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Abstract: Recently, approaches based on the transformation of tabular data into images have gained a
lot of scientific attention. This is explained by the fact that convolutional neural networks (CNNs) have
shown good results in computer vision and other image-based classification tasks. Transformation of
features without spatial relations to images allows the application of deep neural networks to a wide
range of analysis tasks. This paper analyzes existing approaches to feature transformation based
on the conversion of the features of network traffic into images and discusses their advantages and
disadvantages. The authors also propose an approach to the transformation of raw network packets
into images and analyze its efficiency in the task of network attack detection in a cyber-physical
object, including its robustness to novel and unseen attacks.

Keywords: intrusion detection; network traffic; image-based features; grayscale image; convolutional
neural network

1. Introduction

The wide application of deep neural networks is explained by their ability to reveal
hidden non-linear relations between the analyzed attributes. They have turned out to be
extremely efficient in such tasks as computer vision, and speech recognition, i.e., tasks
where parameters have explicit spatial relations. Currently, there are many studies devoted
to the problem of transformation of tabular data without such relations into images in order
to apply deep neural models and take advantage of pre-trained models [1–3].

The input data in network intrusion detection tasks are usually represented by a vector
of numerical values. There are only a few approaches that use image-based features to
detect network attacks [4–6], and all of them use the transformation of tabular data, such
as statistics on network flows extracted from PCAP (Packet Capture) files. To the best
of the authors’ knowledge, there are no approaches that are based on direct conversion
of raw binary packets into images [7], though when used as a data preprocessing step,
this transformation has proved its efficiency in cyber security tasks, such as malware
detection and authorship attribution [8–11]. Moreover, Alrabaee et al. [8] and Kaur et al. [9]
demonstrated that analysis models trained on such images are able to detect the authors of
a code, even if different techniques that could mask authorship, such as code obfuscation
or compiler optimization settings are applied. Rong et al. [10] used the conversion of raw
session network traffic into fixed-size RGB images as a preprocessing step, for training
a deep transfer learning model on the basis of ResNet-50 [12] in order to detect unseen
malware samples.

These results motivated the authors to analyze the conversion of raw network packets
into images as a data preprocessing step in the process of network attack detection, and to
evaluate the performance of deep neural networks that are trained on this type of dataset.
The results of the research were first presented at the 15th International Symposium on
Intelligent Distributed Computing (IDC 2022), where the authors introduced the approach
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and primary experimental results [13]. This paper provides an extended analysis of re-
lated research and a detailed description of the approach, including the key challenges
that should be addressed when constructing images from raw network packets. It also
presents an evaluation methodology for assessing the robustness of the trained classifier to
unseen attacks.

Thus, the authors’ contributions are as follows:

• An approach to the preprocessing of the network data in PCAP format into images;
• An evaluation of the impacts of different settings of the image generation procedure on

the efficiency of the analysis models, namely, ResNet34 and MobileNetV3-small, that
are used in the feature extraction mode, as well as the CNN constructed by the authors.

The novelty of this research consists in a novel approach to data preprocessing that is
based on a transformation of raw packets into images, which allows the achievement of
high accuracy in attack detection.

This paper is structured as follows. Section 2 reviews approaches to intrusion detection,
including ones that use the transformation of data into images. Section 3 describes the
proposed approach to attack detection with a particular focus on the image generation step.
Section 4 details the methodology of the experiments and discusses the obtained results.
Section 5 summarizes the obtained results and defines the direction of future work.

2. Related Work

Cyber intrusion detection is a highly relevant area today, and it continues to develop.
Over recent years, researchers have studied and proposed various approaches to the detec-
tion of known types of cyber attacks; these approaches have ranged from knowledge-based
methods (signature-based methods, scenario description languages, finite-state machines,
Petri nets, expert systems, and model checking [14]) to machine-learning-based methods
(decision trees [15], support vector machines [16], Bayesian networks [17], Bayesian meth-
ods [18], multivariate adaptive regression (MAR) splines [19], clustering algorithms [20],
and regression algorithms [21]) and other advanced computational intelligence methods
(neural networks [22,23], genetic algorithms [24], fuzzy logic [25], immune systems [26],
and swarm intelligence [7]). For the detection of anomalies (unknown types of cyber intru-
sions), researchers have also proposed numerous techniques based on wavelet analysis [27],
statistical analysis [28], entropy analysis [29], spectral analysis, fractal analysis [30], and
cluster analysis [7,31].

The proposed methods have demonstrated good results for the detection of known
types of cyber intrusions, but are still limited in the detection of unknown types of at-
tacks (anomalies). Anomaly detection methods use input data, such as network traffic or
event logs, for feature extraction, and they construct the normal behavior profile on that
basis. This profile is then compared with new activity profiles to detect anomalies. New
approaches to feature extraction have been proposed as some of possible ways to overcome
limitations in the detection of unknown types of intrusions. Thus, the transformation of
features into images as a feature extraction procedure has demonstrated promising results
in various object detection tasks in other areas, such as genetics.

In [3], the authors proposed an algorithm called DeepInsight, which converts various
non-image data into images, and they used this to train a CNN to differentiate among
phenotypes or categories. They tested different kinds of non-image datasets, including
RNA-seq, vowel, text, and artificial datasets and they obtained promising results.

In [32], the authors tested their approach in drug sensitivity prediction scenarios by
using synthetic and pharmacological datasets. They researched the limitations of CNNs
in relation to predictive modeling. The authors proposed a novel feature representation
approach called REFINED (representation of features as images with neighborhood de-
pendencies). The idea consisted of the transformation of high-dimensional vectors into
images, which were then used for CNN deep learning. The peculiarity of this approach
was its use of embedded feature extraction. The authors generated a concise feature map in
the form of a two-dimensional image using a Bayesian metric multi-dimensional scaling
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approach in order to minimize the pairwise distance values and, thus, to consider the
similarities between features. The experiments demonstrated that obtained REFINED CNN
outperforms such commonly used approaches as artificial neural networks, random forests,
support vector machines, elastic nets, and linear regressions, and such state-of-the-art
methods as Deep–Resp–Forest [33] and heterogeneous graph networks [34] on a synthetic
dataset, NCI60 drug response dataset [35] , and heterogeneous Genomics of Drug Sensitiv-
ity in Cancer (GDSC) dataset [36] in terms of predictive accuracy, statistical significance,
and robustness.

In [37], the authors transform tabular data into images to predict anti-cancer drug
response. Their algorithm, image generator for tabular data (IGTD), assigns features
to pixel positions to locate similar features close to each other in the image minimizing
the distance between the pixels that correspond to the features with minimum distance
between them. The authors used the Cancer Therapeutics Response Portal v2 (CTRP) [38]
and the Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/,
accessed on 1 October 2022) datasets to demonstrate on the experiments that CNNs trained
using the output images of their algorithm outperform CNNs trained using another image
representations and prediction models trained using the original tabular data in predicting
anti-cancer drug response.

Thus, the transformation of the network data (PCAP packets) to image as a feature
extraction procedure looks promising. It usually incorporates the following stages:

1. Extraction of the numerical and nominal features from the PCAP packets.
2. Transformation of the numerical and nominal features to image.

There are several research papers that implement this procedure to generate image-
based features and further use obtained images to learn convolutional neural networks
(CNN) for intrusion detection tasks [4–6,39–41].

Thus, in [4] authors use a convolutional neural network pre-trained model VGG-16 [42].
They transform 41 network features from NSL-KDD data [43] as follows: (1) normalize
features; (2) extend their number from 41 to 121 to generate a grayscale image with size
11 × 11; (3) duplicate the single color channel of the generated image for each color channel
and reshape to 224 × 224 × 3 because VGG-16 uses RGB image as input. The authors
obtained anomaly detection accuracy of 89.30% for KDDTest+ and 81.77% for KDDTest-21
in case of binary classification task.

In [44], the authors also use Visual Geometry Group pre-trained model (VGG-19).
After that they use a hybrid deep neural network based on CNN and long short-term
memory (LSTM) to extract features from network traffic. The final VGG-19 + Hybrid
CNN-LSTM model allows obtaining an accuracy of 98.86% while classifying attacks within
the network intrusion benchmark dataset.

In [5], the authors use the MobileNetV2 convolutional neural network model [45] to
detect attacks in binary and multi-class modes. They transform features extracted from
the UNSW-NB15 dataset [46], containing labeled PCAP packets, into a 16 × 16 grayscale
image as follows: each pixel corresponds to some feature value. For example pixel with
coordinates (3, 13) is set to 255 if the packet uses HTTP protocol. The authors obtained
the trained model’s accuracy 97%. The best accuracy was obtained for Generic, Fuzzers
types of attacks and normal traffic. In [6], the authors trained their own CNN model on
the NSW-NB15 dataset first and then used the pre-trained model to detect attacks in the
NSL-KDD dataset. They also converted network features into images. The authors obtained
up to 99.82% of detection rate on the KDDTest-21 dataset.

The research [47] deserves attention as the authors applied another approach to
image generation—they transform texts (HTTP messages) to images on the character level:
each character was represented by a pixel. After that, they trained a convolutional auto-
encoder to detect anomalies in HTTP messages. Through the experiments, the authors
demonstrated that the suggested approach outperforms traditional unsupervised methods,
such as isolation forest and one-class support vector machine, in the anomaly detection task.

https://www.cancerrxgene.org/
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The analysis of the related works showed that transformation of non-image data into
images with further training of a CNN has the following essential advantages: finding hid-
den relationships in attributes and their values; robustness in unseen objects detection (it is
essential to detect unknown attacks); extracting basic knowledge from limited datasets [13].

Though researchers from different subject domains have adopted the transformation
of various data types into images as the feature extraction procedure, in cyber security and
security incidents detection in particular, the researchers work mainly with numerical and
nominal features extracted from the PCAP packets and rarely transform them into images.

This research investigates a direct transformation of the raw PCAP packets into images.
This approach has demonstrated high performance in the malware analysis tasks where the
researchers analyze, usually, raw binaries [8,9,48]. The most interesting capabilities of such
transformation were demonstrated in [8,9]. The authors showed that the features extracted
from the malware images allowed detection of the malicious code compiled with different
compiler settings, and obfuscation techniques.

3. A Proposed Approach to Image-Based Feature Extraction

The key idea of a proposed approach is a transformation of raw (binary) network
packets into grayscale images that serve as an input to a classification module. This idea
relies on the hypothesis that the model trained on images is protocol independent and
robust to different even unseen types of network attacks because it is not required to
calculate protocol-specific features, and CNNs are able to reveal hidden non-linear relations
between attributes. Thus, the proposed approach to network intrusion detection consists of
the following steps:

1. An extraction of the raw (binary) packets from the PCAP files.
2. A transformation of each packet into a grayscale image.
3. An attack detection based on the analysis of the images.

The schema of the approach is given in Figure 1.

Figure 1. Generic schema of the intrusion detection using image-based features.

The grayscale images have only one channel that carries information about luminous
intensity only, thus the pixels encode the amount of light only that varies from 0 to 255. In
this case, the procedure of the network packet transformation is a quite straight-forward
process. It does not require any extraction of such attributes as protocol type, service type,
and others. Each network packet is treated as a binary sequence, which can be split into
a sequence of bytes. Then, each byte is mapped into a grayscale level according to the
following rule:

0× 0 −→ 0(black color)

· · ·
0× FF −→ 255(white color)

(1)

Figure 2 shows the process of byte conversion to a grayscale image.
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Figure 2. Process of a grayscale image generation from a sequence of bytes.

Each grayscale image can be considered as a two-dimensional matrix, and it is neces-
sary to solve two tasks when constructing it:

1. To define a width and a height of the matrix, i.e., size of an image to be generated.
2. To select a way how pixels are filled during the image generation.

The task of the image size definition is not trivial as soon as the length of network
packets varies significantly. In malware analysis, the most common approach to construct
the image from the binary code is to set a constant image width and a variable height that
depends on the length of the malware code. In major cases, the generated image requires
implementation of a resizing operation to fit the input data format of an analysis model.
For example, the format of the input data of the majority of the pre-trained deep neural
networks is a square image (N × N). Thus, if a particular pre-trained neural network is
used to detect malicious packets then the size of the image is defined by the input format of
this neural network. The authors suggest using another option. It consists of an analysis of
the packet length distribution in the test dataset, and a selection of the image size based on
a calculated statistical measure such as a mean packet size, maximum or minimum packet
size, median, etc. It is proposed to use Formula (2) to determine the image size Simage,
where Pstat stands for a statistical parameter characterizing packet lengths’ distribution.

Simage = ceil(eln(Pstat)/2) (2)

In all cases except one, when the maximum packet length is selected to determine the
image size, the packets are cropped when the image is generated. In order to preserve all
information about the network packets, it is recommended to use the maximum possible
size of the packet as a measure to determine the image size. If the packets have a smaller
size, the extra bytes are filled up with 0× 00.

There are several approaches to laying out the pixels within the image.

• Linear layout. The pixel matrix is filled up row by row. This is the most widely used
approach.

• Spiral layout. The filling of the pixel matrix is started from the center and continues
in a spiral form. This technique is suitable for square matrices.

• Zig–zag layout. This type of image construction is suggested in [49]. The pixels are
filled up in the zigzag form. The underlying idea of such a layout relates to the fact
that when the image size is greater than the length of the packet, the majority of pixels
will be padded with zeros, however, the zig–zag filling of the pixel matrix with further
discrete cosine transform can preserve and enforce existing patterns in low frequency
part of the frequency domain.
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Figure 3 shows pixel filling schemes for each approach and shows the corresponding
examples of the generated images.

The attack detection could be performed by either pre-trained models such as VGG-16,
or ResNet, or by a specially trained neural network. The authors studied both options,
and the experiments were performed with two pre-trained models (ResNet34 [12] and
MobileNetV3-small [50]) and one own CNN model.

input sequence

(a) (b) (c)

Figure 3. Different schemes for pixel layout: linear (a), spiral (b), and zig–zag (c).

4. Experiments and Discussion

To evaluate the approach, Secure Water Treatment (SWaT) dataset [51] was selected.
This dataset is generated using a test bed that models a large water treatment facility
with a six-staged technological process. The communication part of the SWAT test bed
is represented by a layered communication network, programmable logical controllers,
Supervisory Control and Data Acquisition (SCADA) server and a workstation, and a
repository with historic data. The architecture of the test bed allows remote connection to
the facility infrastructure by the operational personnel. The dataset has several versions
that vary in types of collected data, attacks performed, and overall duration of the test bed
functioning. To perform experiments, the SWaT.A6_Dec 2019 version of the dataset was
selected. It consists of several PCAP files with network traffic and historical data from
sensors in a .csv file. This dataset describes 3 h of normal functioning and 1 h during which
9 attacks of two different types were implemented. These attacks are targeted to extract
historical data or disrupt the functioning of the sensors and actuators. Figure 4 shows the
timeline of the attacks in the dataset with their type specification.
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Figure 4. Timeline of the attacks in the SWaT dataset.

To evaluate the ability of the approach to detect attacks, the following experiment
scenario was developed. The first stage included the analysis of the package length dis-
tribution and the choice of possible image size. In the second stage, the performance of
the pre-trained models, as well as the impact of the different pixel layout schemes on their
performance was evaluated. In the third stage, the experiments with the own CNN were
performed. They included an analysis of the impact of image size, as well as the size
of the training set on the model performance. The authors evaluated also its capability
to detect unseen attacks. In order to implement this task, three different datasets were
formed on the basis of the initial dataset. They are schematically shown in Figure 4: two
datasets, namely (test/train dataset) and validation dataset 1 were formed from the first part
of the SWAT dataset, and contained one attack type only, while the third dataset (validation
dataset 2) was formed on the basis of the second part of the SWaT dataset and contained
both types of attacks. The test/train dataset was used to train and assess the efficiency of all
analysis models included in the experiments.

To assess the efficiency of the attack detection, the accuracy, F1-measure, recall, and
precision metrics were used.

Choice of image size. The analysis of the network packet length distribution revealed
that there is almost no difference in statistical characteristics for normal and abnormal
packets—the maximum length of the malicious packets is slightly less than a normal one.
Table 1 summarizes the obtained results, and Figure 5 shows the distribution of the packet
lengths for normal and abnormal traffic. Using Formula (2), the maximum image size is
determined as 138× 138.

Table 1. Statistics on packet length distribution.

Packet Type Mode Median 80 Percentile 99 Percentile Min Max

Normal 64 90 128 633 60 19,034
Attack 64 86 128 633 60 14,888



Information 2022, 13, 553 8 of 14

Figure 5. Distribution of the packet lengths for normal and abnormal traffic.

Performance evaluation of the pre-trained deep neural networks. In this scenario, a
pre-trained model is used in the feature extraction task, and the weights of the final layer
only are updated in order to make predictions. Two pre-trained neural networks, namely
ResNet34 and MobileNetV3-small were selected. Both of these networks were trained on
the ImageNet dataset, which contains images and is usually used in the object detection
task. Their key characteristics such as the classification accuracy and the number of FLOPs
are given in Table 2. It is obvious that the accuracy of the ResNet34 is higher than one of
the MobileNetV3-small, however, the MobileNetV3-small is a lightweight neural network
designed for mobile CPUs with low computational resources. It should be noted that
the classification accuracy of these neural networks is higher than the ones that are used
in [5,39].

Table 2. Characteristics of the selected pre-trained models.

Pre-Trained Model Input Image Size Top-1 Accuracy Top-5 Accuracy FLOPs
(Millions)

Num. of Trained
Parameters

ResNet34 [12] 224 × 224 73.31 91.42 21.8 1026
MobileNetv3-small [50] 224 × 224 67.67 87.40 2.5 2050

The experiments were performed with models from PyTorch model hub [52], and the
following parameters were used in the experiments to train the model:

• Number of epochs: 7;
• Optimizer: SGD (Stochastic gradient descent);
• Loss function: CrossEntropyLoss;
• Learning rate: 0.001;
• Batch size: 16.

It should be noted that an attack with a duration of 15 min is described by 22 million
network packets. To train the model, the dataset was reduced to 1 million packets, and
balanced to keep the ratio of normal packets (70%) and attack packets (30%). The obtained
results are given in Table 3. It is obvious that the performance of the classifiers is low and
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comparable to the accuracy of a random classifier. The calculated metrics are slightly higher
for the ResNet34 classifier with zig–zag pixel layout, but still not acceptable.

The authors assume that there are few reasons for such results. First of all, in the
experiments, two pre-trained models were used in feature selection mode, i.e., all layers
were “freezed”, and the weights of the last layer only were updated during the training. The
number of the training epochs was not large and, perhaps, not enough to train the model.
Another possible reason is a significant difference between the train dataset and Image net
dataset that was used to train MobileNetV3-small and ResNet3 models. These models are
trained to detect real-world objects, while the images generated from network traffic are
totally different, in major cases, they are mostly black images. Moreover, the size of the
initially generated image is smaller than that is required for neural network input, and it
is re-scaled using nearest interpolation operation [53]. Thus, the usage of the pre-trained
models in feature extraction mode is not efficient, they require significant fine-tuning, i.e.,
updating all neural network weights. This process could be resource-exhaustive, especially
for large models such as ResNet34. That is why authors believe that a possible way of
transfer learning application could be as presented in [6]. The model is trained on some
public labeled dataset with network attacks, and then fine-tuned on some private or other
dataset. Additionally, in this case feature selection mode of the pre-trained models would
be efficient as the subject domain of the datasets used to train and fine-tune the model is
the same.

Table 3. Experimental results with pre-trained models and different pixel layout schemes.

Pre-Trained Model Pixel Layout Scheme Accuracy Precision Recall F1-Measure

ResNet34 [40]
linear 0.56 0.51 0.51 0.49
spiral 0.59 0.53 0.52 0.51

zig-zag 0.64 0.55 0.57 0.57

MobileNetv3-small [41]
linear 0.54 0.49 0.47 0.48
spiral 0.52 0.49 0.5 0.48

zig-zag 0.56 0.5 0.52 0.44

Experiments with CNN designed for the task. To test the approach to feature extrac-
tion, the authors also developed their own CNN with the following architecture:

• 1 input layer;
• 3 convolutional layers;
• 3 max pooling layers;
• 1 flatten layer;
• 1 dense layer;
• 1 output layer.

This network was trained for 10 epochs and demonstrated significantly higher results.
The experiments also showed that they do not depend on image size and the size of the
training dataset. Table 4 gives brief results of the CNN training with different initial
parameters, and Figure 6 provides detailed information on the training process for the
case when the CNN was trained on the 10 millions of images. The best performance of
the model is achieved on the 5–6 epoch training, then the precision and the recall metrics
slightly deteriorate. The recall parameter is high, it equals 0.98, however, the precision
is low—it is slightly higher than 0.7. The precision value is more important in the attack
detection task, as it considers false positive cases, and the low value of precision indicates
the high rate of false positive cases.
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Table 4. Accuracy of the CNN trained with different initial parameters of the training dataset.

Size of the Test Dataset Image Size Metric Used to Define Image Size Accuracy

1 million
10 × 10 Median (and mode) 0.99
26 × 26 99 Percentile 0.99

138 × 138 Maximum size 0.99

10 millions 138 × 138 Maximum size 0.99

(a) (b)

(c) (d)

Figure 6. Parameters of the CNN training on the dataset consisting of 10 millions of images.

The last series of experiments was devoted to the evaluation of the CNN ability to
detect novel and unseen attacks. In this experiment two datasets, validation dataset 1 and
validation dataset 2, were used. In the case of the first dataset the authors tried to evaluate the
robustness of the model to detect similar attacks that could vary in such attributes as packet
timestamps and checksums. The goal of the second dataset application is to assess the
model robustness to novel and unseen attacks. It should be noted that the considered attacks
are different in their origin, the target of the first attack is to retrieve data from the repository
with archive data, while the target of the second attack is to disrupt the functioning of
the sensors and actuators. The obtained results are shown in Table 5. Interestingly, they
are almost similar for both validation datasets. The precision metric is slightly lower on
the test/train dataset, but it is almost the same for both types of attacks, however, the recall
metric that characterizes the true positive rate is high indicating that the classifier detected
almost all samples with the attack. The latter looks very promising and stimulating to
continue further research on the suggested approach to network traffic pre-processing. The
main problem consists in decreasing the false positive rate while maintaining the high
recall rate. The possible solution of this task is changing the parameters of the image
construction procedure, for example, selecting the mode of network packet lengths as
a base parameter to define image size. We also compared the performance of the CNN
model to the performance of the Random Forest (RF) model that is often used in attack
detection tasks as it usually demonstrates high performance and is characterized by low
requirements to computational resources [54,55]. It was trained on test/train dataset, and
then evaluated on the validation dataset 2. The performance of the RF on the dataset with
a known attack was high, reaching 99% of the accuracy and F1-measure, however, when
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applied to dataset with an unseen attack the accuracy decreased to 63%, thus indicating
about low generality of the model.

Thus, a certain bottleneck of the suggested approach consists in selecting the image
size that is used to generate an image. Though the performed experiments showed that it
does not impact the accuracy much, it is required to have a priori information on statistical
characteristics of package length distribution in order to define image size. The authors
also consider that it is necessary to evaluate the impact of image size more thoroughly, for
example, by performing experiments on different datasets that include different types of
attacks, and by evaluating how the most important pixels (features) are located within
the image. Secondly, though experiments showed that the pre-trained models in feature
extraction mode do not demonstrate high efficiency, in a fine-tuning mode they could have
high accuracy, and in this case the selection of the image size would depend also on the
input format of the selected model.

Table 5. Performance of the CNN on different validation datasets.

Validation Dataset F1-Measure Precision Recall

Validation dataset 1 0.78 0.64 0.98
Validation dataset 2 (with novel attack type) 0.75 0.62 0.95

5. Conclusions

Approaches for feature extraction based on the transformation of the raw data into im-
ages have attracted recently a lot of research attention. This paper investigated the approach
to attack detection that uses the transformation of network traffic into grayscale images.

The analysis of the related works showed that currently there are only a few research
papers devoted to this problem, and they use a feature vector that is extracted from the
PCAP files to generate an image. This paper suggests creating grayscale images directly
from raw network packets that are extracted from PCAP files. The main motivation for
such a solution is that the model trained on images could be robust to novel and unseen
types of network attacks.

To evaluate the efficiency of the approach, a series of experiments were performed.
They included performance assessment of the pre-trained models, such as MobileNetV3-
small and ResNet34, training and testing our own CNN on different datasets with different
types of attacks.

The SWaT dataset was used as a test dataset, which describes the functioning of a
smart water treatment facility and contains such attacks as historical data extraction and
sensor disruption.

The implemented experiments showed that the performance of the pre-trained models
when they are used in feature extraction mode is low and comparable to the performance
of the random classifier. The CNN which was created by authors demonstrated quite a
high positive detection rate even when detecting unseen attacks. In future research, we
plan to hyper-tune the CNN to enhance the results.

The identified drawbacks of the approach, including the high false positive rate of
the classifier and the image size selection, defined the direction of future research work.
They include evaluation of the pixel’s importance in the context of their layout within the
image in order to determine optimal image size. Another direction of the future research
relates to the investigation of another technique for image construction, which assumes the
generation of one image for a series of packets.
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