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Abstract: All professional decisions prepared for a specific stakeholder can and must be explained.
The primary role of explanation is to defend and reinforce the proposed decision, supporting stake-
holder confidence in the validity of the decision. In this paper we present the methodology for
explaining results of the evaluation of alternatives for water quality protection for a real-life project,
the Upper Neuse Clean Water Initiative in North Carolina. The evaluation and comparison of alter-
natives is based on the Logic Scoring of Preference (LSP) method. We identify three explainability
problems: (1) the explanation of LSP criterion properties, (2) the explanation of evaluation results
for each alternative, and (3) the explanation of the comparison and ranking of alternatives. To solve
these problems, we introduce a set of explainability indicators that characterize properties that are
necessary for verbal explanations that humans can understand. In addition, we use this project to
show the methodology for automatic generation of explainability reports. We recommend the use
of explainability reports as standard supplements for evaluation reports containing the results of
evaluation projects based on the LSP method.

Keywords: explainability; LSP method; water quality; decision-making

1. Introduction

All decisions-support systems are used to prepare justifiable decisions for a specific
stakeholder/decision-maker. The stakeholder can be an organization or an individual. The
evaluation decision problem consists of identification of multiple alternatives, evaluation
of each alternative using a justifiable multiattribute criterion, and selection of the best
alternative. In this paper, evaluation is based on the LSP method [1]. In all cases, decisions
are either rejected or accepted by human decision-makers. We assume that the stakeholder
must achieve a sufficient degree of confidence before accepting and implementing a specific
decision. A natural way to build the stakeholder’s confidence is to provide acceptable
explanation of reasons for each proposed decision. The credibility of any decision depends
on the justifiability and completeness of explanations. The goal of this paper is to provide
methodology for automatic generation of explainability reports that can be used to justify
results of evaluation decisions. All numeric results in this paper are obtained using a new
LSP.XRG software tool (LSP Explainability Report Generator).

As the area of computational intelligence becomes increasingly humancentric, ex-
plainability and trustworthiness have become a ubiquitous research topic, simultaneously
present in many AI areas [2–4]. The problems that are explicitly considered are loan
scoring, medical imaging and related automated decision-making, reinforced learning,
recommender systems, user profiling [2], legal decision-making, and selection of job candi-
dates [4]. In addition, humans still cannot trust results and decisions generated by machines
in areas such as machine learning and data science where data veracity must be taken
explicitly into account [5]. AI techniques are increasingly used to extract knowledge from
data and provide decisions that humans can understand and accept from automatically
provided explanations. The trustworthiness of such explanations is not always sufficient.
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On the other hand, explanations are necessary also in multiattribute decision-making,
regardless of human effort to build justifiable multiattribute criteria [6].

All decision methods are based on criteria that include a variety of input arguments
and adjustable parameters. Both the selected arguments and the parameters of evaluation
criterion function (piecewise approximations of argument criteria, importance weights,
and logic aggregation operators) are selected by stakeholders in cooperation with de-
cision engineers [1]. All adjustable components must reflect the goals and interests of
stakeholder/decision-maker, and that cannot be done with ultimate precision. Thus, jus-
tification and explanations processes are necessary support of decision making, and the
primary topic of this paper.

In the area of decision-making, the trustworthiness of resulting decisions depends
on the trustworthiness of evaluation criteria. In other words, explainability methods can
contribute to both the criterion development and the acceptability of results. Therefore,
before accepting the results of evaluation decisions, it is necessary to provide explanations
that make the proposed decisions trustworthy. The goal of this paper is to contribute to
explainability of LSP method, starting from initial results presented in [6], and to exemplify
proposed explainability techniques on a realistic water quality protection problem [7,8],
based on strategic conservation concepts presented in [9,10].

The paper is organized as follows. The water quality protection criterion is presented
and analyzed in Section 2. In Section 3 we introduce concordance values of attributes and
use them to explain the evaluation results. Explanation of comparison of alternatives is
offered in Section 4. The automatic generation of an explainability report is discussed in
Section 5, and Section 6 provides conclusions of this paper.

2. An LSP Criterion for Water Quality Protection

The decision-making explainability problems are related to specific LSP criterion.
To illustrate such problems, we will use the criterion for the Upper Neuse Clean Water
Initiative in North Carolina [7,8]. The goal is to evaluate specific locations and areas based
on their potential for water quality protection. The evaluation team identified 12 attributes
that contribute to the potential for water quality protection resulting in the LSP criterion
shown in Figure 1. The stakeholders want to protect undeveloped lands near stream
corridors that have soils that can absorb/hold water so that it is possible to avoid erosion
and sedimentation and promote groundwater recharge and flood protection.

The aggregation structure in Figure 1 is based on medium precision aggregators [1]
with three levels (low, medium, high) of hard partial conjunction (HC−, HC, HC+) support-
ing the annihilator 0, hard partial disjunction (HD−, HD, HD+), supporting the annihilator
1, and soft conjunctive (SC−, SC, SC+) and disjunctive (SD−, SD, SD+) aggregators that
do not support annihilators. These are uniform aggregators where the threshold andness
is 75% (aggregators with andness or orness above 75% are hard, and aggregators with
andness or orness below 75% are soft).

The nodes in the aggregation structure in Figure 1 are numbered according to the LSP
aggregation tree structure where the root node (overall suitability) is the node number 1,
and generally, the child nodes of node N are denoted N1, N2, N3, and so on (e.g., the node
N = 11 has child nodes 111, 112, 113). In Figure 1, for simplicity, we also numbered inputs
1, 2, . . . , 12, so that the input attributes are a1, a2, . . . an, ai ∈ R, i = 1, . . . , n; n = 12, and
their attribute suitability scores that belong to I = [0, 1] are x1, x2, . . . xn, xi ∈ I, i = 1, . . . , n.
The overall suitability is a graded logic function L : In → I of attribute suitability scores:
X = L(x1, x2, . . . xn). The details of attribute criteria can be found in [8], and the results of
evaluation and comparison of four competitive areas (denoted A, B, C, D), based on the
criterion shown in Figure 1, are presented in Figure 2.
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Figure 1. Twelve suitability attributes, the suitability aggregation structure, and the andness of
medium precision hard (H) and soft (S), conjunctive (C) and disjunctive (D) aggregators used in the
LSP criterion for evaluation of the potential for water quality protection.
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The point of departure in explaining the properties of the logic aggregation structure
is the survey of sensitivity curves Xi(xi) = L(x1, . . . , xi, . . . xn), xk = c, k 6= i, where c
denotes a selected constant; typically, c = 0.5. The sensitivity curves show the impact of
a single input, assuming that all other inputs are constant. Figure 3 shows the sensitivity
curves for the aggregation structure used in Figure 1, in the case of c = 0.5.
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Figure 3. Sensitivity curves and ranking of attributes using the normalized range of impact.

The relative impact of individual inputs can be estimated using the values of the output
suitability range ri[%] = 100 [Xi(1)− Xi(0)], i = 1, . . . , n , and their maximum-normalized
values Ri[%] = 100 ri/max(r1, . . . , rn), i = 1, . . . , n. These indicators show the change of
overall suitability caused by the individual change of selected input attribute suitability
in the whole range from 0 to 1. Therefore, Ri[%] is one of indicators of the overall impact
(or the overall importance) of the given suitability attribute. The corresponding ranking of
attributes from the most significant to the least significant should be intuitively acceptable,
explainable, and approved by the stakeholder. That is achieved in the ranking shown in
Figure 3 where the first three attributes (111, 112, 113) are mandatory, and all others are
optional with different levels of impact. That is consistent with stakeholder requirements
specified before the development of the criterion shown in Figure 1. The normalized values
R1, . . . , Rn depend on the value of constant c, but their values and ranking are rather stable.
In Figure 3 we use c = 0.5. If c = 0.75, the ranking of the first six most significant inputs
remains unchanged. Minor permutations occur in the bottom six less significant inputs.

The explainability of LSP evaluation project results is a process consisting of the
following three main components:

1. Explainability of the LSP criterion

1.1. Explainability of attributes
1.2. Explainability of elementary attribute criteria
1.3. Explainability of suitability aggregation structure

2. Explainability of evaluation of individual alternatives

2.1. Analysis of concordance values
2.2. Classification of contributors
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3. Explainability of comparison of competitive alternatives

3.1. Analysis of explainability indicators of individual alternatives
3.2. Analysis of differential effects

The explainability of LSP criterion is defined as a general justification of the validity
of criterion (i.e., the consistency between requirements/expectations and the resulting
properties of criterion) without considering the available alternatives. In other words, this
analysis reflects independent properties of a proposed criterion function. Most actions in
the development of an LSP criterion are self-explanatory. The development of a suitability
attribute tree is directly based of stakeholder goals, interests, and requirements. The selected
suitability attributes should be necessary, sufficient, and nonredundant. Explainability
of this step should list reasons why all attributes are necessary and sufficient. In our
example, the tree is indirectly visible in Figure 1. The attribute criteria (shown in [8]) come
with descriptions that for each attribute criterion provide the explanation of reasons for
a selected evaluation method. Regarding the suitability aggregation structure (Figure 1),
the only contribution to explainability consists of the sensitivity analysis for constant
inputs and for ranking of the overall impact/importance of suitability attributes. All other
contributions to explainability are based on specific values of inputs that characterize
competitive alternatives.

3. Concordance Values and Explainability of Evaluation Results

In the case of evaluation of a specific object/alternative, each suitability attribute can
provide different contributions to the overall suitability X. In the most frequent case of
idempotent aggregation structures, we differentiate two groups of input attributes: high
contributors and low contributors. High contributors are inputs where xi > X; such attribute
values are “above the average” and contribute to the increase of the overall suitability.
Similarly, low contributors are inputs where xi < X; such attribute values are “below
the average” and contribute to the decrease of the overall suitability. Figure 4 shows
the comparison of five areas and all high contributor values are underlined. The overall
suitability X shows the resulting ranking of analyzed areas: A > B > C > D > E.
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For each attribute, there is obviously a balance point x∗i where the ith input is in perfect
balance with remaining inputs. This value is called the concordance value and it is crucial for
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explainability analysis. For all input attributes, the concordance values can be obtained by
solving the following equations:

x∗i = L(x1, . . . , xi−1, x∗i , xi+1, . . . , xn), i = 1, . . . , n

According to the fixed-point iteration concept [11], these equations can be solved, for
each of n attributes, using the following simple convergent numerical procedure:

ε = 0.0000001; // or any other small value that defines the precision of x∗i
x∗i = 0.5; // or any other initial value inside the interval [0, 1]
do

x∗i = L(x1 , . . . , xi−1, x∗i , xi+1, . . . , xn
)
;

while
(∣∣x∗i −L(x1 , . . . , xi−1, x∗i , xi+1, . . . , xn

)
| > ε)

The concordance values of all attributes for five competitive conservation areas, gener-
ated by LSP.XRG, are shown in Figure 5. Note that the values of all attributes xk, k 6= i,
are not constants; they are the real values that correspond to the selected competitive area.
The concordance value x∗i shows the collective quality of all inputs different from i. If other
inputs are high, then the concordance value of the ith input will also be high, reflecting the
general demand for balanced, high satisfaction of inputs. Thus, the concordance values
x∗i > X indicate low contributors, while x∗i ≤ X characterizes high contributors as shown
in Figure 5 (in all LSP.XRG results the concordance values are denoted c). According to
Figures 4 and 5, the Area_E does not satisfy the mandatory requirement 111 (it is too
far from the riparian zone) and therefore it is considered unsuitable and rejected by our
evaluation criterion. So, the area_E will not be included in subsequent explanations.
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The concordance values are suitable for explaining convenient and inconvenient prop-
erties of the specific evaluated area. Indicators that are proposed for explanation are defined
in Figure 6, and then applied and described in detail in Figure 7. The first question that
most stakeholders ask is how individual attributes contribute to the overall suitability X.
Since all values x1, . . . , xn contribute to the value of X, the most significant individual contri-
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butions come from inputs that have the lowest concordance values. Positive contributions
shown in the individual contribution table in Figure 6 correspond to high contributors and
negative to low contributors. For example, the primary reason for the highest suitability of
the Area_A (with individual contribution of 7.77%) comes from the proximity to riparian
zone followed by the convenient pervious land cover type (5.53%) and low percent of
impervious surface (3.1%). The individual contributions depend on the structure of the LSP
criterion. For example, according to Figure 4, the Area_A attributes 111, 112, 1211, 1213
have the highest suitability, but their individual contributions are in the range from 0.49%
to 7.7%. The negative contributions of Area_A are in vulnerable areas attributes 1231, 1232,
1233 (each of them close to 6%).
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The overall impact of individual attributes is an indicator similar to the overall impor-
tance of attributes derived from sensitivity curves (defined as the range in Figure 3). There
is a difference: now we analyze the sensitivity of individual attributes based on real values
of attributes of each individual alternative (areas A, B, C, D). That offers the possibility
for ranking of attributes of individual alternatives according to their impact and (in cases
where that is possible) to focus attention on the high impact attributes. However, the high
impact is not the same concept as the high potential for improvement.

The potential for improvement is defined in Figure 7 as a real possibility to improve the
overall suitability of an alternative. For example, the highest impact attributes of Area_A
are already satisfied, and the highest potential for improvement comes from attributes that
are insufficiently satisfied. So, the potential for improvement is an indicator that shows
(in situations where that is possible) the most impactful attributes that should have the
priority in the process of improvement. Their maximum values show the highest potential
for improvement of each alternative. Of course, that assumes the possibility of adjustment;
unfortunately, physical characteristics of locations and areas cannot be changed.

If an attribute has the value that is significantly above the concordance value, that
indicates a high accomplishment, because the quality of that attribute is significantly above
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the collective quality of other attributes. Exceptionally high accomplishments in a few
attributes (e.g., 111, 1222, and 1231 in the case of Area_D) are insufficient to provide
high overall suitability and are also an indicator of low suitability of remaining attributes,
yielding low ranking of areas D and E (Figure 4). In the case of Area_E, a single negative
accomplishment in a mandatory attribute 111 is sufficient to reject that alternative.

The concordance values offer an opportunity to analyze the balance of attributes. If all
attributes are close to their concordance values, that denotes a highly balanced alternative
where all attributes have a similar quality. The coefficient of variation (V[%]) of the ratios of
actual and concordance values of attributes shows the degree of imbalance and in Figure 6
the lower quality areas C and D are also significantly imbalanced. Of course, the low
imbalance does not mean high suitability; an alternative can have a highly balanced low
quality. However, high imbalance generally shows alternatives that need to be improved.
Note that the imbalance of attributes in Figure 7 has the same ranking as the coefficient of
variation of the concordance values in Figure 5; these concepts are similar.

4. Explainability of the Comparison of Alternatives

Explainability of evaluation results contributes to understanding the results of ranking
of individual alternatives. However, stakeholders are regularly interested in explaining the
specific reasons why an alternative is superior/inferior compared to another alternative.
Consequently, the comparison of alternatives needs explanations focused on discriminative
properties of LSP criteria.

The superiority of the leading alternative in an evaluation project is a collective
effect of all inputs and it cannot be attributed to a single attribute. However, an estimate
of individual effects can be based on the direct comparison of the suitability degrees
of individual attributes. Suppose that the Area_A has the attribute suitability degrees
a1, . . . , an, and the Area_B has the attribute suitability degrees b1, . . . , bn. Then, according
to Figure 4, we have XA = L(a1, . . . , an) = 83.1% and XB = L(b1, . . . , bn) = 69.6%. An
estimate of the individual effect of attribute ai, i ∈ {1, . . . , n}, compared to the same
attribute in the Area_B, can be obtained using the discriminators of attributes

Ri(A, B) = XA − L(a1, . . . , ai−1, bi, ai+1, . . . , an), i = 1, . . . , n

Similarly,
Ri(B, A) = XB − L(b1, . . . , bi−1, ai, bi+1, . . . , bn), i = 1, . . . , n

The discriminator Ri(A, B) shows the individual contribution of selected attribute to
the ranking A > B. If Ri(B, A) > 0 then the selected attribute positively contributes to the
ranking A > B; similarly, if Ri(B, A) < 0, then the selected attribute negatively contributes
to the ranking A > B. If bi = ai, then there is no contribution of the selected attribute. We
use n discriminators for all n attributes to explain the individual attribute contributions
to the ranking of two objects/alternatives. This insight can significantly contribute to
explainability reports.

If Ri(A, B) > 0, then ai positively contributes to the ranking A > B, and to con-
dition Ri(A, B) × Ri(B, A) ≤ 0 (i.e., their signs are different). Since the discriminators
Ri(A, B), i = 1, . . . , n show the superiority of attributes of the Area_A with respect to the
attributes of the Area_B, and Ri(B, A) shows the superiority of attributes of the Area_B
with respect to the attributes of the Area_A, it follows that these are two different views of
the same relationship between two alternatives. To consider both views, we can average
them and compute the mean superiority of the Area_A with respect to the Area_B for specific
attributes as follows:

Mi(A, B) = [Ri(A, B)− Ri(B, A)]/2, i = 1, . . . , n
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An overall indicator of superiority can be now defined as a “mean overall superiority”

M(A, B) =
1
n ∑n

i=1 Mi(A, B)

The pairwise comparison of areas A, B, C, D is shown in Figure 8. The first three rows
contain the comparison of areas A and B. The first row contains discriminators Ri(A, B),
and the second row contains discriminators Ri(B, A). The mean superiority Mi(A, B) is
computed in the third row. The rightmost column shows the overall suitability scores
of competitive objects (XA and XB), followed by the mean overall superiority of the first
object, M(A, B). It should be noted that the individual attribute superiority indicators
Mi(A, B), i = 1, . . . , n are useful for comparison of objects, and discovering critical issues,
but they do not take into account the difference in importance between attributes. So,
M(A, B) shows unweighted superiority which is different from the difference in the overall
suitability. Thus, we can investigate the values of the indicator r = (XA − XB)/M(A, B).
In our examples that value is rather stable (from 10.42 to 17.25), but not constant. This
result shows that the overall indicator of superiority M(A, B) is a useful auxiliary indicator
for estimation of relationships between two competitive objects. The main contribution
of discriminators to explainability is that they clarify the aggregator-based origins of
dominance of one object with respect to another object.
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From the standpoint of explainability of the comparison of objects, the individual
indicators Mi(A, B) explicitly show the predominant strengths (as high positive values)
and predominant weaknesses (as low negative values) of the specific object. For example,
in Figure 8, the main advantage of the Area_A compared to the Area_B is the attribute 112
(pervious land cover) and the main disadvantage is attribute 1233 (potential soil erodibility).
Such relationships are useful for summarized verbal explanations of a proposed decision
that the protection of Area_A should have priority with respect to the protection of Area_B).

In cases where that is possible, the explicit visibility of disadvantages and weaknesses
is useful for explaining what properties should be improved, and in what order. Of course,
some evaluated objects (e.g. computer systems, cars, airplanes, etc.) have the possibility to
modify suitability attributes in order to increase their overall suitability. In such cases, the
explainability indicators such as the potential for improvement, the individual suitability
contributions, and the individual superiority scores, provide the guidelines for selecting
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the most effective corrective actions. In the case of locations and areas that are suitable for
the water quality protection, the suitability attributes are physical properties that cannot
be modified by decision-makers. In such cases the resulting potential for water quality
protection cannot be changed, but the ranking of areas and explainability indicators are
indispensable to make correct and trustworthy decisions about various protection and
development activities.

5. Explainability Report as a Part of the Decision Documentation

Documentation of evaluation projects includes several main components. Each project
starts with the specification of goals and interests of the stakeholder and the reasons for
evaluating and selecting specific objects/alternatives. The next step is to develop the
suitability attribute tree and elementary suitability attribute criteria that justifiably reflect
the needs of the stakeholder. The suitability attributes are classified in basic groups of
mandatory, optional, and sufficient inputs. These requirements are then implemented using
appropriate logic aggregators in the suitability aggregation structure. This part of documen-
tation is completed before the evaluation process. To justify the LSP criterion, it is useful to
show sensitivity curves and to compute the ranking of importance of suitability attributes.

The evaluation process starts by documenting the available objects/alternatives. Then,
the results of evaluation are presented as the suitability in each node of the aggregation
structure, from input suitability degrees x1, . . . , xn to the overall suitability X. The ranking
of alternatives is based on the decreasing values of the overall suitability scores. The highest
suitability score indicates the alternative that is proposed for selection and implementation.
In cases where alternatives have costs, the suitability and affordability are conjunctively
aggregated to compute the overall value score [1] which is then used for selecting the
best alternative.

In addition to the above traditional documentation, generated using LSP.NT [12], in
this paper we introduced an additional explainability report that provides the explanation
and justification of obtained results. That report is generated by the LSP Explainability
Report Generator (LSP.XRG) tool. The results generated by LSP.XRG are exemplified in
Figures 2–5, 7 and 8. The explainability report is based primarily on the following set of
explainability indicators:

• Overall importance of suitability attributes (based on evaluation criterion)
• Concordance values of suitability attributes for each alternative
• Individual suitability contributions of attributes
• Total impact of individual suitability attributes for each alternative, and sensitivity

analysis curves
• Total potential for improvement for each suitability attribute and for each competitive

object/alternative
• Accomplishments of individual attributes for each alternative
• Balance of attribute values for each alternative
• Pairwise comparison of competitive objects/alternatives

In the case of evaluation of various locations/areas from the standpoint of their
potential for water quality protection we provided the explainability indicators in
Figures 4, 5, 7 and 8. These indicators can be used in several ways. First, all tables
with results can be automatically generated by LSP software support tools. Then, it is
possible to compose a verbalized summary report based on explainability indicators.
Finally, the information stored in explainability tables created by the LSP.XRG can be
selectively inserted in executive summaries and used during stakeholder meetings and
approval processes. The explainability results and explainability documentation signifi-
cantly contribute to the confidence that stakeholders must have in evaluation results and
proposed decisions.
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6. Conclusions

Decisions are results of human mental activities, and consequently all decision meth-
ods should have a strong humancentric component. That includes the explainability of
proposed decisions. Trustworthiness and explainability are currently important topics
(and active research areas) particularly in cases where AI tools are used to automatically
discover knowledge in large databases and propose decisions that affect human conditions
and actions. In such cases, the trustworthiness of decisions becomes the critical issue.

In this paper we have shown that explainability and trustworthiness are equally im-
portant and useful also in the decision-making process that involves a permanent presence
of humans as stakeholders, decision engineers, domain experts, and executives. This
process includes the specification of alternatives, the development of evaluation criteria,
the specification of requests to vendors or system developers, and the final evaluation of
competitive alternatives, selection of the best alternative, and justifying the decision to
approve its implementation.

The proposed explainability indicators and their use are developed in the context
of the LSP decision method, where all explanatory presentations can be integrated in a
specific explainability report. Our example of the Upper Neuse Clean Water Initiative in
North Carolina was selected as a realistic decision project where explainability is important
because of the large number of stakeholders, which include all interested in the protection
of clean water supply in perpetuity. That includes municipalities, companies, various social
organizations, and individual citizens. For all decisions in this situation, it is necessary
to provide convincing evaluation results, as well as verbal and quantified explanations.
In this paper we proposed a solution of that problem. The same methodology is equally
applicable in practically all other decision projects based on the LSP method.
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