −0.62 −0.12 0.32 −0.26 0.52 

Maximum 67,589.01 0.34 4.83 3.74 3.95 4.12 4.25 3.47 4.42 

Minimum 4.55 −0.68 −5.41 −3.31 −3.05 −3.49 −3.48 −2.66 −3.05 

Skewness 2.16 −1.48 0.18 0.27 0.70 0.37 0.21 0.87 0.12 

Kurtosis 6.60 29.00 2.49 2.38 2.43 2.32 2.28 3.53 1.99 

Jarque–Bera 4831 104,600 58 102 353 153 106 506 163 

p-value JB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KPSS test 4.36 * 0.18 0.11 0.16 0.22 0.31 0.15 0.07 0.38 

* The null hypothesis of stationarity is rejected at the 5% probability level. 

As expected, Bitcoin prices are not stationary, but their log-returns are stationary and 

so are the seven technical oscillators. Interestingly, the oscillators are not normally distrib-

uted, but their empirical skewness estimates are close to zero and their empirical kurtosis 

are close to 3.  

4.2. Trading Performance of Each Model 

We report in Table 4 the previous evaluation metrics for all seven trading strategies 

to have an idea of their relative performances, as well the tests for the equality to zero of 

each Sharpe ratio for non-independent and identically distributed elliptical returns; see 

[59] (chapter 3) for more details. Table 4 also reports the test by [60] for the equality of all 

Sharpe ratios, which holds under the general assumption that the excess returns are sta-

tionary and ergodic. 

Figures A1–A7 in Appendix B report the technical oscillators computed for each trad-

ing strategy, the Bitcoin (BTC) price, the cumulative profit/loss, the long and short thresh-

olds computed using the 5% and 95% quantiles of the technical oscillators, respectively, 

and the long and short orders. Note that a short order implied that all previously bought 

Bitcoins must be sold at that time.  

Table 4. Selected evaluation metrics for all trading strategies. 

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe 
Profit.To. 

Max.Drawdown 
Num.Txns 

NVTS 86,002 −97,656 147,472 −1126 0.31 0.88 38 

NVRV 46,685 −35,065 61,577 −574 0.41 * 1.33 15 

NVHR 37,728 −55,538 47,901 −7636 0.20 0.68 17 

NVML 43,439 −18,847 50,224 −2739 0.47 * 2.3 20 

NVOL 45,589 −41,460 53,747 −2877 0.30 1.1 18 

INET 49,862 −16,249 58,375 0 0.55 ** 3.07 104 

VOLT 24,424 −74,012 52,552 −20,116 0.12 0.33 16 

Wright et al. (2014) test for the equality of all Sharpe ratios; p-value: 0.57 

* Significantly different from zero at the 10% probability level; ** Significantly different from zero at 

the 5% probability level. 

The NVTS strategy had the largest net trading profit, but also the largest max draw-

down. Considering it had also the largest floating profit during the trading period, its 

performance could likely be improved using a profit-taking strategy. Given that this goes 

beyond the scope of this work, we leave it as an avenue for further work.  

Another interesting strategy uses the network-value–Metcalfe’s law (NVML) ratio, 

which has a high Sharpe ratio, a low max drawdown of −18,857 USD (approximately 4% 

of the initial capital), and the second-highest profit–max-drawdown, equal to 2.3. The 
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strategy using the network-value–Odlyzko’s law (NVOL) ratio has performance metrics 

that are rather similar to the strategy using the network-value–Metcalfe’s law ratio, even 

though they are generally slight worse than the latter. Moreover, the max drawdown and 

the profit–max-drawdown ratio (1.10) are much worse than the approach that uses 

Metcalfe’s law. 
The strategy that employed the network-value–realized-value (NVRV) ratio had a 

more balanced performance than the NVTS model. However, it requires fine-tuning of the 

moving averages’ parameters, because this model tends to generate trading signals one to 

three weeks in advance.  

The network-value–hash-rate (NVHR) ratio provided good long-side entry signals 

but poor short signals, so this model must be used in conjunction with other strategies to 

determine when to exit the market; we leave this issue as an avenue for further work. 

On the other side of the spectrum, the VOLT model had the worst performance 

measures in almost all cases: interestingly, this model also experienced the largest floating 

losses during the trading period, thus highlighting that it is not effective in creating short-

trading signals. 

Finally, the modified INET model showed the lowest drawdown, no floating losses 

during the trading period, and the highest profit–max-drawdown ratio, and it was the 

only strategy with a Sharpe ratio statistically different from zero at the 5% probability 

level. This empirical evidence makes this trading strategy one of the most interesting con-

sidered so far. However, despite all these differences, we note that the test by [60] did not 

reject the null hypothesis that the annualized Sharpe ratios of all strategies are equal. 

The empirical evidence seems to confirm the past successes of the INET model and 

Metcalfe’s law. The variant of the INET model that we presented in Section 3.5 is particu-

larly useful to quickly measure any change in the speculation activity, which makes it an 

interesting tool for short-term trading. Its main limit is probably the large number of trans-

actions iNVOLved, which may result in a large number of transaction fees to pay and 

much lower trading profits. However, given that several crypto exchanges have recently 

launched zero trading fees for spot trading (most notably, Binance and Bybit), this issue 

may be less problematic than it was in the past. As for Metcalfe’s law, it has been known 

since the work by [37] that blockchain networks can be fairly well modeled by it, as it 

identifies the value of a network as proportional to the square of the number of its nodes 

or end users. Moreover, it is a useful model for identifying potential price bubbles when 

the market price deviates too much from the underlying model and is not accompanied 

by any significant increase in the number of participating users or any other development 

that could explain the higher market prices. Our back-testing results for trading purposes 

appear to confirm this past evidence. 

5. Robustness Checks 

5.1. Trading Performances in Different Time Samples 

We considered the performances of the previous trading strategies in different time 

samples to better understand their dynamics in different market situations. In this regard, 

we followed an increasing literature that has showed that there was a financial bubble in 

bitcoin prices in 2016–2017 that burst at the end of 2017, see [61–64]. Moreover, there is 

also a debate on whether the introduction of Bitcoin futures in December 2017 crashed the 

market prices; see [12,65–70]. Following this evidence, we divided our dataset into two 

sub-samples consisting of data before and after 10 December 2017, which is the day when 

the first Bitcoin futures were introduced on the CBOE. Tables 5 and 6 show the evaluation 

metrics for all seven trading strategies in these two sub-samples (we remark that all open 

long positions were closed on December 9, 2017 in the first sample, and on March, 30 2022 

in the second sample). 
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Table 5. Selected comparison of trading strategies: 17 August 2011/9 December 2017. 

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe 
Profit.To. 

Max.Drawdown 
Num.Txns 

NVTS 14,412 −5070 14,748 −1139 0.97 ** 2.84 20 

NVRV 10,575 2078 12,653 −539 0.87 ** 5.08 5 

NVHR 4928 −1247 5334 −309 0.99 ** 3.94 11 

NVML 1348 −855 2195 −171 0.52 * 1.57 8 

NVOL 1078 −719 1755 −512 0.40 1.49 9 

INET 8798 −2078 10,876 0 0.72 ** 4.23 63 

VOLT −109 −690 147 −547 −0.08 −0.16 4 

Wright et al. (2014) test for the equality of all Sharpe ratios; p-value: 0.10 

* Significantly different from zero at the 10% probability level; ** Significantly different from zero at 

the 5% probability level. 

Table 6. Selected comparison of trading strategies: 10 December 2017/30 March 2022. 

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe 
Profit.To. 

Max.Drawdown 
Num.Txns 

NVTS 32,014 −36,974 33,052 −6059 0.47 0.87 12 

NVRV 32,119 −32,552 52,609 −2009 0.53 0.98 6 

NVHR 27,986 −48,321 52,183 −1360 0.35 0.58 7 

NVML 60,025 −22,965 64,808 −6758 0.77 * 2.61 11 

NVOL 67,803 −65,104 99,413 −6675 0.51 1.04 10 

INET 25,554 −18,611 28,727 −4749 0.50 1.37 58 

VOLT 35,319 −97,656 87,840 −11,490 0.21 0.36 8 

Wright et al. (2014) test for the equality of all Sharpe ratios; p-value: 0.87 

* Significantly different from zero at the 10% probability level. 

The two samples show quite different results: the first data sample up to the end of 

2017 is characterized by low drawdowns, very large profit–max-drawdown ratios, and 

Sharpe ratios that are significantly different from zero. Instead, the second sample has 

much larger drawdowns, very small profit to max drawdown ratios, and Sharpe ratios 

that are not significantly different from zero in almost all cases. Therefore, these results 

seem to indirectly confirm the findings by [65,68,71] who showed that the introduction of 

Bitcoin futures in December 2017 improved the efficiency of bitcoin markets. 

5.2. Trading Performances with Different Thresholds 

We also performed a sensitivity analysis where we changed the thresholds of the 

trading strategies by a small amount (we used the 10% and 90% quantiles, instead of the 

5% and 95% quantiles), and we examined how the results changed compared to the base-

line case. Table 7 shows the evaluation metrics for all seven trading strategies with the 

modified thresholds to generate buy-and-sell signals. 

Table 7. Selected comparison of trading strategies: 10% and 90% quantiles. 

Strategy Net.Trading.PL Max.Drawdown Max.Equity Min.Equity Ann.Sharpe 
Profit.To. 

Max.Drawdown 
Num.Txns 

NVTS 90,167 −84,680 131,147 −1825 0.36 1.06 51 

NVRV 56,476 −78,834 94,966 −2749 0.24 0.72 20 

NVHR 58,045 −17,061 58,434 −7471 0.59 ** 3.40 26 

NVML 64,323 −26,204 65,491 −2788 0.45 * 2.45 24 

NVOL 65,536 −80,873 104,576 −7520 0.29 0.81 24 

INET 38,272 −18,715 49,711 −1415 0.39 ** 2.04 238 
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VOLT 8171 −80,873 48,166 −32,706 0.04 0.10 17 

Wright et al. (2014) test for the equality of all Sharpe ratios. p-value: 0.36 

* Significantly different from zero at the 10% probability level; ** Significantly different from zero at 

the 5% probability level. 

The smaller quantiles made the trading strategies more aggressive and iNVOLved a 

higher number of transactions. However, the effects were not homogenous across the 

competing strategies: the NVTS, NVRV, NVML, and the NVOL models show higher final 

trading profits and maximum floating profits, but also much worse max drawdowns com-

pared to the baseline case. The NVHR ratio was the only model that significantly improved 

all the evaluation metrics, whereas the INET and VOLT models worsened all metrics. In 

general, it appears that an optimization of the thresholds used to create buy and sell sig-

nals could potentially improve the models’ performances. However, this goes beyond the 

scope of this paper; we leave it as an avenue for further research. 

6. Discussion and Conclusions 

This paper investigated the trading performances of several technical oscillators cre-

ated using crypto-asset pricing methods for short-term Bitcoin trading. More specifically, 

we employed seven pricing models proposed in the professional and academic literature to 

create technical oscillators for daily trading. Two thresholds based on the quantiles of these 

oscillators were then used to generate buy and sell signals. The empirical back-testing anal-

ysis showed that some of these methods proved to be profitable with good Sharpe ratios 

and limited max drawdowns. However, the trading performances of several methods sig-

nificantly worsened after 2017, thus indirectly confirming an increasing trend in the finan-

cial literature that shows that the introduction of Bitcoin futures in 2017 improved the 

efficiency of Bitcoin markets. 

The strategy using the network to transactions ratio (NVT) model had both the largest 

profit and the max drawdown; if it were combined with a profit-taking strategy, its per-

formance could improve considerably, so we leave this issue as an avenue for further 

study. 

The strategy that employed the network value to realized value (NVRV) ratio had a 

more balanced performance than the NVT model. In general, this model generated trading 

signals one to three weeks in advance, so we delayed the trade signals in our back-testing 

analysis with a 14-day moving average. If this model were used in actual trading, the 

parameters of the moving average would have to be optimized to better synchronize the 

trading signals with asset price movements. 

The network value to hash rate (NVHR) ratio provided good long-side entry signals 

but poor short signals, so this model must be used in conjunction with other strategies to 

determine when to exit the market. 

The strategy based on the network value to Metcalfe’s law (NVML) ratio provided 

one of the few statistically significant Sharpe ratios, a low max drawdown, and a high 

profit–max-drawdown, thus showing it to be suitable for long-term investment. In this 

regard, we note that this was the only strategy that improved its trading performance after 

the introduction of Bitcoin futures in December 2017. The strategy using the network 

value to Odlyzko’s law (NVOL) ratio had similar metrics to the NVML ratio, but its max 

drawdown and profit–max-drawdown were much worse and, in general, its metrics 

worsened after 2017. 

A variant of the Chris Burniske’s [55] INET model modified for short-term trading 

had the lowest max drawdown and the highest annualized Sharpe ratio for the whole 

sample. However, its performance worsened considerably after 2017. Finally, the VOLT 

model had the worst performance for almost all metrics and in all time samples; this 

model was found to be good for generating long signals, but bad for generating short 

signals. 
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Our empirical analysis offers two conclusions. First, it confirmed again the im-

portance of Metcalfe's law for valuing crypto assets, according to which the value of a 

network is proportional to the square of the number of users. Metcalfe's law has been 

usually employed for long-term evaluation and to identify potential price bubbles when 

market price deviated too much from the underlying fundamental level. However, our 

back-testing results showed that such an approach can also be useful for short-term trad-

ing in different market conditions. Second, the Bitcoin market has become more efficient 

since the introduction of futures trading at the end of 2017, and traders must be able to 

endure much larger drawdowns if they want to have significant trading profits. Needless 

to say, not all traders may have such possibility because "the market can remain irrational 

longer than you can remain solvent”, as John Maynard Keynes supposedly once said in the 

1930s (there is now an open debate about the origin of this quote, given that there is evi-

dence that this comment was possibly said by a financial advisor named Gary Shilling in 

1986, see https://quoteinvestigator.com/2011/08/09/remain-solvent, accessed on 1 July 

2022 for more details. ). 

We remark that this increase in market efficiency after 2017 resulted in the stabiliza-

tion of the number of Bitcoin active addresses per day (around 900,000) and in the number 

of confirmed transactions per day (around 250,000). Unfortunately, it did not affect Bitcoin 

electricity consumption, which has continued to slowly increase over time, despite im-

provements in mining equipment energy efficiency and a more diverse energy mix; see 

the Cambridge Bitcoin Electricity Consumption Index (CBECI) provided by the Univer-

sity of Cambridge for more details (https://ccaf.io/cbeci, accessed on 1 July 2022). This ap-

parent contradiction is due to the continuous increase in the Bitcoin hashrate (see 

www.blockchain.com/explorer/charts/hash-rate, accessed on 1 July 2022), for which sev-

eral reasons have been proposed: for example, blockchain data analytics firm Glassnode 

believes that the “hashrate rise is due to more efficient mining hardware coming online and/or 

miners with superior balance sheets having a larger share of the hash power network” (see 

https://insights.glassnode.com/the-week-onchain-week-40-2022, accessed on 1 July 2022). 

Ref. [72] suggested three additional reasons: falling mining rig prices, increasing crypto-

friendly jurisdictions, and the Ethereum transition from a proof-of-work (PoW) to a proof-

of-stake (PoS) consensus that forced Ethereum miners to sell off or repurpose their equip-

ment toward mining Bitcoin. Whatever the real reasons are, increased trading is not one 

of them. 

It is important to also highlight the limitations of this study: first of all, we did not 

try to optimize the parameters of the technical oscillators, given that the choice of specific 

model parameters may strongly vary across investors according to their risk–return pro-

file. Moreover, we remark that a complete trading strategy requires not only trading signals, 

but also reliable trade management and stop-loss strategies. As almost all examined models 

proved to be profitable without the use of a stop-loss strategy, complete trading strategies 

for actual trading would have probably shown better performances. These additional issues 

are left as a possibility for future work. 

Another limit of our analysis is the complete focus on Bitcoin. Even though it is still 

the most traded crypto asset, its dominance has decreased over time (see, e.g., coinmar-

ketcap.com/charts). An interesting avenue of further research would be to expand the 

analysis discussed in this paper with other crypto assets and with different variants of the 

technical indicators presented here. Moreover, we did not consider transaction fees and 

short sales. Even though there is a trend towards decreasing fees over time across all 

crypto exchanges, they can still affect trading profits. As for short sales, they can improve 

net profits, but they also iNVOLve liquidation risks and can cause major losses. We leave 

all these issues as topics for future research.  

Finally, we remark that the success of Metcalfe’s law for short-term trading suggests 

that an analysis using approaches based on social network analysis would be a natural 

extension for understanding the ultimate reasons behind the phenomena reported in this 

work. We leave this issue as an interesting avenue for further research. 
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Appendix A. Data Sources  

(1) Price data: this is free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.PriceUsdClose, 

accessed on 1 July 2022. 

(2) Network value: this is free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.MarketcapUsd, 

accessed on 1 July 2022. 

(3) Realized value: this is not free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=market.MarketcapRe-

alizedUsd, accessed on 1 July 2022. 

(4) Active addresses: this is free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=addresses.Ac-

tiveCount, accessed on 1 July 2022. 

(5) Network hashrate: this is free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=mining.HashRate-

Mean, accessed on 1 July 2022. 

(6) Transaction in exchange: this is not free data; the source is as follows: 

https://studio.glassnode.com/metrics?a=BTC&category=&m=transactions.Trans-

fersVolumeWithinExchangesSum, accessed on 1 July 2022. 

(7) Risk-free rate: this is free data; the source is as follows: 

https://fred.stlouisfed.org/series/GS10, accessed on 1 July 2022. 

Appendix B. Trading Strategies Performances 
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Figure A1. NVTS-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red line, 

left-hand side), NVTS-Z ratio (brown line, right-hand side), long and short thresholds (blue lines, 

right-hand side), long orders (red points), and short orders (green points). 

 

Figure A2. NVRV-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red line, 

left-hand side), NVRV-Z ratio (brown line, right-hand side), long and short thresholds (blue lines, 

right-hand side), long orders (red points) and short orders (green points). 

 

Figure A3. NVHRS-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red 

line, left-hand side), NVHRS-Z ratio (brown line, right-hand side), long and short thresholds (blue 

lines, right-hand side), long orders (red points), and short orders (green points). 
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Figure A4. NVMLS-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red 

line, left-hand side), NVMLS-Z ratio (brown line, right-hand side), long and short thresholds (blue 

lines, right-hand side), long orders (red points), and short orders (green points). 

 

Figure A5. NVOLS-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red 

line, left-hand side), NVOLS-Z ratio (brown line, right-hand side), long and short thresholds (blue 

lines, right-hand side), long orders (red points), and short orders (green points). 
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Figure A6. InetSpe-Z strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red 

line, left-hand side), InetSpe-Z ratio (brown line, right-hand side), long and short thresholds (blue 

lines, right-hand side), long orders (red points), and short orders (green points). 

 

Figure A7. VOLT strategy: BTC price (orange line, left-hand side), cumulative profit/loss (red line, 

left-hand side), VOLT ratio (brown line, right-hand side), long and short thresholds (blue lines, 

right-hand side), long orders (red points), and short orders (green points). 
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